Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Microbial Biofertilizers in Plant Production and Resistance: A Review

Version 1 : Received: 24 July 2023 / Approved: 25 July 2023 / Online: 26 July 2023 (02:47:09 CEST)

A peer-reviewed article of this Preprint also exists.

Prisa, D.; Fresco, R.; Spagnuolo, D. Microbial Biofertilisers in Plant Production and Resistance: A Review. Agriculture 2023, 13, 1666. Prisa, D.; Fresco, R.; Spagnuolo, D. Microbial Biofertilisers in Plant Production and Resistance: A Review. Agriculture 2023, 13, 1666.

Abstract

In sustainable agriculture, plant nutrients are the most important elements. Biofertilizers introduce microorganisms that improve the soil nutrients and increase their accessibility to crops. In order to meet the demands of a growing population, healthy crops need to be produced using the right type of fertilizers to provide them with all the major nutrients they require. However, an increasing dependency on chemical fertilizers is destroying the environment and negatively af-fecting the health of humans. Thus, using microbes as bioinoculants as the best replacement of chemical fertilizers as eco-friendly way for plant growth and soil fertility is believed to be the best method for improving plant growth and soil fertility. In sustainable agriculture, these microbes provide significant benefits to crops. In addition to colonizing plant systems (epiphytic, endo-phytic, and rhizospheric), beneficial microbes play a key role in absorbing nutrients from surrounding ecosystems. Plant associate microbes can promote plant growth regardless of natural and extreme conditions. Plant growth promoting microbes promote plant growth through a variety of direct and indirect methods, such as nitrogen fixation, plant growth hormone production, siderophores, HCN, several hydrolytic enzymes, and potassium, zinc, and phosphorus solubilization. Research on biofertilizers has been extensive and even available, which demonstrates how these microbes can deliver nutrients to crops in sufficient quantities to enhance their yield. This review examines in detail the direct and indirect mechanisms of PGPR action and their interaction in plant growth and resistance.

Keywords

Microbial biofertilizers; microbial symbioses; plant interactions; crop resistance; plant stimulation; sustainable agriculture

Subject

Biology and Life Sciences, Agricultural Science and Agronomy

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.