Submitted:
05 July 2023
Posted:
07 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Case presentation
2.1. Case 1
2.2. Case 2
2.3. Case 3
2.4. Case 4
2.4. Case 5
3. Discussion
3.1. Mechanism of action
3.2. Clinical manifestation
3.2.1. Psychiatric symptoms
3.2.2. Seizures
3.2.3. Movement disorders
3.2.4. Cognitive impairment
3.2.5. Sleep disorders
3.3. Diagnosis
3.4. Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, Cortese I, Dale RC, Gelfand JM, Geschwind M, Glaser CA, Honnorat J, Höftberger R, Iizuka T, Irani SR, Lancaster E, Leypoldt F, Prüss H, Rae-Grant A, Reindl M, Rosenfeld MR, Rostásy K, Saiz A, Venkatesan A, Vincent A, Wandinger KP, Waters P, Dalmau J. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016, 15, 391–404. [CrossRef]
- Patel, A.; Meng, Y.; Najjar, A.; Lado, F.; Najjar, S. Autoimmune Encephalitis: A Physician’s Guide to the Clinical Spectrum Diagnosis and Management. Brain Sci. 2022, 12, 1130. [Google Scholar] [CrossRef] [PubMed]
- T. Wingfield and others, Autoimmune encephalitis: a case series and comprehensive review of the literature. QJM: An International Journal of Medicine 2011, 104, 921–931. [CrossRef] [PubMed]
- Messacar, K.; Fischer, M.; Dominguez, S.R.; Tyler, K.L.; Abzug, M.J. Encephalitis in US Children. Infect. Dis. Clin. N. Am. 2018, 32. [Google Scholar] [CrossRef]
- Venkatesan, A.; Michael, B.D.; Probasco, J.C.; Geocadin, R.G.; Solomon, T. Acute Encephalitis in Immunocompetent Adults. Lancet 2019, 393, 702–716. 145–162. [Google Scholar] [CrossRef]
- Pignolet, B.S.; Gebauer, C.M.; Liblau, R.S. Immunopathogenesis of Paraneoplastic Neurological Syndromes Associated with Anti-Hu Antibodies. Oncoimmunology 2013, 2, e27384. [Google Scholar] [CrossRef]
- Gebauer, C.; Pignolet, B.; Yshii, L.; Mauré, E.; Bauer, J.; Liblau, R. CD4+ and CD8+ T Cells Are Both Needed to InduceParaneoplastic Neurological Disease in a Mouse Model. Oncoimmunology 2016, 6, e1260212. [Google Scholar] [CrossRef]
- Pilli, D.; Zou, A.; Tea, F.; Dale, R.C.; Brilot, F. Expanding Role of T Cells in Human Autoimmune Diseases of the Central Nervous System. Front. Immunol. 2017, 8, 652. [Google Scholar] [CrossRef]
- Dalmau, J.; Graus, F. Antibody-Mediated Encephalitis. N. Engl. J. Med. 2018, 378, 840–851. [Google Scholar] [CrossRef]
- Dalmau, J.; Geis, C.; Graus, F. Autoantibodies to Synaptic Receptors and Neuronal Cell Surface Proteins in Autoimmune Diseases of the Central Nervous System. Physiol. Rev. 2017, 97, 839–887. [Google Scholar] [CrossRef]
- Louveau, A.; Plog, B.A.; Antila, S.; Alitalo, K.; Nedergaard, M.; Kipnis, J. Understanding the Functions and Relationships of the Glymphatic System and Meningeal Lymphatics. J. Clin. Investig. 2017, 127, 3210–3219. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.; Restrepo-Jiménez, P.; Monsalve, D.M.; Pacheco, Y.; Acosta-Ampudia, Y.; Ramírez-Santana, C.; Leung, P.S.C.; Ansari, A.A.; Gershwin, M.E.; Anaya, J.-M. Molecular Mimicry and Autoimmunity. J. Autoimmun. 2018, 95, 100–123. [Google Scholar] [CrossRef] [PubMed]
- Könnecke, H.; Bechmann, I. The Role of Microglia and Matrix Metalloproteinases Involvement in Neuroinflammation and Gliomas. Clin. Dev. Immunol. 2013, 2013, 914104. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, L.; Kang, W.; Peng, G.; Yu, D.; Ma, Q.; Li, Y.; Zhao, Y.; Li, L.; Dai, F.; et al. Cytokines/Chemokines: Potential Biomarkers for Non-Paraneoplastic Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Front. Neurol. 2020, 11, 582296. [Google Scholar] [CrossRef] [PubMed]
- Najjar, S.; Steiner, J.; Najjar, A.; Bechter, K. A Clinical Approach to New-Onset Psychosis Associated with Immune Dysregulation: The Concept of Autoimmune Psychosis. J. Neuroinflamm. 2018, 15, 40. [Google Scholar] [CrossRef]
- Pollak, T.A.; Lennox, B.R.; Müller, S.; Benros, M.E.; Prüss, H.; Van Elst, L.T.; Klein, H.; Steiner, J.; Frodl, T.; Bogerts, B.; et al. Autoimmune Psychosis: An International Consensus on an Approach to the Diagnosis and Management of Psychosis of Suspected Autoimmune Origin. Lancet Psychiatry 2019, 7, 93–108. [Google Scholar] [CrossRef]
- Hansen, N. Long-Term Memory Dysfunction in Limbic Encephalitis. Front. Neurol. 2019, 10, 330. [Google Scholar] [CrossRef]
- Honnorat, J.; Joubert, B. Movement Disorders in Autoimmune Encephalitis and Paraneoplastic Neurological Syndromes. Rev. Neurol. 2018, 174, 597–607. [Google Scholar] [CrossRef]
- Britton, J. Autoimmune Epilepsy. Handb. Clin. Neurol. 2016, 133, 219–245. [Google Scholar]
- Spatola, M.; Dalmau, J. Seizures and Risk of Epilepsy in Autoimmune and Other Inflammatory Encephalitis. Curr. Opin. Neurol. 2017, 30, 345–353. [Google Scholar] [CrossRef]
- Blattner, M.S.; de Bruin, G.S.; Bucelli, R.C.; Day, G.S. Sleep Disturbances Are Common in Patients with Autoimmune Encephalitis. J. Neurol. 2019, 266, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Quek, A.M.L.; Britton, J.W.; McKeon, A.; So, E.; Lennon, V.A.; Shin, C.; Klein, C.; Watson, R.E.; Kotsenas, A.L.; Lagerlund, T.D.; et al. Autoimmune Epilepsy: Clinical Characteristics and Response to Immunotherapy. Arch. Neurol-Chic. 2012, 69, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Long, J.M.; Day, G.S. Autoimmune Dementia. Semin. Neurol. 2018, 38, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Maat, P.; de Graaff, E.; van Beveren, N.M.; Hulsenboom, E.; Verdijk, R.M.; Koorengevel, K.; van Duijn, M.; Hooijkaas, H.; Hoogenraad, C.; Smitt, P.A.S. Psychiatric Phenomena as Initial Manifestation of Encephalitis by Anti-NMDAR Antibodies. Acta Neuropsychiatr. 2013, 25, 128–136. [Google Scholar] [CrossRef]
- Al-Diwani, A.; Handel, A.; Townsend, L.; Pollak, T.; Leite, M.I.; Harrison, P.J.; Lennox, B.R.; Okai, D.; Manohar, S.G.; Irani, S.R. The Psychopathology of NMDAR-Antibody Encephalitis in Adults: A Systematic Review and Phenotypic Analysis of Individual Patient Data. Lancet Psychiatry 2019, 6, 235–246. [Google Scholar] [CrossRef]
- Fang, Z.; Yang, Y.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. Advances in Autoimmune Epilepsy Associated with Antibodies, Their Potential Pathogenic Molecular Mechanisms, and Current Recommended Immunotherapies. Front. Immunol. 2017, 8, 395. [Google Scholar] [CrossRef]
- Dalmau, J. NMDA Receptor Encephalitis and Other Antibody-Mediated Disorders of the Synapse. Neurology 2016, 87, 2471–2482. [Google Scholar] [CrossRef]
- Anderson, N.E.; Barber, P.A. Limbic Encephalitis—A Review. J. Clin. Neurosci. 2008, 15, 961–971. [Google Scholar] [CrossRef]
- Hébert, J.; Day, G.S.; Steriade, C.; Wennberg, R.A.; Tang-Wai, D.F. Long-Term Cognitive Outcomes in Patients with Autoimmune Encephalitis. Can. J. Neurol. Sci. J. Can. Des. Sci. Neurol. 2018, 45, 540–544. [Google Scholar] [CrossRef]
- Corallo, F.; Buono, V.L.; Cara, M.D.; Salvo, S.D.; Formica, C.; Morabito, R.; Floridia, D.; Pastura, C.; Rifici, C.; D’Aleo, G.; et al. The Role of Cognitive Rehabilitation in Limbic Encephalitis. Medicine 2018, 97, e13223. [Google Scholar] [CrossRef]
- Iranzo, A.; Graus, F.; Clover, L.; Morera, J.; Bruna, J.; Vilar, C.; Martínez-Rodriguez, J.E.; Vincent, A.; Santamaría, J. Rapid Eye Movement Sleep Behavior Disorder and Potassium Channel Antibody–Associated Limbic Encephalitis. Ann. Neurol. 2006, 59, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, N.; Kawajiri, M.; Ohyagi, Y.; Minohara, M.; Murai, H.; Kira, J. A Patient with Paraneoplastic Limbic Encephalitis Induced by Breast Cancer Presenting with Hypersomnia. Rinsho Shinkeigaku Clin. Neurol.
- Linnoila, J.J.; Rosenfeld, M.R.; Dalmau, J. Neuronal Surface Antibody-Mediated Autoimmune Encephalitis. Semin. Neurol. 2014, 34, 458–466. [Google Scholar] [CrossRef]
- Hermetter, C.; Fazekas, F.; Hochmeister, S. Systematic Review: Syndromes, Early Diagnosis, and Treatment in Autoimmune Encephalitis. Front. Neurol. 2018, 9, 706. [Google Scholar] [CrossRef]
- Leypoldt, F.; Germany, P.; Doctoral, R.F.; Catalan Institution for Research and Advanced Studies (ICREA); August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Junior Attending Physician, Department of Neurology, University Medical Centre Hamburg-Eppendorf; Wandinger, K. -P.; Germany, A.P.; Institute of Clinical Chemistry; Attending Physician, Department of Neurology, University Medical-Centre Schleswig-Holstein Campus Lübeck; et al. Barcelona, Autoimmune Encephalitis. Eur. Neurol. Rev. 2012, 8, 31.
- Gaspard, N.; Foreman, B.P.; Alvarez, V.; Kang, C.C.; Probasco, J.C.; Jongeling, A.C.; Meyers, E.; Espinera, A.; Haas, K.F.; Schmitt, S.E.; et al. New-Onset Refractory Status Epilepticus. Neurology 2015, 85, 1604–1613. [Google Scholar] [CrossRef]
- Probasco, J.C.; Benavides, D.R.; Ciarallo, A.; Sanin, B.W.; Wabulya, A.; Bergey, G.K.; Kaplan, P.W. Electroencephalographic and Fluorodeoxyglucose-Positron Emission Tomography Correlates in Anti-N-Methyl-d-Aspartate Receptor Autoimmune Encephalitis. Epilepsy Behav. Case Rep. 2014, 2, 174–178. [Google Scholar] [CrossRef]
- Shin, Y.-W.; Lee, S.-T.; Park, K.-I.; Jung, K.-H.; Jung, K.-Y.; Lee, S.K.; Chu, K. Treatment Strategies for Autoimmune Encephalitis. Adv. Neurol. Diso. 2017, 11, 175628561772234. [Google Scholar] [CrossRef]
- Randell, R.L.; Adams, A.V.; Mater, H.V. Tocilizumab in Refractory Autoimmune Encephalitis: A Series of Pediatric Cases. Pediatr.Neurol. 2018, 86, 66–68. [Google Scholar] [CrossRef]
- Yang, X.-Z.; Zhu, H.-D.; Ren, H.-T.; Zhu, Y.-C.; Peng, B.; Cui, L.-Y.; Guan, H.-Z. Utility and Safety of Intrathecal Methotrexate Treatment in Severe Anti-N-Methyl-D-Aspartate Receptor Encephalitis: A Pilot Study. Chin. Med. J.-Peking 2018, 131, 156–160. [Google Scholar] [CrossRef]
- Macher, S.; Zimprich, F.; Simoni, D.D.; Höftberger, R.; Rommer, P.S. Management of Autoimmune Encephalitis: An Observational Monocentric Study of 38 Patients. Front. Immunol. 2018, 9, 2708. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.W.; Rojas, O.L.; Gommerman, J.L. B Cell Depletion Therapies in Autoimmune Disease: Advances and Mechanistic Insights. Nat. Rev. Drug Discov. 2021, 20, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Nosadini, M.; Mohammad, S.S.; Ramanathan, S.; Brilot, F.; Dale, R.C. Immune Therapy in Autoimmune Encephalitis: A Systematic Review. Expert Rev. Neurother. 2015, 15, 1391–1419. [Google Scholar] [CrossRef] [PubMed]
- Titulaer, M.J.; McCracken, L.; Gabilondo, I.; Armangué, T.; Glaser, C.; Iizuka, T.; Honig, L.S.; Benseler, S.M.; Kawachi, I.; Martinez-Hernandez, E.; et al. Treatment and Prognostic Factors for Long-Term Outcome in Patients with Anti-NMDA Receptor Encephalitis: An Observational Cohort Study. Lancet Neurol. 2013, 12, 157–165. [Google Scholar] [CrossRef]
| Antigens | Main presentation | Frequency of cancer | Type of malignancy |
|---|---|---|---|
| NMDAR | Panencephalitis, psychiatric manifestations, behavioral disturbances, cognitive impairment, seizures, movement disorders | 40% | Ovarian or extraovarian teratomas |
| LGI1 | Limbic encephalitis, short-term memory loss, facial-brachial dystonic seizures, depression, sleep behavior disorders | 5–10% | Malignant thymoma, neuroendocrine tumors |
| CASPR2 | Morvan syndrome, delusions and hallucinations | 20% | Malignant thymoma |
| AMPAR | Limbic encephalitis, encephalopathy, memory loss | 65% | SCLC, malignant thymoma |
| GABAAR | Limbic encephalitis, encephalopathy, intractable epilepsy, behavioral and psychiatric disorders | 25% | Malignant thymoma |
| GABABR | Limbic encephalitis, intractable seizures, short-term memory loss | 50% | SCLC |
| DPPX | Limbic encephalitis, encephalopathy, gastrointestinal symptoms, myoclonus, tremors | <10% | B cell neoplasms |
| mGluR1 | Gait instability, cerebellar ataxia |
30% |
Hematologic |
| mGluR5 | Ophelia syndrome, psychiatric symptoms, encephalopathy | 50% | Hodgkin lymphoma |
| IgLON5 | Sleep disorders | n/k | n/k |
| DNER (Tr) | Gait instability, cerebellar ataxia | >90% | Hodgkin disease |
| P/Q type VGCC | Paraneoplastic cerebellar degeneration, gait instability, cerebellar ataxia | >90% | SCLC |
| GlyR | PERM, stiff-person syndrome, muscle rigidity, spasms, oculomotor disturbance, bulbar symptoms, gait impairment pyramidal signs, cerebellar ataxia | <5% | Malignant thymoma, Hodgkin lymphoma |
| Amphiphysin | Stiff person syndrome, confusion, memory loss, encephalomyelitis | >90% | Breast cancer, SCLC |
| Hu (ANNA-1) | Limbic encephalitis or encephalomyelitis, painful sensory neuropathy, cerebellar degeneration, brainstem encephalitis | 85% | SCLC, NSCLC, other neuroendocrine tumors, neuroblastoma |
| Yo (PCA-1) | Cerebellar degeneration | >90% | Ovarian cancer, breast cancer |
| CV2/CRMP5 | Limbic encephalitis, cerebellar ataxia, sensory neuropathy, dementia, chorea, optic neuropathy | >80% |
SCLC, thymoma |
| Ta/Ma2 | Limbic encephalitis, short-term memory impairment, sleep disorder, cerebellar and brainstem dysfunction, psychiatric symptoms | >75% | Testicular cancer, NSCLC |
| SOX-1 | Lambert Eaton Myasthenic syndrome, neuropathy, paraneoplastic cerebellar degeneration | >90% |
SCLC |
| GAD | Stiff person syndrome, cerebellar ataxia, intractable seizure | <15% | SCLC, other neuroendocrine tumors, malignant thymoma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
