Submitted:
11 July 2023
Posted:
11 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
2.1. Research framwork
2.2. Super-SBM Model
2.3. Fuzzy Analytic Hierarchy Process
2.3.1. Triangular Fuzzy Number
2.3.2. Fuzzy Linguistic Scale
2.2.3. Fuzzy AHP Algorithm
3. Results
3.1. Efficiency Measurement
3.1.1. Data Analysis
3.1.2. Pearson Correlation Coefficient
3.1.3. Business Efficiency
3.2. Performance Improvement Direction
3.2.1. Strategic Structure in Business
3.2.2. Analysis Results of criteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Indication | Years | (I)CA | (I)NCA | (I)OE | (O)NR | (O)NPFT |
|---|---|---|---|---|---|---|
| Max | 2016 | 22151 | 25185 | 25054 | 14633 | 2718 |
| Min | 320 | 73 | 377 | 616 | 33 | |
| Average | 4403 | 6814 | 4921 | 4354 | 501 | |
| SD | 6766 | 9040 | 7374 | 4864 | 806 | |
| Max | 2017 | 26343 | 22820 | 27384 | 13830 | 4122 |
| Min | 458 | 54 | 388 | 627 | 53 | |
| Average | 4966 | 6313 | 5491 | 4675 | 781 | |
| SD | 7896 | 8238 | 8072 | 5057 | 1201 | |
| Max | 2018 | 31264 | 22260 | 30749 | 16090 | 6148 |
| Min | 410 | 280 | 404 | 639 | 64 | |
| Average | 5618 | 6135 | 6122 | 5088 | 963 | |
| SD | 9379 | 7702 | 9085 | 5304 | 1844 | |
| Max | 2019 | 37291 | 20885 | 36757 | 18329 | 8214 |
| Min | 367 | 421 | 452 | 560 | 52 | |
| Average | 6368 | 5967 | 7056 | 5222 | 1195 | |
| SD | 11252 | 7099 | 10883 | 5690 | 2492 | |
| Max | 2020 | 37974 | 18928 | 37565 | 9972 | 1642 |
| Min | 395 | 359 | 462 | 518 | 60 | |
| Average | 6702 | 5432 | 7235 | 4031 | 468 | |
| SD | 11421 | 6347 | 11066 | 3218 | 472 | |
| Max | 2021 | 37568 | 17412 | 37653 | 13267 | 3189 |
| Min | 542 | 329 | 658 | 609 | 56 | |
| Average | 7138 | 5456 | 7778 | 4502 | 767 | |
| SD | 11286 | 5917 | 11046 | 3811 | 897 | |
| Max | 2022 | 40221 | 19817 | 43806 | 14350 | 7127 |
| Min | 507 | 280 | 737 | 585 | 82 | |
| Average | 7630 | 5911 | 9047 | 5531 | 1459 | |
| SD | 12040 | 6568 | 12919 | 5115 | 2129 |
| Variables | Years | (I)CA | (I)NCA | (I)OE | (O)NR | (O)NPAT |
|---|---|---|---|---|---|---|
| (I)CA | 2016 | 1.00000 | 0.92139 | 0.98540 | 0.75533 | 0.89535 |
| (I)NCA | 0.92139 | 1.00000 | 0.85088 | 0.92967 | 0.66602 | |
| (I)OE | 0.98540 | 0.85088 | 1.00000 | 0.65281 | 0.95649 | |
| (O)NR | 0.75533 | 0.92967 | 0.65281 | 1.00000 | 0.42586 | |
| (O)NPAT | 0.89535 | 0.66602 | 0.95649 | 0.42586 | 1.00000 | |
| (I)CA | 2017 | 1.00000 | 0.87790 | 0.99728 | 0.83220 | 0.98353 |
| (I)NCA | 0.87790 | 1.00000 | 0.86397 | 0.98383 | 0.78969 | |
| (I)OE | 0.99728 | 0.86397 | 1.00000 | 0.81680 | 0.98705 | |
| (O)NR | 0.83220 | 0.98383 | 0.81680 | 1.00000 | 0.73336 | |
| (O)NPAT | 0.98353 | 0.78969 | 0.98705 | 0.73336 | 1.00000 | |
| (I)CA | 2018 | 1.00000 | 0.88469 | 0.99832 | 0.87881 | 0.97220 |
| (I)NCA | 0.88469 | 1.00000 | 0.89262 | 0.98206 | 0.75441 | |
| (I)OE | 0.99832 | 0.89262 | 1.00000 | 0.88583 | 0.96822 | |
| (O)NR | 0.87881 | 0.98206 | 0.88583 | 1.00000 | 0.75862 | |
| (O)NPAT | 0.97220 | 0.75441 | 0.96822 | 0.75862 | 1.00000 | |
| (I)CA | 2019 | 1.00000 | 0.87773 | 0.99863 | 0.91968 | 0.97899 |
| (I)NCA | 0.87773 | 1.00000 | 0.88684 | 0.98120 | 0.77050 | |
| (I)OE | 0.99863 | 0.88684 | 1.00000 | 0.92947 | 0.97642 | |
| (O)NR | 0.91968 | 0.98120 | 0.92947 | 1.00000 | 0.84384 | |
| (O)NPAT | 0.97899 | 0.77050 | 0.97642 | 0.84384 | 1.00000 | |
| (I)CA | 2020 | 1.00000 | 0.89029 | 0.99843 | 0.60807 | 0.88362 |
| (I)NCA | 0.89029 | 1.00000 | 0.88254 | 0.88381 | 0.72344 | |
| (I)OE | 0.99843 | 0.88254 | 1.00000 | 0.60578 | 0.90665 | |
| (O)NR | 0.60807 | 0.88381 | 0.60578 | 1.00000 | 0.51587 | |
| (O)NPAT | 0.88362 | 0.72344 | 0.90665 | 0.51587 | 1.00000 | |
| (I)CA | 2021 | 1.00000 | 0.88665 | 0.99773 | 0.29993 | 0.30724 |
| (I)NCA | 0.88665 | 1.00000 | 0.88160 | 0.69276 | 0.67083 | |
| (I)OE | 0.99773 | 0.88160 | 1.00000 | 0.29169 | 0.28232 | |
| (O)NR | 0.29993 | 0.69276 | 0.29169 | 1.00000 | 0.90929 | |
| (O)NPAT | 0.30724 | 0.67083 | 0.28232 | 0.90929 | 1.00000 | |
| (I)CA | 2022 | 1.00000 | 0.90249 | 0.99870 | 0.77528 | 0.99705 |
| (I)NCA | 0.90249 | 1.00000 | 0.91209 | 0.96945 | 0.92440 | |
| (I)OE | 0.99870 | 0.91209 | 1.00000 | 0.78834 | 0.99842 | |
| (O)NR | 0.77528 | 0.96945 | 0.78834 | 1.00000 | 0.80503 | |
| (O)NPAT | 0.99705 | 0.92440 | 0.99842 | 0.80503 | 1.00000 |
References
- Chung, S. H. Applications of smart technologies in logistics and transport: A review. Transp. Res. E: Logist. Transp. Rev. 2021, 153, 1-17.
- Orozonova, A.; Gapurbaeva, S.; Kydykov, A.; Prokopenko, O.; Prause, P.; Lytvynenko, S. Application of smart logistics technologies in the organization of multimodal cargo delivery. Transp. Res. Procedia. 2022, 63, 1192–1198. [Google Scholar] [CrossRef]
- Barreto, L.; A. Amaral, Pereira, T. Industry 4.0 implications in logistics: an overview. Procedia Manuf. 2017, 13, 1245-1252.
- Holubčík, M.; Koman, G.; Soviar, J. Industry 4.0 in Logistics Operations. Transp. Res. Procedia 2021, 53, 282–288. [Google Scholar] [CrossRef]
- Mariusz, K.; Ludmiła, F. D.; Szymon, W. Modern technologies development in logistics centers: the case study of Poland. Transp. Res. Procedia. 2021, 55, pp. 268-275.
- Šourek, D. Software Support of City Logistics´ Processes. Transp. Res. Procedia. 2021, 55, 172–179. [Google Scholar] [CrossRef]
- Voronova, O. Improvement of warehouse logistics based on the introduction of lean manufacturing principles. Transp. Res. Procedia. 2022, 63, 919–928. [Google Scholar] [CrossRef]
- Nechaev, A.; Barykina, Y.; Tyapkina, M. Development of methodological approaches to improve the transport and logistics system using the international leasing. Transp. Res. Procedia. 2022, 63, 441–448. [Google Scholar] [CrossRef]
- Statistics. Size of the logistics industry worldwide 2018-2027. Available online: https://www.statista.com/statistics/943517/logistics-industry-global-cagr/. Accessed on 1st May 2023.
- The state president. Commercial law. No. 36/2005/QH11. 2005.
- Statistics. GDP contribution of the transportation and storage sector in Vietnam from 2015 to 2021. Available online: https://www.statista.com/statistics/1047729/vietnam-gdp-contribution-of-transportation-and-storage-sector/. Accessed on 1st May 2023.
- Nataraj, S.; Alvarez, C.; Sada, L.; Juan, A.A.; Panadero, J.; Bayliss, C. Applying Statistical Learning Methods for Forecasting Prices and Enhancing the Probability of Success in Logistics Tenders. Transp. Res. Procedia. 2020, 47, 529–536. [Google Scholar] [CrossRef]
- De Souza, E.D.; Kerber, J.C.; Bouzon, M.; Rodriguez, C. M.T. Performance evaluation of green logistics: Paving the way towards circular economy. Clean. Logist. Supply Chain. 2022, 3, 100019. [Google Scholar] [CrossRef]
- Tikwayo, L. N.; Mathaba, T. N. D. Applications of Industry 4.0 Technologies in Warehouse Management: A Systematic Literature Review. Logistics 2023, 7, 24.
- Zaare Tajabadi, F.; Daneshvar, S. Benchmark Approach for Efficiency Improvement in Green Supply Chain Management with DEA Models. Sustainability 2023, 15, 4433. [Google Scholar] [CrossRef]
- Le Viet, H.; Dang Quoc, H. The Factors Affecting Digital Transformation in Vietnam Logistics Enterprises. Electronics 2023, 12, 1825. [Google Scholar] [CrossRef]
- Wang, C.-N.; Day, J.-D.; Lien, N.T.K.; Chien, L.Q. Integrating the Additive Seasonal Model and Super-SBM Model to Compute the Efficiency of Port Logistics Companies in Vietnam. Sustainability 2018, 10, 2782. [Google Scholar] [CrossRef]
- Marto, M.; Lourenço Marques, J.; Madaleno, M. An Evaluation of the Efficiency of Tertiary Education in the Explanation of the Performance of GDP per Capita Applying Data Envelopment Analysis (DEA). Sustainability 2022, 14, 15524. [Google Scholar] [CrossRef]
- Goyal, M.; Lu, J.; Zhang, G. Decision Making in Multi-Issue e-Market Auction Using Fuzzy Techniques and Negotiable Attitudes. J. Theor. Appl. Electron. Commer. Res. 2008, 3, 97–110. [Google Scholar] [CrossRef]
- Dogan, O. A Recommendation System in E-Commerce with Profit-Support Fuzzy Association Rule Mining (P-FARM). J. Theor. Appl. Electron. Commer. Res. 2023, 18, 831–847. [Google Scholar] [CrossRef]
- Chen, Y. , Du, J., Hoa, J. Super-efficiency based on a modified directional distance function. Omega 2013, 41, 621–625. [Google Scholar] [CrossRef]
- Zhou, C.S.; Shi, C.Y.; Wang, S.J.; Zhang, G.J. Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecological Indicators. 2018, 86, 67–80. [Google Scholar] [CrossRef]
- Wang, C. N.; Hsu, H. P.; Wang, J. W.; Kao, Y. C.; Nguyen, T. P. Strategic Alliance for Vietnam Domestic Real Estate Companies Using a Hybrid Approach Combining GM (1,1) with Super SBM DEA. Sustainability 2020, 12, 1891. [Google Scholar] [CrossRef]
- Huang, Y. S.; Liu, S. J. Efficiency evaluation of a sustainable hydrogen production scheme based on super efficiency SBM model. J. Clean. Prod. 2020, 256. [Google Scholar] [CrossRef]
- Du, Y. W.; Jiang, J.; Li, C. H. Ecological efficiency evaluation of marine ranching based on the Super-SBM model: A case study of Shandong. J. Clean. Prod. 2021, 131. [Google Scholar] [CrossRef]
- Ma, F. N.; Li, J. Y.; Ma, H. W.; Sun, Y. Evaluation of the Regional Financial Efficiency Based on SBM-Shannon Entropy model. Procedia Comput. Sci. 2022, 199, 954–961. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Marra, M. The state of the art development of AHP (1979–2017): a literature review with a social network analysis. Int. J. Prod. Res. 2017, 55, 6653–6675. [Google Scholar] [CrossRef]
- Liu, Y.; Claudia, M. E.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl. 2020, 161, 113738. [Google Scholar] [CrossRef]
- Rezaie, K.; Ramiyani, S.S.; Nazari-Shirkouhi, S.; Badizadeh, A. Evaluating performance of Iranian cement firms using an integrated fuzzy AHP–VIKOR method. Appl. Math. Model. 2014, 38, 5033–5046. [Google Scholar] [CrossRef]
- Ali, N.; Mohammad, H.K.; Majid, G. Application of fuzzy AHP method to IOCG prospectivity mapping: A case study in Taherabad prospecting area, eastern Iran. Int J Appl Earth Obs Geoinf. 2014, 33, 142–154. [Google Scholar]
- Choosakun, A.; Yeom, C. Developing Evaluation Framework for Intelligent Transport System on Public Transportation in Bangkok Metropolitan Regions Using Fuzzy AHP. Infrastructures 2021, 6, 182. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.; Shi, P.; Zhang, G.; Liu, J. Flood Risk Assessment of Metro System Using Improved Trapezoidal Fuzzy AHP: A Case Study of Guangzhou. Remote Sens. 2021, 13, 5154. [Google Scholar] [CrossRef]
- Şahin, Y.; Kulakli, A. Evaluation of Open and Distance Education Websites: A Hybrid Multi-Criteria Decision-Making Approach. Systems 2023, 11, 58. [Google Scholar] [CrossRef]
- Cooper; J. O.; T. E. Heron, T. E.; Heward, W. L. Applied BehaviorAnalysis, Pearson, New York, 2007.
- Charnes, A.; Cooper, W. W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone. K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Andersen, P.; Niels, C. P. A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Manag. Sci. 1993, 39, 1261–1264. [Google Scholar] [CrossRef]
- Tone. K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 243, 32–41. [Google Scholar]
- Saaty T. L. Decision-making with the AHP: why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145 85–91.
- Cheng, C. H. Group opinion aggregation based on a grading process: a method for constructing triangular fuzzy numbers. Comput. Math. with Appl. 2004, 48, 1619–1632. [Google Scholar] [CrossRef]
- Ballı, S.; Korukoğlu, S. Operating System Selection Using Fuzzy AHP and TOPSIS Methods. Math. Comput. Appl. 2009, 14, 119–130. [Google Scholar] [CrossRef]
- Ryjov, A. Fuzzy Linguistic Scales: Definition, Properties and Applications. In: Reznik, L., Kreinovich, V. (eds) Soft Computing in Measurement and Information Acquisition. Stud. Fuzziness Soft Comput. 2003, 127.
- Ryjov, A. The Degree of Fuzziness of Fuzzy Descriptions. Mathematical Cybernetics and its Application to Biology. 1987, 60–77. [Google Scholar]
- Ryjov, A. The Axiomatic Definition of a Linguistic Scale Fuzziness Degree, its Major Properties and Applications. NASA. Johnson Space Center, North American Fuzzy Logic Proceeding Society (NAFIPS'92). 1992, 21–29.
- Deliktas, D.; Ustun; O. Multiple criteria decision-making approach for industrial engineer selection using fuzzy AHP-Fuzzy TOPSIS. Anadolu Univ. J. of Sci. and Technology A – Appl. Sci. and Eng. 2018, 19.
- Dwi, P.; Mochammad, S. Fuzzy Analytical Hierarchy Process Method to Determine the Quality of Gemstones. Adv. Fuzzy Syst. 2018, Article ID 9094380, 1–6. [Google Scholar]
- Vietstock. Available online: https://finance.vietstock.vn/. Accessed on 19.01.2023.
- López, F. J.; Ho, J. C.; Ruiz-Torres, A. J. A computational analysis of the impact of correlation and data translation on DEA efficiency score. J. Ind. Prod. Eng. 2016, 33, 192–204. [Google Scholar] [CrossRef]
- Kirch, W. Pearson’s Correlation Coefficient. Encyclopedia of Public Health. Springer, Dordrecht, 2008; 1090–1091.
- Martin, P. Global logistics market size by region 2020. Available online: https://www.statista.com/statistics/1069868/total-global-logistics-market-size-region/. Accessed on June 03 2023.
- Martin, P. Logistics industry worldwide - statistics & facts. Available online: https://www.statista.com/topics/5691/logistics-industry-worldwide/#topicOverview. Accessed on June 03 2023.
- Statistics Research Department. Size of the logistics industry worldwide 2018-2028. Available online: https://www.statista.com/statistics/943517/logistics-industry-global-cagr/. Accessed on June 03 2023.
- Mladen, K.; Giulio, P. A.; Pier, P. M.; Snežana, T. Evaluation of the smart reverse logistics development scenarios using a novel MCDM model. Clean. Environ. Syst. 2022, 7, 100099. [Google Scholar]





| Fuzzy number | Linguistic scale | Scale of fuzzy number | Positive reciprocal fuzzy scale |
|---|---|---|---|
| Equally importance | (1,1,1) | (1,1,1) | |
| Intermediate values between and | (1,2,3) | (1,1/2,1/3) | |
| Moderate importance | (2,3,4) | (1/2,1/3,1/4) | |
| Intermediate values between and | (3,4,5) | (1/3,1/4,1/5) | |
| Essential importance | (4,5,6) | (1/4,1/5,1/6) | |
| Intermediate values between and | (5,6,7) | (1/5,1/6,1/7) | |
| Very vital importance | (6,7,8) | (1/6,1/7,1/8) | |
| Intermediate values between and | (7,8,9) | (1/7,1/8,1/9) | |
| Extreme vital importance | (9,9,9) | (1/9,1/9,1/9) |
| DMUs | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
|---|---|---|---|---|---|---|---|
| PVT | 1.47896 | 1.21982 | 1.55269 | 1.62353 | 3.07727 | 0.71634 | 1.10850 |
| MVN | 2.53397 | 2.53341 | 2.16434 | 2.14556 | 3.03102 | 1.00000 | 2.58562 |
| PVP | 0.28561 | 0.30384 | 0.54837 | 0.71986 | 1.09951 | 0.72758 | 0.75669 |
| GSP | 5.62939 | 8.09925 | 3.39223 | 2.59714 | 2.65493 | 1.89795 | 1.95881 |
| ACV | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 0.12322 | 1.00000 |
| PHP | 1.37765 | 0.57517 | 0.68637 | 0.63470 | 1.21104 | 0.74996 | 0.81636 |
| DVP | 2.32096 | 1.29849 | 1.99321 | 1.67440 | 2.09580 | 2.35935 | 2.52588 |
| TMS | 1.67996 | 1.16393 | 1.23256 | 1.09705 | 1.15367 | 1.72052 | 1.26460 |
| STG | 0.50510 | 1.66195 | 0.58248 | 0.66432 | 0.66694 | 1.10816 | 1.09653 |
| Main criteria | Sub criteria | Description |
|---|---|---|
| M1 – Cost and payment term | S11 – Pointing out the special targets for assessing the price | The cost of each transportation type and the suitable payment term should be figured out the detailed information. |
| S12 – Implementing cost-saving measures | ||
| S13 – Providing a suitable cost | ||
| S14 – Implementing flexible payment methods. | ||
| M2 – Quality | S21 – Ensuring that the product is highly safe. | The goods in transit time aren’t damaged and they are delivered timely. Additionally, the logistics company should follow up closely and inform the status of shipments to customer frequently. |
| S22 – Delivering the products on time. | ||
| S23 – Updating customer the status of products frequently. | ||
| S24 – Establishing a professional customer service team in supporting customers. | ||
| M3 – Infrastructure | S31 – Investing vehicles and equipment to improve efficiency and reduce maintenance cost. | |
| S32 – Building a diversified warehouse system that is capable of storing goods in terms of quantity and quality. | ||
| S33 – Investing GPS trucking and digital dispatch system. | ||
| S34 – Upgrading a modern software system. | ||
| M4 – Brand image | S41 – Building good relationships with partners and stakeholders. | |
| S42 – Establishing the strategic of image promotion. | ||
| S43 – Updating the useful post to share experiences and knowledge on Website. | ||
| S44 – Training the skills for the employee to improve professional knowledge. |
| Main criteria. | Weights | Sub Criteria | Weights | Integrated weight | Rank |
|---|---|---|---|---|---|
| M1 | 0.25905 | S11 | 0.29363 | 0.07022 | 6 |
| S12 | 0.24089 | 0.05761 | 8 | ||
| S13 | 0.41784 | 0.09993 | 4 | ||
| S14 | 0.04764 | 0.01139 | 16 | ||
| M2 | 0.57556 | S21 | 0.41792 | 0.14414 | 1 |
| S22 | 0.33007 | 0.07894 | 5 | ||
| S23 | 0.09161 | 0.02460 | 12 | ||
| S24 | 0.16040 | 0.04056 | 11 | ||
| M3 | 0.05868 | S31 | 0.30444 | 0.06789 | 7 |
| S32 | 0.44953 | 0.10751 | 3 | ||
| S33 | 0.07213 | 0.01645 | 15 | ||
| S34 | 0.17390 | 0.04159 | 10 | ||
| M4 | 0.10671 | S41 | 0.57983 | 0.13867 | 2 |
| S42 | 0.15936 | 0.03811 | 12 | ||
| S43 | 0.07718 | 0.01846 | 14 | ||
| S44 | 0.18363 | 0.04392 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).