Submitted:
17 July 2023
Posted:
19 July 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Mechanism of Microbial mediated nanoparticles synthesis
Gold and Silver NPs Synthesis
Silver nanoparticle synthesis
Biomedical applications of gold and silver NPs
Antibacterial activity
| Species | Microorganism | Mechanism | Nanoparticle | Size (nm) | Characterization | Applications | Ref |
|---|---|---|---|---|---|---|---|
| Verticillium sp. | Fungi | Intracellular | Silver | 40-50 | UV-VIS spectroscopy, FTIR, XRD, FESEM-EDX, and TEM-SAED | wound healing activity, cytotoxic properties against human keratinocyte | [47] |
| Fusarium oxysporum | Fungi | Extracellular | Silver alloy | 8-14 | TEM | Anti-viral, anti-bacterial, anticancer, anti-fungal, anti-parasite, antibacterial | [48] |
| Aspergillus fumigatus | Fungi | Extracellular | Silver | 5-25 | FTIR, SEM, EDX, DLS, UV-Vis Spectroscopy | Drug delivery | [49] |
| Aspergillus flavus | Fungi | Extracellular | Silver | 12.5± 5.1 | UV-Vis spectroscopy, FT-IR, TEM, SEM-EDX, and XRD | Antibacterial & anticandidal activity | [50] |
| Aspergillus flavus | Fungi | Extracellular | Silver | 12.5± 5.1 | UV-Vis spectroscopy, FT-IR, TEM, SEM-EDX, and XRD | Antibacterial & anticandidal activity | [51] |
| Trichoderma viride | Fungi | Extracellular | Silver | 0.1–10.0 | UV-visible spectroscopy, FTIR, SEM, EDX | anticancer and immunostimulatory | [52] |
| Aspergillus flavus | Fungi | Extracellular | Silver | <35 | UV-Vis spectrophotometer, Zeta potential, Zeta sizer, FT-IR, and XRD | antibacterial activity against K. pneumoniae, E. coli, E. cloacae, S. aureus, S. epidermidis, and Shigella sp. | [53] |
| Fusarium oxysporum | Fungi | Extracellular | Silver | 30–36 | UV–vis, SEM, XRD, FTIR | against multidrug-resistant bacteria, and the development of antimicrobial textile finishes. | [54] |
| Fusarium oxysporum | Fungi | Extracellular | Gold | 22-30 | UV–vis, FT-IR, XRD, and TEM | antibacterial activity against MDR, E. coli, P. aeruginosa, B. cereus, and MRSA | [55] |
| Fusarium oxisporum | Fungi | Extracellular | Gold | 8-12 | UV–vis, FT-IR, XRD, SEM and TEM | Antibacterial | [56] |
| Neurospora crassa | Fungi | Intra/extracellular | Gold | 32.0 | UV–vis, FT-IR, XRD, AFM, DLS, EDS, SEM and TEM | Biomedical | [57] |
| Aspergillus sydowii | Fungi | Intra/extracellular | Gold | 8.7–15.6 | UV–vis, TEM, lattice fringes in high resolution, SAED, and EDXA | Biomedical applications | [58] |
Antioxidant activity
Anticancer activity
| Species | Microorganism | Mechanism | Nanoparticle | Size (nm) | Characterization | Applications | Ref |
|---|---|---|---|---|---|---|---|
| Bacillus licheniformis | Bacteria | Extracellular | Silver | 10-30 | FTIR, XRD | antimicrobial activity, against human breast adenocarcinoma cells | [98] |
| Morganella sp. | Bacteria | Intra/extracellular | Silver | 10-50 | UV–vis spectrophotometer TEM, SEM-EDX, FT-IR, XRD | antibacterial activity | [99] |
| Sphingobium sp.MAH 11T | Bacteria | Extracellular | Silver | 7–22 | SAED and XRD | antimicrobial agent against E. coli and S. aureus | [100] |
| Brevibacterium casei | Bacteria | Extracellular | Silver | 42–92 | UV-Vis, DLS, and TEM | anticancer, antibacterial, antidiabetic agents, bioimaging, and biosensing | [101] |
| Pseudomonas aeruginosa | Bacteria | Extracellular | Silver | 30–70 | TEM, XRD, and FT-IR | Anti-cancer against thyroid cancer cells | [102] |
| Bacillus subtilis | Bacteria | Extracellular | Silver | 3-20 | UV–Vis spectroscopy, TEM, and FT-IR | anti-microbial | [103] |
| Enterobacter aerogenes | Bacteria | Extracellular | Silver | 47.22 – 105.0 | UV–vis, SEM, XRD, FTIR | antimicrobial activity against Multidrug resistance, treat many oral cavity diseases | [104] |
| Vibrio sp. | Bacteria | Extracellular | Silver | 32.67–107.18 | UV–vis, SEM, XRD, FTIR, DLS, AFM, zeta potential, FESEM | antibacterial activity against Escherichia coli and Staphylococcus aureus | [105] |
| Pseudoduganella | Bacteria | Extracellular | Silver | 8-24 | TEM, SAED, XRD, FTIR | antimicrobial activity against multidrug-resistant | [106] |
| Rhodococcus sp. | Bacteria | Extracellular | Gold | 30-120 | AFM. DLS, SEM, EDX | antimicrobial activity against Micrococcus luteus Escherichia coli bacteria. | [107] |
| Actinobacteria | Bacteria (R. erythropolis,R. ruber cells) | Extracellular | Gold | 30–120, 40–200, respectively | AFM, DLS, SEM, EDS | Antimicrobial | [108] |
| Brevibacterium casei | Bacteria | Extracellular | Gold | 10-50 | UV–vis, FT-IR, XRD, SEM and TEM | Antibacterial | [109] |
| Ureibacillus thermosphaericus | Bacteria | Intra/extracellular | Gold | 50-70 | UV–vis, FT-IR, SEM and TEM | Biomedical, sensor, catalysis, diagnostic and pharmaceutical applications. | [110] |
| Shewanella oneidensis | Bacteria | Intra/extracellular | Gold | 12.0 | UV–vis, FT-IR, XRD, AFM, DLS, EDS, SEM and TEM | Targeted drug delivery, cancer treatment, gene therapy, antimicrobial agent, biosensors, and imaging. | [111] |
| Pseudomonas fluorescens | Bacteria | Intra/extracellular | Gold | 50-70 | UV–vis, FT-IR, XRD, AFM, DLS, EDS, SEM and TEM | Biomedical applications | [112] |
| Geobacillus sp. | Bacteria | Intracellular | Gold | 10-20 | UV–vis, FT-IR, XRD, AFM, DLS, EDS, SEM and TEM | Immune response regulation | [113] |
| Ureibacillus thermosphaericus | Bacteria | Extracellular | Gold | 50-70 | UV–vis, FT-IR, XRD, AFM, DLS, EDS, SEM and TEM | Antimicrobial, anti-inflammatory, Targeted drug delivery, cancer treatment, gene therapy, biosensors, and imaging. | [114] |
| Shewanella oneidensis | Bacteria | Extracellular | Gold | 12.0 | UV–vis, FT-IR, XRD, AFM, DLS, EDS, SEM and TEM | Highly performance transistors, oscillators, in catalysis, biosensors, drug delivery, and as therapeutic agents | [115] |
| Paracoccus haeundaensisBC74171 | Bacteria | Extracellular | Gold | 20.93 ± 3.46 | UV–vis, SEM and TEM | Antioxidant, antiproliferation activity on cell lines | [116] |
| Marinobacter Pelagius | Bacteria | Intra/extracellular | Gold | 10.0 | UV–vis, FT-IR, XRD, AFM, DLS, EDS, SEM and TEM | Antibacterial, antifungal, anti-inflammatory, Targeted drug delivery, cancer treatment, gene therapy, biosensors, and imaging. | [117] |
| Geobacillus sp. | Bacteria | Extracellular | Gold | 10-20 | UV–vis, FT-IR, XRD, AFM, DLS, EDS, SEM and TEM | Anticancer | [118] |
Other applications
5. Conclusion and future directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pokrajac, Lisa, Ali Abbas, Wojciech Chrzanowski, Goretty M. Dias, Benjamin J. Eggleton, Steven Maguire, Elicia Maine, et al. "Nanotechnology for a sustainable future: Addressing global challenges with the international network4sustainable nanotechnology." (2021): 18608-18623.
- Herdiana, Yedi, Nasrul Wathoni, Shaharum Shamsuddin, and Muchtaridi Muchtaridi. "Scale-up Polymeric-based Nanoparticles Drug Delivery Systems: Development and Challenges." OpenNano (2022): 100048.
- Chandrakala, V., Valmiki Aruna, and Gangadhara Angajala. "Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems." Emergent Materials (2022): 1-23.
- Lan, Jiabo. "Overview of Application of Nanomaterials in Medical Domain." Contrast Media & Molecular Imaging 2022 (2022).
- Basnet, Parita, T. Inakhunbi Chanu, Dhrubajyoti Samanta, and Somenath Chatterjee. "A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents." Journal of Photochemistry and Photobiology B: Biology 183 (2018): 201-221.
- Qureshi, Aleem, Nawaf I. Blaisi, Alaaeldeen AO Abbas, Nadeem A. Khan, and Suriya Rehman. "Prospectus and development of microbes mediated synthesis of nanoparticles." In Microbial nanotechnology: Green synthesis and applications, pp. 1-15. Springer, Singapore, 2021.
- Loza, Kateryna, Marc Heggen, and Matthias Epple. "Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals." Advanced functional materials 30, no. 21 (2020): 1909260.
- Nasrollahzadeh, Mahmoud, S. Mohammad Sajadi, Zahra Issaabadi, and Mohaddeseh Sajjadi. "Biological sources used in green nanotechnology." In Interface science and technology, vol. 28, pp. 81-111. Elsevier, 2019.
- El-Beltagi, Hossam S., Eslam S. Bendary, Khaled Ramadan, and Heba I. Mohamed. "Metallic Nanoparticles and Nano-Based Bioactive Formulations as Nano-Fungicides for Sustainable Disease Management in Cereals." In Cereal Diseases: Nanobiotechnological Approaches for Diagnosis and Management, pp. 315-343. Springer, Singapore, 2022.
- Khandel, Pramila, and Sushil Kumar Shahi. "Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges." Journal of Nanostructure in Chemistry 8, no. 4 (2018): 369-391.
- Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. International journal of molecular sciences. 2019 Feb 17;20(4):865.
- Mubdir, Donya M., Maysa S. Al-Shukri, and Rana A. Ghaleb. "Antimicrobial Activity of Gold Nanoparticles and SWCNT-COOH on Viability of Pseudomonas aeruginosa." Annals of the Romanian Society for Cell Biology (2021): 5507-5513.
- Hasan S. A review on nanoparticles: their synthesis and types. Res. J. Recent Sci. 2015;2277:2502.
- Ghiuță, I., and D. Cristea. "Silver nanoparticles for delivery purposes." In Nanoengineered biomaterials for advanced drug delivery, pp. 347-371. Elsevier, 2020.
- Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology. 2018 Dec;16(1):1-24.
- Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA. Microbial synthesis of gold nanoparticles: current status and future prospects. Advances in colloid and interface science. 2014 Jul 1;209:40-8.
- Murillo-Rábago, Elvira Ivonne, Alfredo R. Vilchis-Nestor, Karla Juarez-Moreno, Luis E. Garcia-Marin, Katrin Quester, and Ernestina Castro-Longoria. "Optimized synthesis of small and stable silver nanoparticles using intracellular and extracellular components of fungi: An alternative for bacterial inhibition." Antibiotics 11, no. 6 (2022): 800.
- Maruyama T, Fujimoto Y, Markawa T (2015) Synthesis of gold nanoparticles using various amino acids. J Colloid Interface Sci 447:254–257. 2.
- Verma ML, Sharma S, Dhiman K, Jana AK. Microbial production of nanoparticles: mechanisms and applications. Microbial Nanobionics: Volume 1, State-of-the-Art. 2019:159-76.
- Anandaradje A, Meyappan V, Kumar I, Sakthivel N. Microbial synthesis of silver nanoparticles and their biological potential. Nanoparticles in medicine. 2020:99-133.
- Popescu M, Velea A, Lőrinczi A. BIOGENIC PRODUCTION OF NANOPARTICLES. Digest journal of nanomaterials & biostructures (DJNB). 2010 Oct 1;5(4).
- Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes—a review. Colloids and surfaces B: Biointerfaces. 2014 Sep 1;121:474-83.
- Samrot, Antony V., PJ Jane Cypriyana, S. Saigeetha, A. Jenifer Selvarani, Sajna Keeyari Purayil, and Paulraj Ponnaiah. "Microbially synthesized silver nanoparticles: Mechanism and advantages—A review." Green Synthesis of Silver Nanomaterials (2022): 439-478.
- Osorio-Echavarría, Jerónimo, Juliana Osorio-Echavarría, Claudia Patricia Ossa-Orozco, and Natalia Andrea Gómez-Vanegas. "Synthesis of silver nanoparticles using white-rot fungus Anamorphous Bjerkandera sp. R1: Influence of silver nitrate concentration and fungus growth time." Scientific Reports 11, no. 1 (2021): 1-14.
- Bhardwaj, Kanchan, Anirudh Sharma, Neeraj Tejwan, Sonali Bhardwaj, Prerna Bhardwaj, Eugenie Nepovimova, Ashwag Shami et al. "Pleurotus macrofungi-assisted nanoparticle synthesis and its potential applications: a review." Journal of Fungi 6, no. 4 (2020): 351.
- Kitching M, Ramani M, Marsili E. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microbial biotechnology. 2015 Nov;8(6):904-17.
- Quester K, Avalos-Borja M, Castro-Longoria E. Biosynthesis and microscopic study of metallic nanoparticles. Micron. 2013 Nov 1;54:1-27.
- Rai, Mahendra, Shital Bonde, Patrycja Golinska, Joanna Trzcińska-Wencel, Aniket Gade, Kamel A. Abd-Elsalam, Sudhir Shende, Swapnil Gaikwad, and Avinash P. Ingle. "Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and applications." Journal of Fungi 7, no. 2 (2021): 139.
- Fayaz AM, Girilal M, Rahman M, Venkatesan R, Kalaichelvan PT. Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochemistry. 2011 Oct 1;46(10):1958-62.
- Shafiq SA, Al-Shammari RH, Majeed HZ. Study of Biosynthesis silver nanoparticles by Fusarium graminaerum and test their antimicrobial activity. International Journal of Innovation and Applied Studies. 2016 Mar 1;15(1):43.
- Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R. Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small. 2005 May;1(5):517-20.
- Ijaz I, Bukhari A, Gilani E, Nazir A, Zain H, Saeed R. Green synthesis of silver nanoparticles using different plants parts and biological organisms, characterization and antibacterial activity. Environmental Nanotechnology, Monitoring & Management. 2022 Dec 1;18:100704.
- Fouda A, Awad MA, Al-Faifi ZE, Gad ME, Al-Khalaf AA, Yahya R, Hamza MF. Aspergillus flavus-mediated green synthesis of silver nanoparticles and evaluation of their antibacterial, anti-candida, acaricides, and photocatalytic activities. Catalysts. 2022 Apr 21;12(5):462.
- Mandhata, Chinmayee Priyadarsani, Chita Ranjan Sahoo, and Rabindra Nath Padhy. "Biomedical applications of biosynthesized gold nanoparticles from cyanobacteria: An overview." Biological Trace Element Research (2022): 1-21.
- Hamida, Reham Samir, Mohamed Abdelaal Ali, Alya Redhwan, and Mashael Mohammed Bin-Meferij. "Cyanobacteria–a promising platform in green nanotechnology: a review on nanoparticles fabrication and their prospective applications." International Journal of Nanomedicine 15 (2020): 6033.
- Vala AK. Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environmental Progress & Sustainable Energy. 2015 Jan;34(1):194-7. Fsdgesdg.
- Husain S, Verma SK, Azam M, Sardar M, Haq QM, Fatma T. Antibacterial efficacy of facile cyanobacterial silver nanoparticles inferred by antioxidant mechanism. Materials Science and Engineering: C. 2021 Mar 1;122:111888.
- Rónavári A, Igaz N, Adamecz DI, Szerencsés B, Molnar C, Kónya Z, Pfeiffer I, Kiricsi M. Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules. 2021 Feb 5;26(4):844.
- Noah N. Potential applications of greener synthesized silver and gold nanoparticles in medicine. Nanoparticles and their Biomedical Applications. 2020:95-126.
- Patil MP, Kang MJ, Niyonizigiye I, Singh A, Kim JO, Seo YB, Kim GD. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids and Surfaces B: Biointerfaces. 2019 Nov 1;183:110455.
- Rizki IN, Klaypradit W. Utilization of marine organisms for the green synthesis of silver and gold nanoparticles and their applications: A review. Sustainable Chemistry and Pharmacy. 2023 Apr 1;31:100888.
- Patil MP, Kim GD. Gold nanoparticles: Biogenic synthesis and anticancer application. InGreen synthesis of nanoparticles: applications and prospects 2020 (pp. 199-222). Springer, Singapore.
- Ilyas M, Arif M, Ahmad A, Ullah H, Adnan F, Khan S, Rahman F, Khan I, Khan MN, Shah SM. Biogenic Synthesis of Gold Nanoparticles, Characterization and Their Biomedical Applications.
- Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Advances in colloid and interface science. 2010 Apr.
- Marooufpour N, Alizadeh M, Hatami M, Asgari Lajayer B. Biological synthesis of nanoparticles by different groups of bacteria. Microbial Nanobionics: Volume 1, State-of-the-Art. 2019:63-85.
- Kitching M, Ramani M, Marsili E. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microbial biotechnology. 2015 Nov;8(6):904-17.
- Rauwel P, Küünal S, Ferdov S, Rauwel E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Advances in Materials Science and Engineering. 2015 Oct;2015.
- Edison TN, Lee YR, Sethuraman MG. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2016 May 15;161:122-9.
- Agnihotri S, Mukherji S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Advances. 2014;4(8):3974-83.
- Murillo-Rábago, Elvira Ivonne, Alfredo R. Vilchis-Nestor, Karla Juarez-Moreno, Luis E. Garcia-Marin, Katrin Quester, and Ernestina Castro-Longoria. "Optimized synthesis of small and stable silver nanoparticles using intracellular and extracellular components of fungi: An alternative for bacterial inhibition." Antibiotics 11, no. 6 (2022): 800.
- Maruyama T, Fujimoto Y, Markawa T (2015) Synthesis of gold nanoparticles using various amino acids. J Colloid Interface Sci 447:254–257.
- Verma ML, Sharma S, Dhiman K, Jana AK. Microbial production of nanoparticles: mechanisms and applications. Microbial Nanobionics: Volume 1, State-of-the-Art. 2019:159-76.
- Anandaradje A, Meyappan V, Kumar I, Sakthivel N. Microbial synthesis of silver nanoparticles and their biological potential. Nanoparticles in medicine. 2020:99-133.
- Popescu M, Velea A, Lőrinczi A. BIOGENIC PRODUCTION OF NANOPARTICLES. Digest journal of nanomaterials & biostructures (DJNB). 2010 Oct 1;5(4).
- Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes—a review. Colloids and surfaces B: Biointerfaces. 2014 Sep 1;121:474-83.
- Samrot, Antony V., PJ Jane Cypriyana, S. Saigeetha, A. Jenifer Selvarani, Sajna Keeyari Purayil, and Paulraj Ponnaiah. "Microbially synthesized silver nanoparticles: Mechanism and advantages—A review." Green Synthesis of Silver Nanomaterials (2022): 439-478.
- Osorio-Echavarría, Jerónimo, Juliana Osorio-Echavarría, Claudia Patricia Ossa-Orozco, and Natalia Andrea Gómez-Vanegas. "Synthesis of silver nanoparticles using white-rot fungus Anamorphous Bjerkandera sp. R1: Influence of silver nitrate concentration and fungus growth time." Scientific Reports 11, no. 1 (2021): 1-14.
- Bhardwaj, Kanchan, Anirudh Sharma, Neeraj Tejwan, Sonali Bhardwaj, Prerna Bhardwaj, Eugenie Nepovimova, Ashwag Shami et al. "Pleurotus macrofungi-assisted nanoparticle synthesis and its potential applications: a review." Journal of Fungi 6, no. 4 (2020): 351.
- Younis NS, Bakir EM, Mohamed ME, El Semary NA. Cyanobacteria as Nanogold Factories II: Chemical Reactivity and anti-Myocardial Infraction Properties of Customized Gold Nanoparticles Biosynthesized by Cyanothece sp. Marine drugs. 2019 Jul 8;17(7):402.
- Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials. 2018 Aug 31;8(9):681.
- Sharma P, Kaushal A. Green nanoparticle formation toward wound healing, and its application in drug delivery approaches. European Journal of Medicinal Chemistry Reports. 2022 Sep 29:100088.
- Navya PN, Daima HK. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence. 2016 Dec;3:1-4.
- Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in microbiology. 2016 Nov 16;7:1831.
- Xu M, Soliman MG, Sun X, Pelaz B, Feliu N, Parak WJ, Liu S. How entanglement of different physicochemical properties complicates the prediction of in vitro and in vivo interactions of gold nanoparticles. ACS nano. 2018 Sep 13;12(10):10104-13.
- Hemeg HA. Nanomaterials for alternative antibacterial therapy. International journal of nanomedicine. 2017;12:8211.
- Schneider G. Antimicrobial silver nanoparticles–regulatory situation in the European Union. Materials Today: Proceedings. 2017 Jan 1;4:S200-7.
- Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials. 2018 Aug 31;8(9):681.
- Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine. 2017;12:1227.
- Barker LK, Giska JR, Radniecki TS, Semprini L. Effects of short-and long-term exposure of silver nanoparticles and silver ions to Nitrosomonas europaea biofilms and planktonic cells. Chemosphere. 2018 Sep 1;206:606-14.
- Aminabad NS, Farshbaf M, Akbarzadeh A. Recent advances of gold nanoparticles in biomedical applications: state of the art. Cell biochemistry and biophysics. 2019 Jun;77(2):123-37.
- Conde J, Tian F, Baptista PV. Multifunctional gold nanocarriers for cancer theranostics: from bench to bedside and back again?. Nano-Oncologicals. 2014:295-328.
- Tan P, Li H, Wang J, Gopinath SC. Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnology and Applied Biochemistry. 2021 Dec;68(6):1236-42.
- Kim, Jonghoon, Nohyun Lee, and Taeghwan Hyeon. "Recent development of nanoparticles for molecular imaging." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2107 (2017): 20170022.
- Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. Nanomaterials and Neoplasms. 2021 Jul 22:143-217.
- Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K. Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed research international. 2014 Oct;2014.
- Pathan AA, Shah RH, Vaghela HM. The biogenic synthesis of Au, Pd and Pt nanoparticles and its medicinal applications: a review.
- Pirabbasi E, Shahar S, Manaf ZA, Rajab NF, Manap RA. Efficacy of ascorbic acid (vitamin C) and/N-acetylcysteine (NAC) supplementation on nutritional and antioxidant status of male chronic obstructive pulmonary disease (COPD) patients. Journal of nutritional science and vitaminology. 2016;62(1):54-61.
- Shunmugam R, Balusamy SR, Kumar V, Menon S, Lakshmi T, Perumalsamy H. Biosynthesis of gold nanoparticles using marine microbe (Vibrio alginolyticus) and its anticancer and antioxidant analysis. Journal of King Saud University-Science. 2021 Jan 1;33(1):101260.
- Patil MP, Kang MJ, Niyonizigiye I, Singh A, Kim JO, Seo YB, Kim GD. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids and Surfaces B: Biointerfaces. 2019 Nov 1;183:110455.
- Markus J, Mathiyalagan R, Kim YJ, Abbai R, Singh P, Ahn S, Perez ZE, Hurh J, Yang DC. Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzyme and microbial Technology. 2016 Dec 1;95:85-93.
- Mohd Yusof H, Abdul Rahman NA, Mohamad R, Zaidan UH. Microbial mediated synthesis of silver nanoparticles by Lactobacillus Plantarum TA4 and its antibacterial and antioxidant activity. Applied Sciences. 2020 Oct 5;10(19):6973.
- Mohd Yusof H, Abdul Rahman NA, Mohamad R, Zaidan UH. Microbial mediated synthesis of silver nanoparticles by Lactobacillus Plantarum TA4 and its antibacterial and antioxidant activity. Applied Sciences. 2020 Oct 5;10(19):6973.
- Xu JJ, Zhang WC, Guo YW, Chen XY, Zhang YN. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Delivery. 2022 Dec 31;29(1):664-78.
- Zielinska E, Zauszkiewicz-Pawlak A, Wojcik M, Inkielewicz-Stepniak I. Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget. 2018 Jan 1;9(4):4675.
- Shahzad A, Saeed H, Iqtedar M, Hussain SZ, Kaleem A, Abdullah R, Sharif S, Naz S, Saleem F, Aihetasham A, Chaudhary A. Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: likely antibacterial and cytotoxic effects. Journal of Nanomaterials. 2019 Oct;2019.
- Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011 Oct 24;16(10):8894-918.
- Albanese A, Chan WC. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS nano. 2011 Jul 26;5(7):5478-89.
- Hashem S, Ali TA, Akhtar S, Nisar S, Sageena G, Ali S, Al-Mannai S, Therachiyil L, Mir R, Elfaki I, Mir MM. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomedicine & Pharmacotherapy. 2022 Jun 1;150:113054.
- Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. The Egyptian Journal of Aquatic Research. 2016 Sep 1;42(3):301-12.
- Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from.
- Ratan ZA, Haidere MF, Nurunnabi MD, Shahriar SM, Ahammad AS, Shim YY, Reaney MJ, Cho JY. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers. 2020 Apr 1;12(4):855.
- Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, Hansbro PM. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Biomedicine & Pharmacotherapy. 2022 Jun 1;150:112951.
- Kumari S, Tehri N, Gahlaut A, Hooda V. Actinomycetes mediated synthesis, characterization, and applications of metallic nanoparticles. Inorganic and Nano-Metal Chemistry. 2020 Aug 10;51(10):1386-95.
- Parveen A, Rao S. Cytotoxicity and genotoxicity of biosynthesized gold and silver nanoparticles on human cancer cell lines. Journal of Cluster Science. 2015 May;26:775-88.
- Huy TQ, Huyen P, Le AT, Tonezzer M. Recent advances of silver nanoparticles in cancer diagnosis and treatment. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2020 Jul 1;20(11):1276-87.
- Zhang T, Wang L, Chen Q, Chen C. Cytotoxic potential of silver nanoparticles. Yonsei medical journal. 2014 Mar 1;55(2):283-91.
- Ijaz I, Bukhari A, Gilani E, Nazir A, Zain H, Saeed R. Green synthesis of silver nanoparticles using different plants parts and biological organisms, characterization and antibacterial activity. Environmental Nanotechnology, Monitoring & Management. 2022 Dec 1;18:100704.
- Fouda A, Awad MA, Al-Faifi ZE, Gad ME, Al-Khalaf AA, Yahya R, Hamza MF. Aspergillus flavus-mediated green synthesis of silver nanoparticles and evaluation of their antibacterial, anti-candida, acaricides, and photocatalytic activities. Catalysts. 2022 Apr 21;12(5):462.
- Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Applied microbiology and biotechnology. 2015 Jun;99(11):4579-93.
- Venil, C. K., M. Malathi, P. Velmurugan, and P. Renuka Devi. "Green synthesis of silver nanoparticles using canthaxanthin from Dietzia maris AURCCBT01 and their cytotoxic properties against human keratinocyte cell line." Journal of applied microbiology 130, no. 5 (2021): 1730-1744.
- Vivekanandhan P, Deepa S, Kweka EJ, Shivakumar MS. Toxicity of Fusarium oxysporum-VKFO-01 derived silver nanoparticles as potential inseciticide against three mosquito vector species (Diptera: Culicidae). Journal of Cluster Science. 2018 Nov;29:1139-49.
- Bala M, Arya V. Biological synthesis of silver nanoparticles from aqueous extract of endophytic fungus Aspergillus Fumigatus and its antibacterial action. International Journal of Nanomaterials and Biostructures. 2013;3(2):37-41.
- "Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and applications." Journal of Fungi 7, no. 2 (2021): 139.
- Raza, Sadaf, Asma Ansari, and Afsheen Aman. "Aspergillus fumigatus an Effective Metabolic System for the Biosynthesis of Silver Nanoparticles: Fabrication and Characterization of Silver Nanocomposites.".
- Fouda, Amr, Mohamed A. Awad, Zarraq E. AL-Faifi, Mohammed E. Gad, Areej A. Al-Khalaf, Reham Yahya, and Mohammed F. Hamza. "Aspergillus flavus-Mediated Green Synthesis of Silver Nanoparticles and Evaluation of Their Antibacterial, Anti-Candida, Acaricides, and Photocatalytic Activities." Catalysts 12, no. 5 (2022): 462.
- Momin, Bilal, Shakeelur Rahman, Neetu Jha, and Uday S. Annapure. "Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: photocatalytic dye degradation, antibacterial activity, and cytotoxicity." Bioprocess and biosystems engineering 42, no. 4 (2019): 541-553.
- Ameen, Fuad, S. AlYahya, M. Govarthanan, N. ALjahdali, N. Al-Enazi, K. Alsamhary, W. A. Alshehri, S. S. Alwakeel, and S. A. Alharbi. "Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles." Journal of Molecular Structure 1202 (2020): 127233.
- Akter, Shahina, and Md Amdadul Huq. "Biologically rapid synthesis of silver nanoparticles by Sphingobium sp. MAH-11T and their antibacterial activity and mechanisms investigation against drug-resistant pathogenic microbes." Artificial Cells, Nanomedicine, and Biotechnology 48, no. 1 (2020): 672-682.
- Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Applied microbiology and biotechnology. 2015 Jun;99:4579-93.
- Qin Mabey T, Andrea Cristaldi D, Oyston P, Lymer KP, Stulz E, Wilks S, William Keevil C, Zhang X. Bacteria and nanosilver: the quest for optimal production. Critical reviews in biotechnology. 2019 Feb 17;39(2):272-87.
- Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Applied microbiology and biotechnology. 2015 Jun;99:4579-93.
- Alsamhary, Khawla Ibrahim. "Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity." Saudi Journal of Biological Sciences 27, no. 8 (2020): 2185-2191.
- Al-Soub, Aram, Khaled Khleifat, Amjad Al-Tarawneh, Muhamad Al-Limoun, Ibrahim Alfarrayeh, Ahmad Al Sarayreh, Yaseen Al Qaisi, Haitham Qaralleh, Moath Alqaraleh, and Anas Albashaireh. "Silver nanoparticles biosynthesis using an airborne fungal isolate, Aspergillus flavus: optimization, characterization and antibacterial activity." Iranian Journal of Microbiology 14, no. 4 (2022).
- Ilahi, Nikhat, Abdul Haleem, Sajid Iqbal, Nighat Fatima, Wasim Sajjad, Abubakar Sideeq, and Safia Ahmed. "Biosynthesis of silver nanoparticles using endophytic Fusarium oxysporum strain NFW16 and their in vitro antibacterial potential." Microscopy Research and Technique 85, no. 4 (2022): 1568-1579.
- Kotcherlakota R, Das S, Patra CR. Therapeutic applications of green-synthesized silver nanoparticles. InGreen synthesis, characterization and applications of nanoparticles 2019 Jan 1 (pp. 389-428). Elsevier.
- Zamanpour, Noushin, Ali Mohammad Esmaeily, Mansour Mashreghi, Bahar Shahnavaz, Mohammad Reza Sharifmoghadam, and Ahmad Kompany. "Application of a marine luminescent Vibrio sp. B4L for biosynthesis of silver nanoparticles with unique characteristics, biochemical properties, antibacterial and antibiofilm activities." Bioorganic Chemistry 114 (2021): 105102.
- Huq, Md Amdadul. "Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens." International journal of molecular sciences 21, no. 4 (2020): 1510.
- Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta. 2018 Jul 1;184:537-56.
- Hussain K, Hussain T. Gold nanoparticles: a boon to drug delivery system. South Indian J. Biol. Sci. 2015;1(3):128.
- Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews. 2012;41(7):2740-79.
- Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition. 2010 Apr 26;49(19):3280-94.
- Wang P, Wang X, Wang L, Hou X, Liu W, Chen C. Interaction of gold nanoparticles with proteins and cells. Science and technology of advanced materials. 2015 Jun 18;16(3):034610.
- Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artificial cells, nanomedicine, and biotechnology. 2016 Jan 2;44(1):410-22.
- Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. small. 2011 May 23;7(10):1322-37. 23 May.
- Jia YP, Ma BY, Wei XW, Qian ZY. The in vitro and in vivo toxicity of gold nanoparticles. Chinese Chemical Letters. 2017 Apr 1;28(4):691-702.
- Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences. 2021 Jul 4;22(13):7202.
- Takáč P, Michalková R, Čižmáriková M, Bedlovičová Z, Balážová Ľ, Takáčová G. The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future?. Life. 2023 Feb 7;13(2):466.
- Heo DN, Yang DH, Moon HJ, Lee JB, Bae MS, Lee SC, Lee WJ, Sun IC, Kwon IK. Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials. 2012 Jan 1;33(3):856-66.
- Baldea I, Florea A, Olteanu D, Clichici S, David L, Moldovan B, Cenariu M, Achim M, Suharoschi R, Danescu S, Vulcu A. Effects of silver and gold nanoparticles phytosynthesized with Cornus mas extract on oral dysplastic human cells. Nanomedicine. 2020 Jan;15(1):55-75.
- Paino IM, Marangoni VS, de Oliveira RD, Antunes LM, Zucolotto V. Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells. Toxicology letters. 2012 Nov 30;215(2):119-25.
- Daei S, Ziamajidi N, Abbasalipourkabir R, Aminzadeh Z, Vahabirad M. Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression. Chonnam Medical Journal. 2022 Sep 1;58(3):102-9.
- Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KF, Banik S, Hosokawa T, Saito T, Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of advanced research. 2018 Jan 1;9:1-6.
- Daei S, Ziamajidi N, Abbasalipourkabir R, Aminzadeh Z, Vahabirad M. Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression. Chonnam Medical Journal. 2022 Sep 1;58(3):102-9.
- Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. Nanomaterials and Neoplasms. 2021 Jul 22:143-217.
- Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced drug delivery reviews. 2017 Jan 15;109:84-101.
- Aminabad NS, Farshbaf M, Akbarzadeh A. Recent advances of gold nanoparticles in biomedical applications: state of the art. Cell biochemistry and biophysics. 2019 Jun 15;77:123-37.
- Thipe VC, Karikachery AR, Cakilkaya P, Farooq U, Genedy HH, Kaeokhamloed N, Phan DH, Rezwan R, Tezcan G, Roger E, Katti KV. Green nanotechnology—an innovative pathway towards biocompatible and medically relevant gold nanoparticles. Journal of Drug Delivery Science and Technology. 2022 Mar 11:103256.
- Jain V, Jain S, Mahajan SC. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment. Current drug delivery. 2015 Apr 1;12(2):177-91.
- Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2017 Jul;9(4):e1449.
- Piktel E, Suprewicz Ł, Depciuch J, Chmielewska S, Skłodowski K, Daniluk T, Król G, Kołat-Brodecka P, Bijak P, Pajor-Świerzy A, Fiedoruk K. Varied-shaped gold nanoparticles with nanogram killing efficiency as potential antimicrobial surface coatings for the medical devices. Scientific reports. 2021 Jun 15;11(1):1-20.
- Naik AJ, Ismail S, Kay C, Wilson M, Parkin IP. Antimicrobial activity of polyurethane embedded with methylene blue, toluidene blue and gold nanoparticles against Staphylococcus aureus; illuminated with white light. Materials Chemistry and Physics. 2011 Sep 15;129(1-2):446-50.
- Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced drug delivery reviews. 2017 Jan 15;109:84-101.
- Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chemical society reviews. 2017;46(14):4218-44.
- Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Applied microbiology and biotechnology. 2015 Jun;99(11):4579-93.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
