Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Synergizing Expertise and Technology: The AI Revolution in Radiotherapy for Personalized and Precise Cancer Treatment

Version 1 : Received: 13 August 2023 / Approved: 14 August 2023 / Online: 14 August 2023 (08:38:02 CEST)

How to cite: Kouhen, F.; El gouach, H.; Saidi, K.; Errafiy, N.; Dahbi, Z. Synergizing Expertise and Technology: The AI Revolution in Radiotherapy for Personalized and Precise Cancer Treatment. Preprints 2023, 2023080992. https://doi.org/10.20944/preprints202308.0992.v1 Kouhen, F.; El gouach, H.; Saidi, K.; Errafiy, N.; Dahbi, Z. Synergizing Expertise and Technology: The AI Revolution in Radiotherapy for Personalized and Precise Cancer Treatment. Preprints 2023, 2023080992. https://doi.org/10.20944/preprints202308.0992.v1

Abstract

In recent years, the field of radiotherapy has witnessed remarkable advancements with the integration of artificial intelligence (AI) technologies into clinical practice. Traditionally, radiotherapy treatment planning has been a labor-intensive process, requiring meticulous manual segmentation and optimization. With the advent of AI, particularly deep learning algorithms, the accuracy and efficiency of target delineation and organ-at-risk segmentation have significantly improved. AI-driven algorithms analyze voluminous medical imaging data, enabling rapid and precise contouring, thus expediting the planning phase and reducing inter-observer variability. Furthermore, AI's role extends to treatment plan optimization, where it intelligently explores vast parameter spaces to generate optimal plans tailored to individual patients. This not only saves dosimetrists' time but also enhances plan quality by accounting for complex anatomical variations and personalized clinical goals. In the realm of treatment delivery, AI-powered real-time image guidance enhances the accuracy of patient positioning, ensuring precise radiation targeting. Adaptive radiotherapy, enabled by AI, allows on-the-fly plan modifications in response to anatomical changes, significantly improving treatment accuracy in scenarios like tumor shrinkage or weight loss. Beyond planning and delivery, AI algorithms contribute to outcome prediction by analyzing historical patient data and treatment responses. This predictive capability aids clinicians in making informed decisions and refining treatment strategies for better prognoses. Despite the revolutionary potential, challenges remain in seamlessly integrating AI into clinical workflows. Ethical considerations, data privacy, and algorithm interpretability necessitate cautious implementation. Additionally, fostering interdisciplinary collaboration between AI experts and radiation oncologists is imperative to harness the technology's full potential. This paper explores the impact of AI in four key areas of radiotherapy: automated segmentation, dosimetric and machine quality assurance, adaptive radiation therapy, and clinical outcome prediction.

Keywords

artificial intelligence; radiotherapy; workflow; accuracy

Subject

Medicine and Pharmacology, Oncology and Oncogenics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.