Yu, S.; Wang, P.; Ye, H.; Tang, H.; Wang, S.; Wu, Z.; Pei, C.; Lu, J.; Li, H. Transition Metal Dichalcogenides Nanoscrolls: Preparation and Applications. Nanomaterials2023, 13, 2433.
Yu, S.; Wang, P.; Ye, H.; Tang, H.; Wang, S.; Wu, Z.; Pei, C.; Lu, J.; Li, H. Transition Metal Dichalcogenides Nanoscrolls: Preparation and Applications. Nanomaterials 2023, 13, 2433.
Yu, S.; Wang, P.; Ye, H.; Tang, H.; Wang, S.; Wu, Z.; Pei, C.; Lu, J.; Li, H. Transition Metal Dichalcogenides Nanoscrolls: Preparation and Applications. Nanomaterials2023, 13, 2433.
Yu, S.; Wang, P.; Ye, H.; Tang, H.; Wang, S.; Wu, Z.; Pei, C.; Lu, J.; Li, H. Transition Metal Dichalcogenides Nanoscrolls: Preparation and Applications. Nanomaterials 2023, 13, 2433.
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) nanosheets have shown extensive applications due to their excellent physical and chemical properties. However, the low light absorption efficiency limits their application in optoelectronics. By rolling up 2D TMDCs nanosheets, the one-dimensional (1D) TMDCs nanoscrolls are formed with spiral tubular structure, tunable interlayer spacing and opening ends. Due to their increased thickness of scroll structure, the light absorption is enhanced. Meanwhile, the rapid electron transportation is confined along the 1D structure. Therefore, the TMDCs nanoscrolls show improved optoelectronic performance compared to 2D nanosheets. In addition, the high specific surface area and active edge site from bending strain of basal plane make them promising materials for catalytic reaction. Thus, the TMDCs nanoscrolls have attracted intensive attention in recent years. In this review, the structure of TMDCs nanoscrolls is firstly demonstrated and followed by various preparation methods of the TMDCs nanoscrolls. Afterwards, the applications of TMDCs nanoscrolls in the fields of photodetection, hydrogen evolution reaction, and gas sensing are discussed.
Keywords
TMDCs; nanosheet; nanoscroll; preparation; photodetection; hydrogen evolution reaction; gas sensing
Subject
Chemistry and Materials Science, Nanotechnology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.