Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Continuous Mapping of Covering Approximate Space and Topology Induced by Arbitrary Covering Relation

Version 1 : Received: 19 July 2023 / Approved: 19 July 2023 / Online: 20 July 2023 (09:55:12 CEST)

A peer-reviewed article of this Preprint also exists.

Shang, X.; Wang, P.; Wu, R.; E, H. Continuous Mapping of Covering Approximation Spaces and Topologies Induced by Arbitrary Covering Relations. Symmetry 2023, 15, 1808. Shang, X.; Wang, P.; Wu, R.; E, H. Continuous Mapping of Covering Approximation Spaces and Topologies Induced by Arbitrary Covering Relations. Symmetry 2023, 15, 1808.

Abstract

In the study of rough sets, there are many covering approximation spaces, how to classify covering approximation spaces has become a hot issue. In this paper, we propose concepts covering approximation $T_{1}$-space, $F-$symmtry, covering rough continuous mapping, covering rough homeomorphism mapping to solve this question. We also propose a new method for constructing topology in Theorem 5.1, and get the following properties: (1) For each $x\in U$, $\{X_{i}:i\in I\}\subseteq \mathcal{P}(U)$ is all the subsets of $U$ which contains $x$ and $*$ is a reflexive relation on $U$. If $V\in \tau$ is a subset of $U$ and $x\in V$, then $\underline{*}(\bigcap \limits_{i\in I}X_{i})$ is the smallest subset of $U$ and $x \in \underline{*}(\bigcap \limits_{i\in I}X_{i})\subseteq V$. Denoted by $C(x)=\bigcap \{\underline{*}(X_{i}):x\in \underline{*}(X_{i}),i\in I\}$. (2)If $V\in \tau$ is a subset of $U$, then $V =$ $\bigcup \limits_{x\in V} C(x)$. (3) Let $\{\underline{*}(X_{i}):x\notin \underline{*}(X_{i}), i\in I\}$, then $\overline{\{x\}}$ $=$ $U \setminus \bigcup \limits_{x\notin \underline{*}(X_{i}), i\in I}\underline{*}(X_{i})$; (4) Let $*$ be a reflexive relation on $U$. For every $X\subseteq U$, we have $int(\underline{*}(X))=\underline{*}(X)$. Where $int(\underline{*}(X))$ represents the interior of $\underline{*}(X)$. (5) Let $\{\underline{*}(X_{i}):x\in \underline{*}(X_{i}),i\in I\}$ be a family subsets of $U$, then $\{\underline{*}(X_{i}):x\in \underline{*}(X_{i}),i\in I\}$ is a base for $(U,\tau)$ at the point $x$. \\

Keywords

n/a; covering approximation space; covering rough continuous mapping; relation; topology.

Subject

Computer Science and Mathematics, Information Systems

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.