Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Synthesis of Silver Nanocubes@Cobalt Ferrite/Graphitic Carbon Nitride for Electrochemical Water Splitting

Version 1 : Received: 31 July 2023 / Approved: 31 July 2023 / Online: 1 August 2023 (08:31:32 CEST)

A peer-reviewed article of this Preprint also exists.

Zabielaite, A.; Eicher-Lorka, O.; Kuodis, Z.; Levinas, R.; Simkunaite, D.; Tamasauskaite-Tamasiunaite, L.; Norkus, E. Synthesis of Silver Nanocubes@Cobalt Ferrite/Graphitic Carbon Nitride for Electrochemical Water Splitting. Crystals 2023, 13, 1342. Zabielaite, A.; Eicher-Lorka, O.; Kuodis, Z.; Levinas, R.; Simkunaite, D.; Tamasauskaite-Tamasiunaite, L.; Norkus, E. Synthesis of Silver Nanocubes@Cobalt Ferrite/Graphitic Carbon Nitride for Electrochemical Water Splitting. Crystals 2023, 13, 1342.

Abstract

This study presents the synthesis of graphitic carbon nitride (g−C3N4) and its nanostructures with cobalt ferrite oxide (CoFe2O4) and silver nanocubes (Ag) using the combined pyrolysis of melamine and polyol method. The resulted nanostructures were tested as electrocatalysts for hydrogen and oxygen evolution reactions in alkaline media. It was found that the Ag/CoFe2O4/g−C3N4 shows the highest current density and gives the lowest overpotential of −259 mV for HER to reach a current density of 10 mA cm−2 in 1 M KOH. Overpotentials to reach the current density of 10 mA·cm−2 for OER are 370.2 mV and 382.7 mV for Ag/CoFe2O4/g−C3N4 and CoFe2O4/g−C3N4, respectively. The above results demonstrate that CoFe2O4/g−C3N4 and Ag/CoFe2O4/g−C3N4 materials could act as a bifunctional catalyst due to the notable performance towards HER and OER and for total water splitting in practical applications is a promising alternative to noble metal-based electrocatalysts.

Keywords

graphitic carbon nitride; silver nanocubes; cobalt ferrite; polyol method; hydrogen and oxygen evolution

Subject

Chemistry and Materials Science, Applied Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.