Submitted:
03 July 2023
Posted:
03 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Statistical analysis
3. Results
3.1. Demographic data (Section 1 of the Questionnaire)
3.2. Prophylactic use of antimicrobials in the perioperative period and factors that determine their use (Section 2 of the Questionnaire)
3.2.1. Antimicrobial use in pre- and postoperative procedures
3.2.2. Relevance of criteria for determining antimicrobial use
3.2.3. Antimicrobial agents and drug classes used
3.2.4. Importance of antimicrobial characteristics influencing antimicrobial selection
3.2.5. Route and time of administration
3.2.6. Information source consulted for antimicrobial selection
3.3. Statements regarding perioperative antimicrobial use (Section 3 of the Questionnaire)
3.4. Demographic analysis of perioperative antimicrobial use
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
| Never | Rarely | ometimes | Usually | Always | I do not perform this kind of surgery | |
| Preoperative | ||||||
| Postoperative |
| Degree of wound contamination | 1 | 2 | 3 | 4 | 5 |
| Possibility of evisceration | 1 | 2 | 3 | 4 | 5 |
| Patient immunosuppression | 1 | 2 | 3 | 4 | 5 |
| Presence of a drain | 1 | 2 | 3 | 4 | 5 |
| Surgery with use of a prosthesis | 1 | 2 | 3 | 4 | 5 |
| Surgical preparation standards | 1 | 2 | 3 | 4 | 5 |
| Preoperative presence of prosthesis | 1 | 2 | 3 | 4 | 5 |
| Impaired physical condition of the patient | 1 | 2 | 3 | 4 | 5 |
| Surgery time | 1 | 2 | 3 | 4 | 5 |
| Hollow viscus incision | 1 | 2 | 3 | 4 | 5 |
| Emergency surgery vs routine surgery | 1 | 2 | 3 | 4 | 5 |
| Level of clinical experience | 1 | 2 | 3 | 4 | 5 |
| Hospitalization time | 1 | 2 | 3 | 4 | 5 |
| Presence of an intravenous catheter | 1 | 2 | 3 | 4 | 5 |
| Potency | 1 | 2 | 3 | 4 | 5 |
| Activity spectrum | 1 | 2 | 3 | 4 | 5 |
| Duration of activity | 1 | 2 | 3 | 4 | 5 |
| Intensity of side effects | 1 | 2 | 3 | 4 | 5 |
| Bactericidal versus bacteriostatic | 1 | 2 | 3 | 4 | 5 |
| License for veterinary use granted | 1 | 2 | 3 | 4 | 5 |
| Potential to produce microbial resistance | 1 | 2 | 3 | 4 | 5 |
| Available administration routes | 1 | 2 | 3 | 4 | 5 |
| Wound location | 1 | 2 | 3 | 4 | 5 |
| Recommended clinical action protocols | 1 | 2 | 3 | 4 | 5 |
| Cost | 1 | 2 | 3 | 4 | 5 |
| Shelf life | 1 | 2 | 3 | 4 | 5 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|
Beta-lactamase-resistant penicillins (e.g amoxicillin with clavulanic acid) |
||||||||||||
|
Beta lactamase sensitive penicillins (e.g Amoxicillin) |
||||||||||||
|
First-generation cephalosporins (e.g cefazolin, cephalexin) |
||||||||||||
|
Third-generation cephalosporins (e.g cefovecin: Convenia®) |
||||||||||||
|
Fluoroquinolones (e.g enrofloxacin, marbofloxacin) |
||||||||||||
|
Nitroimidazoles (e.g metronidazole) |
||||||||||||
|
Potentiated sulfonamides (e.g sulfamethoxazole-trimetropim) |
||||||||||||
|
Tetracyclines (e.g doxycycline) |
||||||||||||
|
Macrolides (e.g erythromycin) |
||||||||||||
|
Lincosamides (e.g clindamycin) |
||||||||||||
|
Aminoglycosics (e.g gentamicin, amikacin) |
||||||||||||
|
Phenicols (e.g chloramphenicol, flofenicol) |
| Before surgery | During surgery | After surgery | Postoperative | Route not used | |
| Subcutaneous | |||||
| Intravenous | |||||
| Intramuscular | |||||
| Oral | |||||
| Topical |
| 1 | 2 | 3 | 4 | |
| Prospectus / Vademecum | ||||
| Books and user guidelines | ||||
| Conference summaries | ||||
| Scientific articles |
| YES | NO | |
| Preoperative antimicrobials decrease the risk of wound infection in clean surgery | ||
| Postoperative antimicrobials decrease the risk of wound infection in clean surgery | ||
| Preoperative antimicrobials decrease the risk of wound infection in clean-contaminated surgery | ||
| Postoperative antimicrobials decrease the risk of wound infection in clean-contaminated surgery | ||
| Preoperative antimicrobials decrease the risk of infection of a contaminated surgical wound | ||
| Postoperative antimicrobials decrease the risk of infection of a contaminated surgical wound | ||
| Owners agree with the cost entailed by the administration of antimicrobials | ||
| I'm not sure if antimicrobial prophylaxis is necessary, but I usually administer it | ||
| The use of preoperative antimicrobials is necessary in all surgical procedures | ||
| The use of postoperative antimicrobials is necessary in all surgical procedures | ||
| The inappropriate use of antimicrobials in small animals leads to resistance in bacteria |
References
- Churak, A.; Poolkhet, C.; Tamura, Y.; Sato, T.; Fukuda, A.; Thongratsakul, S. Evaluation of Nosocomial Infections through Contact Patterns in a Small Animal Hospital Using Social Network Analysis and Genotyping Techniques. Sci. Rep. 2021, 11, 1647. [Google Scholar] [CrossRef] [PubMed]
- Edwardson, S.; Cairns, C. Nosocomial Infections in the ICU. Anaesth. Intensive Care Med. 2019, 20, 14–18. [Google Scholar] [CrossRef]
- Vincent, J.L.; Bihari, D.J.; Suter, P.M.; Bruining, H.A.; White, J.; Nicolas-Chanoin, M.H.; Wolff, M.; Spencer, R.C.; Hemmer, M. The Prevalence of Nosocomial Infection in Intensive Care Units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 1995, 274, 639–644.
- Brown, D.C.; Conzemius, M.G.; Shofer, F.; Swann, H. Epidemiologic Evaluation of Postoperative Wound Infections in Dogs and Cats. Sci. Rep. 1997, 5. [Google Scholar]
- Espinel-Rupérez, J.; Martín-Ríos, M.D.; Salazar, V.; Baquero-Artigao, M.R.; Ortiz-Díez, G. Incidence of Surgical Site Infection in Dogs Undergoing Soft Tissue Surgery: Risk Factors and Economic Impact. Vet. Rec. Open 2019, 6, e000233. [Google Scholar] [CrossRef]
- Eugster, S.; Schawalder, P.; Gaschen, F.; Boerlin, P. A. Prospective Study of Postoperative Surgical Site Infections in Dogs and Cats. Vet. Surg. 2004, 33, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, P.D.; Freeman, L.; Kwan, T.; Brown, D.C. Comparison of Surgical Site Infection Rates in Clean and Clean-Contaminated Wounds in Dogs and Cats after Minimally Invasive versus Open Surgery: 179 Cases (2007–2008). J. Am. Vet. Med. Assoc. 2012, 240, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Turk, R.; Singh, A.; Weese, J.S. Prospective Surgical Site Infection Surveillance in Dogs: Prospective Surgical Site Infection Surveillance. Vet. Surg. 2014, 2–8. [Google Scholar] [CrossRef]
- Vasseur, P.B.; Levy, J.; Dowd, E.; Eliot, J. Surgical Wound Infection Rates in Dogs and Cats Data from a Teaching Hospital. Vet. Surg. 1988, 17, 60–64. [Google Scholar] [CrossRef]
- Weese, J.S. A Review of Post-Operative Infections in Veterinary Orthopaedic Surgery. Vet. Comp. Orthop. Traumatol. 2008, 21, 21–105. [Google Scholar] [CrossRef]
- Barie, P.S.; Eachempati, S.R. Surgical Site Infections. Surg. Clin. North Am. 2005, 85, 1115–1135. [Google Scholar] [CrossRef]
- Cosgrove, S.E. The Relationship between Antimicrobial Resistance and Patient Outcomes: Mortality, Length of Hospital Stay, and Health Care Costs. Clin. Infect. Dis. 2006, 42, S82–S89. [Google Scholar] [CrossRef] [PubMed]
- Nelson, L.L. Surgical Site Infections in Small Animal Surgery. Vet. Clin. North Am. Small Anim. Pract. 2011, 41, 1041–1056. [Google Scholar] [CrossRef]
- Am J Health-Syst Pharm ASHP Therapeutic Guidelines on Antimicrobial Prophylaxis in Surgery. American Society of Health-System Pharmacists. Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health-Syst. Pharm. 1999, 56, 1839–1888. [CrossRef]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R. Guideline for Prevention of Surgical Site Infection. Infect. Control Hosp. Epidemiol. 1999, 20, 250–278. [Google Scholar] [CrossRef] [PubMed]
- Bailly, P.; Lallemand, S.; Thouverez, M.; Talon, D. Multicentre Study on the Appropriateness of Surgical Antibiotic Prophylaxis. J. Hosp. Infect. 2001, 49, 135–138. [Google Scholar] [CrossRef]
- Martin, C.; Pourriat, J.L. Quality of Perioperative Antibiotic Administration by French Anaesthetists. J. Hosp. Infect. 1998, 40, 47–53. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial Resistance: A Global Multifaceted Phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Song, F.; Glenny, A.-M. Antimicrobial Prophylaxis in Colorectal Surgery: A Systematic Review of Randomized Controlled Trials. Br. J. Surg. 1998, 85, 1232–1241. [Google Scholar] [CrossRef]
- Huttner, A.; Harbarth, S.; Carlet, J.; Cosgrove, S.; Goossens, H.; Holmes, A.; Jarlier, V.; Voss, A.; Pittet, D. ; for the World Healthcare-Associated Infections Forum participants Antimicrobial Resistance: A Global View from the 2013 World Healthcare-Associated Infections Forum. Antimicrob. Resist. Infect. Control 2013, 2, 31. [Google Scholar] [CrossRef]
- Bernard, F.; Gandon, J. Postoperative Wound Infections: The Influence of Ultraviolet Irradiation of the Operating Room and of Various Other Factors. Ann. Surg. 1964, 160, 1–192. [Google Scholar]
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Garner, J.S. CDC Guideline for Prevention of Surgical Wound Infections, 1985. Supersedes Guideline for Prevention of Surgical Wound Infections Published in 1982. (Originally Published in November 1985). Infect. Control 1986, 7, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Lipsett, P.A. Surgical Site Infection Prevention-What We Know and What We Do Not Know. JAMA Surg. 2017, 152, 791–792. [Google Scholar] [CrossRef] [PubMed]
- Allerton, F.; Prior, C.; Bagcigil, A.; Broens, E.; Callens, B.; Damborg, P.; Dewulf, J.; Filippitzi, M.-E.; Carmo, L.; Gómez-Raja, J.; et al. Overview and Evaluation of Existing Guidelines for Rational Antimicrobial Use in Small-Animal Veterinary Practice in Europe. Antibiotics 2021, 10, 409. [Google Scholar] [CrossRef]
- Anderson, S.J.; Fransson, B.A. Complications Related to Entry Techniques for Laparoscopy in 159 Dogs and Cats. Vet. Surg. 2019, 48, 707–714. [Google Scholar] [CrossRef]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical Practice Guidelines for Antimicrobial Prophylaxis in Surgery. Surg. Infect. 2013, 14, 73–156. [Google Scholar] [CrossRef]
- Gómez-Beltrán, D.A.; Schaeffer, D.J.; Ferguson, D.C.; Monsalve, L.K.; Villar, D. Antimicrobial Prescribing Practices in Dogs and Cats by Colombian Veterinarians in the City of Medellin. Vet. Sci. 2021, 8, 73. [Google Scholar] [CrossRef]
- Knights, C.B.; Mateus, A.; Baines, S.J. Current British Veterinary Attitudes to the Use of Perioperative Antimicrobials in Small Animal Surgery. Vet. Rec. 2012, 170, 646–646. [Google Scholar] [CrossRef]
- Weese, J.S.; Cruz, A. Retrospective Study of Perioperative Antimicrobial Use Practices in Horses Undergoing Elective Arthroscopic Surgery at a Veterinary Teaching Hospital. Can. Vet. J. Rev. Veterinaire Can. 2009, 50, 185–188. [Google Scholar]
- Eysenbach, G. Improving the Quality of Web Surveys: The Checklist for Reporting Results of Internet E-Surveys (CHERRIES). J. Med. Internet Res. 2004, 6, e34. [Google Scholar] [CrossRef]
- Barzelai, I.D.; Whittem, T. Survey of Systemic Antimicrobial Prescribing for Dogs by Victorian Veterinarians. Aust. Vet. J. 2017, 95, 375–385. [Google Scholar] [CrossRef] [PubMed]
- De Briyne, N.; Atkinson, J.; Pokludová, L.; Borriello, S.P.; Price, S. Factors Influencing Antibiotic Prescribing Habits and Use of Sensitivity Testing amongst Veterinarians in Europe. Vet. Rec. 2013, 173, 475–475. [Google Scholar] [CrossRef] [PubMed]
- Escher, M.; Vanni, M.; Intorre, L.; Caprioli, A.; Tognetti, R.; Scavia, G. Use of Antimicrobials in Companion Animal Practice: A Retrospective Study in a Veterinary Teaching Hospital in Italy. J. Antimicrob. Chemother. 2011, 66, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Galarce, N.; Arriagada, G.; Sánchez, F.; Venegas, V.; Cornejo, J.; Lapierre, L. Antimicrobial Use in Companion Animals: Assessing Veterinarians’ Prescription Patterns through the First National Survey in Chile. Anim. Open Access J. 2021, 11, 348. [Google Scholar] [CrossRef]
- Gómez-Poveda, B.; Moreno, M.A. Antimicrobial Prescriptions for Dogs in the Capital of Spain. Front. Vet. Sci. 2018, 5, 309. [Google Scholar] [CrossRef]
- Hardefeldt, L.Y.; Gilkerson, J.R.; Billman-Jacobe, H.; Stevenson, M.A.; Thursky, K.; Bailey, K.E.; Browning, G.F. Barriers to and Enablers of Implementing Antimicrobial Stewardship Programs in Veterinary Practices. J. Vet. Intern. Med. 2018, 32, 1092–1099. [Google Scholar] [CrossRef]
- Hughes, L.A.; Williams, N.; Clegg, P.; Callaby, R.; Nuttall, T.; Coyne, K.; Pinchbeck, G.; Dawson, S. Cross-Sectional Survey of Antimicrobial Prescribing Patterns in UK Small Animal Veterinary Practice. Prev. Vet. Med. 2012, 104, 309–316. [Google Scholar] [CrossRef]
- Jessen, L.R.; Sørensen, T.M.; Lilja, Z.L.; Kristensen, M.; Hald, T.; Damborg, P. Cross-Sectional Survey on the Use and Impact of the Danish National Antibiotic Use Guidelines for Companion Animal Practice. Acta Vet. Scand. 2017, 59, 81. [Google Scholar] [CrossRef]
- Kvaale, M.K.; Grave, K.; Kristoffersen, A.B.; Norström, M. The Prescription Rate of Antibacterial Agents in Dogs in Norway - Geographical Patterns and Trends during the Period 2004-2008. J. Vet. Pharmacol. Ther. 2013, 36, 285–291. [Google Scholar] [CrossRef]
- Rantala, M.; Hölsö, K.; Lillas, A.; Huovinen, P.; Kaartinen, L. Survey of Condition-Based Prescribing of Antimicrobial Drugs for Dogs at a Veterinary Teaching Hospital. Vet. Rec. 2004, 155, 259–262. [Google Scholar] [CrossRef]
- Robbins, S.N.; Goggs, R.; Lhermie, G.; Lalonde-Paul, D.F.; Menard, J. Antimicrobial Prescribing Practices in Small Animal Emergency and Critical Care. Front. Vet. Sci. 2020, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Samuels, R.; Qekwana, D.N.; Oguttu, J.W.; Odoi, A. Antibiotic Prescription Practices and Attitudes towards the Use of Antimicrobials among Veterinarians in the City of Tshwane, South Africa. PeerJ 2021, 9, e10144. [Google Scholar] [CrossRef] [PubMed]
- Singleton, D.A.; Sánchez-Vizcaíno, F.; Dawson, S.; Jones, P.H.; Noble, P.J.M.; Pinchbeck, G.L.; Williams, N.J.; Radford, A.D. Patterns of Antimicrobial Agent Prescription in a Sentinel Population of Canine and Feline Veterinary Practices in the United Kingdom. Vet. J. Lond. Engl. 2017, 224, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Valiakos, G.; Pavlidou, E.; Zafeiridis, C.; Tsokana, C.N.; Del Rio Vilas, V.J. Antimicrobial Practices among Small Animal Veterinarians in Greece: A Survey. One Health Outlook 2020, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Van Cleven, A.; Sarrazin, S.; de Rooster, H.; Paepe, D.; Van der Meeren, S.; Dewulf, J. Antimicrobial Prescribing Behaviour in Dogs and Cats by Belgian Veterinarians. Vet. Rec. 2018, 182, 324. [Google Scholar] [CrossRef]
- Watson, A.D.; Maddison, J.E. Systemic Antibacterial Drug Use in Dogs in Australia. Aust. Vet. J. 2001, 79, 740–746. [Google Scholar] [CrossRef]
- Ekakoro, J.E.; Okafor, C.C. Antimicrobial Use Practices of Veterinary Clinicians at a Veterinary Teaching Hospital in the United States. Vet. Anim. Sci. 2019, 7, 100038. [Google Scholar] [CrossRef]
- Levy, S.M.; Lally, K.P.; Blakely, M.L.; Calkins, C.M.; Dassinger, M.S.; Duggan, E.; Huang, E.Y.; Kawaguchi, A.L.; Lopez, M.E.; Russell, R.T.; et al. Surgical Wound Misclassification: A Multicenter Evaluation. J. Am. Coll. Surg. 2015, 220, 323–329. [Google Scholar] [CrossRef]
- Daude-Lagrave, A.; Carozzo, C.; Fayolle, P.; Viguier, E.; Viateau, V.; Moissonnier, P. Infection Rates in Surgical Procedures: A Comparison of Cefalexin vs. a Placebo. Vet. Comp. Orthop. Traumatol. 2001, 14, 146–150. [Google Scholar] [CrossRef]
- Hardefeldt, L.Y.; Crabb, H.K.; Bailey, K.E.; Johnstone, T.; Gilkerson, J.R.; Billman-Jacobe, H.; Browning, G.F. Appraisal of the Australian Veterinary Prescribing Guidelines for Antimicrobial Prophylaxis for Surgery in Dogs and Cats. Aust. Vet. J. 2019, 97, 316–322. [Google Scholar] [CrossRef]
- Hettlich, B.F.; Boothe, H.W.; Simpson, R.B.; DuBose, K.A.; Boothe, D.M.; Carpenter, M. Effect of Tympanic Cavity Evacuation and Flushing on Microbial Isolates during Total Ear Canal Ablation with Lateral Bulla Osteotomy in Dogs. J. Am. Vet. Med. Assoc. 2005, 227, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, M.; Beal, M.; Shofer, F.; Brown, D.C. Epidemiologic Evaluation of Postoperative Wound Infection in Clean-Contaminated Wounds: A Retrospective Study of 239 Dogs and Cats. Vet. Surg. 2002, 31, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Vasseur, P.B.; Paul, H.A.; Enos, L.R.; Hirsh, D.C. Infection Rates in Clean Surgical Procedures: A Comparison of Ampicillin Prophylaxis vs a Placebo. J. Am. Vet. Med. Assoc. 1985, 187, 825–827. [Google Scholar] [PubMed]
- Fitzpatrick, N.; Solano, M.A. Predictive Variables for Complications after TPLO with Stifle Inspection by Arthrotomy in 1000 Consecutive Dogs: Predictive Variables for TPLO Complications. Vet. Surg. 2010, 39, 460–474. [Google Scholar] [CrossRef] [PubMed]
- Frey, T.N.; Hoelzler, M.G.; Scavelli, T.D.; Fulcher, R.P.; Bastian, R.P. Risk Factors for Surgical Site Infection-Inflammation in Dogs Undergoing Surgery for Rupture of the Cranial Cruciate Ligament: 902 Cases (2005–2006). J. Am. Vet. Med. Assoc. 2010, 236, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Budsberg, S.C.; Torres, B.T.; Sandberg, G.S. Efficacy of Postoperative Antibiotic Use after Tibial Plateau Leveling Osteotomy in Dogs: A Systematic Review. Vet. Surg. 2021, 50, 729–739. [Google Scholar] [CrossRef]
- Stine, S.L.; Odum, S.M.; Mertens, W.D. Protocol Changes to Reduce Implant-Associated Infection Rate after Tibial Plateau Leveling Osteotomy: 703 Dogs, 811 TPLO (2006-2014). Vet. Surg. 2018, 47, 481–489. [Google Scholar] [CrossRef]
- Gatineau, M.; Dupuis, J.; Planté, J.; Moreau, M. Retrospective Study of 476 Tibial Plateau Levelling Osteotomy Procedures. Rate of Subsequent “Pivot Shift”, Meniscal Tear and Other Complications. Vet. Comp. Orthop. Traumatol. 2011, 24, 333–341. [CrossRef]
- Nazarali, A.; Singh, A.; Weese, J.S. Perioperative Administration of Antimicrobials During Tibial Plateau Leveling Osteotomy: Perioperative Administration of Antimicrobials During TPLO. Vet. Surg. 2014, 43, 966–971. [Google Scholar] [CrossRef]
- Garcia Stickney, D.N.; Thieman Mankin, K.M. The Impact of Postdischarge Surveillance on Surgical Site Infection Diagnosis. Vet. Surg. 2018, 47, 66–73. [Google Scholar] [CrossRef]
- Hopman, N.E.M.; Mughini-Gras, L.; Speksnijder, D.C.; Wagenaar, J.A.; van Geijlswijk, I.M.; Broens, E.M. Attitudes and Perceptions of Dutch Companion Animal Veterinarians towards Antimicrobial Use and Antimicrobial Resistance. Prev. Vet. Med. 2019, 170, 104717. [Google Scholar] [CrossRef]
- Norris, J.M.; Zhuo, A.; Govendir, M.; Rowbotham, S.J.; Labbate, M.; Degeling, C.; Gilbert, G.L.; Dominey-Howes, D.; Ward, M.P. Factors Influencing the Behaviour and Perceptions of Australian Veterinarians towards Antibiotic Use and Antimicrobial Resistance. PloS One 2019, 14, e0223534. [Google Scholar] [CrossRef]
- Barbarossa, A.; Rambaldi, J.; Miraglia, V.; Giunti, M.; Diegoli, G.; Zaghini, A. Survey on Antimicrobial Prescribing Patterns in Small Animal Veterinary Practice in Emilia Romagna, Italy. Vet. Rec. 2017, 181, 69. [Google Scholar] [CrossRef] [PubMed]
- Chirollo, C.; Nocera, F.P.; Piantedosi, D.; Fatone, G.; Della Valle, G.; De Martino, L.; Cortese, L. Data on before and after the Traceability System of Veterinary Antimicrobial Prescriptions in Small Animals at the University Veterinary Teaching Hospital of Naples. Anim. Open Access J. 2021, 11, 913. [Google Scholar] [CrossRef]
- Ihedioha, T.E.; Asuzu, I.U.; Nwanta, J.A. Trends in the Clinical Use of Antibiotics in a Veterinary Hospital in Nigeria, 2013 – 2017. Thai J Vet Med 2020, 50, 487–494. [Google Scholar] [CrossRef]
- Peter, R.; Müntener, C.; Demuth, D.; Heim, D.; Mevissen, M.; Schüpbach-Regula, G.; Schuller, S.; Stucki, F.; Willi, B.; Naegeli, H. [AntibioticScout: Online tool for antimicrobial stewardship in veterinary medicine]. Schweiz. Arch. Tierheilkd. 2016, 158, 805–810. [Google Scholar] [CrossRef]
- Weese, J.S. Investigation of Antimicrobial Use and the Impact of Antimicrobial Use Guidelines in a Small Animal Veterinary Teaching Hospital: 1995-2004. J. Am. Vet. Med. Assoc. 2006, 228, 553–558. [Google Scholar] [CrossRef]
- Pleydell, E.J.; Souphavanh, K.; Hill, K.E.; French, N.P.; Prattley, D.J. Descriptive Epidemiological Study of the Use of Antimicrobial Drugs by Companion Animal Veterinarians in New Zealand. N. Z. Vet. J. 2012, 60, 115–122. [Google Scholar] [CrossRef]
- EMA, E.; report EMA. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2021 Trends from 2010 to 2021.Twelfth ESVAC Report. European Medicines Agency, EMA/795956/2022 Available online:. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2021-trends-2010-2021-twelfth-esvac_en.pdf (accessed on 22 February 2023).
- Rosin, E.; Uphoff, T.S.; Schultz-Darken, N.J.; Collins, M.T. Cefazolin Antibacterial Activity and Concentrations in Serum and the Surgical Wound in Dogs. Am. J. Vet. Res. 1993, 54, 1317–1321. [Google Scholar]
- FECAVA Antimicrobial Resistance. Federation of European Companion Animal Veterinary Associatons. Available online: https://www.fecava.org/policies-actions/guidelines/ (accessed on 8 December 2022).
- Boothe, D.M.; Boothe, H.W. Antimicrobial Considerations in the Perioperative Patient. Vet. Clin. North Am. Small Anim. Pract. 2015, 45, 585–608. [Google Scholar] [CrossRef]
- Gosling, M.J.; Martínez-Taboada, F. Adverse Reactions to Two Intravenous Antibiotics (Augmentin and Zinacef) Used for Surgical Prophylaxis in Dogs. Vet. Rec. 2018, 182, 80–80. [Google Scholar] [CrossRef] [PubMed]
- Goggs, R.; Menard, J.M.; Altier, C.; Cummings, K.J.; Jacob, M.E.; Lalonde-Paul, D.F.; Papich, M.G.; Norman, K.N.; Fajt, V.R.; Scott, H.M.; et al. Patterns of Antimicrobial Drug Use in Veterinary Primary Care and Specialty Practice: A 6-Year Multi-Institution Study. J. Vet. Intern. Med. 2021, 35, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- WHO. Critically Important Antimicrobials for Human Medicine, 6th Revision, World Health Organization. Available online: https://www.who.int/publications/i/item/9789241515528 (accessed on 2 February 2023).
- King, C.; Smith, M.; Currie, K.; Dickson, A.; Smith, F.; Davis, M.; Flowers, P. Exploring the Behavioural Drivers of Veterinary Surgeon Antibiotic Prescribing: A Qualitative Study of Companion Animal Veterinary Surgeons in the UK. BMC Vet. Res. 2018, 14, 332. [Google Scholar] [CrossRef]
- Del Solar Bravo, R.E.; Sharman, M.J.; Raj, J.; Scudder, C. Antibiotic Therapy in Dogs and Cats in General Practise in the United Kingdom before Referral. J. Small Anim. Pract. 2023. [Google Scholar] [CrossRef]
- Dyar, O.J.; Hills, H.; Seitz, L.-T.; Perry, A.; Ashiru-Oredope, D. Assessing the Knowledge, Attitudes and Behaviors of Human and Animal Health Students towards Antibiotic Use and Resistance: A Pilot Cross-Sectional Study in the UK. Antibiot. Basel Switz. 2018, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Brown; Conzemius, M.G.; Shofer, F.; Swann, H. Epidemiologic Evaluation of Postoperative Wound Infections in Dogs and Cats. J. Am. Vet. Med. Assoc. 1997, 210, 1302–1306.
- Davies, K.; Harrison, J. The Information-Seeking Behaviour of Doctors: A Review of the Evidence. Health Inf. Libr. J. 2007, 24, 78–94. [Google Scholar] [CrossRef]
- EMA Antimicrobial Resistance. European Medicines Agency. Available online: https://www.ema.europa.eu/en (accessed on 8 December 2022).
| Variable | Category | Respondents (%) | Respondents (n) |
|---|---|---|---|
| Gender | Female | 55.4 | 249 |
| Male | 44.6 | 309 | |
| University where respondent obtained their Veterinary degree | Faculty of Barcelona (UAB) | 0.9 | 5 |
| Faculty of Córdoba | 16.7 | 93 | |
| Faculty of Las Palmas de Gran Canaria | 8.2 | 46 | |
| Faculty of Cáceres | 2.3 | 13 | |
| Faculty of León | 3.9 | 22 | |
| Faculty of Lugo | 7.9 | 44 | |
| Faculty of Madrid (UCM) | 7.3 | 41 | |
| Private University Alfonso X El Sabio | 21.7 | 121 | |
| Faculty of Murcia | 5.2 | 29 | |
| Private University Cardenal Herrera CEU Valencia | 5.6 | 31 | |
| Private University Católica de Valencia San Vicente Mártir | 3.4 | 19 | |
| Faculty of Zaragoza | 16.8 | 94 | |
| Postgraduate training in surgery | No surgical training | 57.7 | 322 |
| ECVS/ACVS Diploma | 2.7 | 15 | |
| Postgraduate masters | 6.5 | 36 | |
| Postgraduate course | 28.0 | 156 | |
| PhD related to small animal surgery | 5.2 | 29 | |
| Percentage of activity of the veterinary clinic dedicated to small animals (%) | ≤ 75 | 3.0 | 17 |
| > 75 | 97.0 | 541 | |
| Annual average percentage dedicated to small animal surgery (%) | ≤ 75 | 79.9 | 446 |
| > 75 | 20.1 | 112 | |
| Type of veterinary centre | Public | 7.2 | 40 |
| Private | 92.8 | 518 | |
| Autonomous communities of Spain where you currently work | Andalucía | 8.4 | 47 |
| Aragón | 5.4 | 30 | |
| Principado de Asturias | 3.0 | 17 | |
| Islas Baleares | 4.1 | 23 | |
| Canarias | 4.7 | 26 | |
| Cantabria | 1.6 | 9 | |
| Castilla La Mancha | 1.8 | 10 | |
| Castilla y León | 5.9 | 33 | |
| Cataluña | 17.0 | 95 | |
| Comunidad Valenciana | 6.8 | 38 | |
| Extremadura | 1.8 | 10 | |
| Galicia | 6.6 | 37 | |
| La Rioja | 1.3 | 7 | |
| Comunidad de Madrid | 23.5 | 131 | |
| Comunidad Foral de Navarra | 1.1 | 6 | |
| País Vasco | 5.0 | 28 | |
| Región de Murcia | 2.0 | 11 | |
| Years of experience | 14.0 * | (7.0-24.0)** | |
| Total number of veterinarians | 3.0 * | (2.0-7.5)** | |
| Surgeons out of the total number of veterinarians in the center. | 2.0* | (2.0-3.0)** | |
| Total number of veterinary assistants | 2.0* | (1.0-3.0)** | |
| *Median; **IQR |
| Type of surgery | Use of antimicrobials pre/post | Frequency (%) of respondents who perform this surgery | Respondents who do not perform this type of surgery N (%) | ||||
|---|---|---|---|---|---|---|---|
| Never | Rarely | Sometimes | Usually | Always | |||
| Clean | Routine laparotomy ovariohysterectomy in dog pre | 28.8 | 9.9 | 4.5 | 2.2 | 54.6 | 23 (4.1) |
| Routine laparotomy ovariohysterectomy in dog post | 9.5 | 9.1 | 5.2 | 8.0 | 68.1 | 22 (3.9) | |
| Clean | Routine laparotomy ovariohysterectomy in cat pre | 33.8 | 7.9 | 2.8 | 2.8 | 52.6 | 29 (5.2) |
| Routine laparotomy ovariohysterectomy in cat post | 12.5 | 10.0 | 7.8 | 8.7 | 61.1 | 29 (5.2) | |
| Clean | Routine orchiectomy in dog pre | 39.0 | 6.1 | 3.5 | 3.1 | 48.3 | 14 (2.5) |
| Routine orchiectomy in dog post | 16.1 | 12.3 | 7.5 | 8.1 | 56.0 | 12 (2.2) | |
| Clean | Routine orchiectomy in cat pre | 42.0 | 4.9 | 2.9 | 3.3 | 46.9 | 19 (1.8) |
| Routine orchiectomy in cat post | 29.7 | 19.7 | 7.5 | 8.8 | 34.3 | 10 (1.8) | |
| Clean | Excision of a 2-cm, non-ulcerated skin nodule in dog pre | 36.2 | 8.7 | 4.6 | 5.9 | 44.6 | 16 (2.9) |
| Excision of a 2-cm, non-ulcerated skin nodule in dog post | 15.4 | 14.5 | 15.8 | 15.3 | 39.0 | 14 (2.5) | |
| Clean | Closed fracture of the femur, with internal fixation in dog pre | 15.1 | 4.1 | 6.3 | 6.3 | 68.3 | 142 825.4) |
| Closed fracture of the femur, with internal fixation in dog post | 2.4 | 2.9 | 2.9 | 5.5 | 86.3 | 143 (25.6) | |
| Clean-contaminated | Ovariohysterectomy for open pyometra in dog pre | 2.6 | 1.8 | 6.0 | 8.6 | 81.0 | 12 (2.2) |
| Ovariohysterectomy for open pyometra in dog post | 2.4 | 0.7 | 1.5 | 2.2 | 93.2 | 11 (2.0) | |
| Clean-contaminated | Tarsorrhaphy in dog pre | 32.4 | 9.2 | 8.9 | 6.0 | 43.4 | 112 (20.1) |
| Tarsorrhaphy in dog post | 16.6 | 11.4 | 18.6 | 11.9 | 41.5 | 112 (20.1) | |
| Clean-contaminated | Enterotomy for a foreign body, without discharge of content into the abdominal cavity in dog pre | 11.5 | 6.9 | 11.1 | 10.5 | 60.1 | 34 (6.1) |
| Enterotomy for a foreign body, without discharge of content into the abdominal cavity in dog post | 2.9 | 2.7 | 3.8 | 5.9 | 84.7 | 34 (6.1) | |
| Clean-contaminated | Excision of lip mass in dog pre | 26.8 | 8.0 | 9.9 | 6.1 | 49.2 | 32 (5.7) |
| Excision of lip mass in dog post | 10.1 | 9.5 | 15.4 | 14.5 | 50.5 | 33 (5.9) | |
| Contaminated | Cystotomy with urinary tract infection in dog pre | 3.7 | 2.5 | 5.8 | 8.3 | 79.8 | 39 (7) |
| Cystotomy with urinary tract infection in dog post | 1.9 | 0.4 | 1.4 | 2.5 | 93.8 | 40 (7.2) | |
| Dirty | Surgery for an acute traumatic wound in dog pre | 8.1 | 3.7 | 8.1 | 8.8 | 71.3 | 14 (2.5) |
| Surgery for an acute traumatic wound in dog post | 1.5 | 1.3 | 5.0 | 4.8 | 87.5 | 15 (2.7) | |
| Factors | 1 (%) | 2(%) | 3 (%) | 4 (%) | 5 (%) | n | Median | 25 | 75 |
|---|---|---|---|---|---|---|---|---|---|
| Degree of wound contamination | 4 (0.7) | 6 (1.1) | 18 (3.2) | 87 (15.6) | 442 (79.4) | 557 | 5.0 | 5.0 | 5.0 |
| Possibility of evisceration | 69 (12.4) | 60 (10.8) | 104 (18.7) | 139 (25.0) | 185 (33.2) | 557 | 4.0 | 3.0 | 5.0 |
| Patient immunosuppression | 8 (1.4) | 13 (2.3) | 60 (10.8) | 160 (28.7) | 316 (56.7) | 557 | 5.0 | 4.0 | 5.0 |
| Presence of a drain | 14 (2.5) | 30 (5.4) | 124 (22.3) | 193 (34.7) | 195 (35.1) | 556 | 4.0 | 3.0 | 5.0 |
| Surgery with use of a prosthesis | 9 (1.7) | 16 (2.9) | 67 (12.3) | 132 (24.2) | 321 (58.9) | 545 | 5.0 | 4.0 | 5.0 |
| Surgical preparation standards | 28 (5.1) | 31 (5.6) | 111 (20.1) | 125 (22.7) | 256 (46.5) | 551 | 4.0 | 3.0 | 5.0 |
| Preoperative presence of prostheses | 56 (10.3) | 55 (10.1) | 149 (27.4) | 120 (22.1) | 164 (30.1) | 544 | 4.0 | 3.0 | 5.0 |
| Impaired physical condition of the patient | 22 (3.9) | 29 (5.2) | 92 (16.5) | 177 (31.8) | 237 (42.5) | 557 | 4.0 | 3.0 | 5.0 |
| Surgery time | 23 (4.1) | 65 (11.7) | 110 (19.8) | 143 (25.7) | 215 (38.7) | 556 | 4.0 | 3.0 | 5.0 |
| Hollow viscus incision | 18 (3.3) | 36 (6.6) | 116 (21.1) | 172 (31.3) | 207 (37.7) | 549 | 4.0 | 3.0 | 5.0 |
| Emergency surgery versus routine surgery | 45 (8.2) | 45 (8.2) | 167 (30.4) | 145 (26.4) | 147 (20.4) | 549 | 4.0 | 3.0 | 5.0 |
| Level of clinical experience | 91 (16.5) | 61 (11.0) | 144 (26.0) | 144 (26.0) | 113 (20.4) | 553 | 3.0 | 2.0 | 4.0 |
| Hospitalization time | 77 (14.0) | 88 (16.0) | 178 (32.4) | 130 (23.8) | 75 (23.8) | 548 | 3.0 | 2.0 | 4.0 |
| Presence of an intravenous catheter | 129 (23.6) | 129 (23.6) | 156 (28.6) | 80 (14.7) | 52 (9.5) | 546 | 3.0 | 2.0 | 3.0 |
| Antimicrobials | 0 (%) | 1 (%) | 2 (%) | 3 (%) | 4 (%) | 5 (%) | 6 (%) | 7 (%) | 8 (%) | 9 (%) | 10 (%) | 11 (%) | 12 (%) | n | Median | 25 | 75 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Beta lactamase resistant penicillins (eg. amoxicillin-clavulanic acid) |
7 (1.3) | 27 (4.8) | 20 (1.8) | 11 (2.0) | 11 (2.0) | 20 (3.6) | 25 (4.5) | 36 (6.5) | 149 (26.7) | 5 (0.9) | 18 (3.2) | 31 (5.6) | 208 (37.3) | 558 | 8,0 | 7,0 | 12,0 |
| Beta lactamase sensitive penicillins (eg. amoxicillin) |
58 (10.4) | 135 (24.2) | 37 (6.6) | 32 (5.9) | 30 (5.4) | 41 (7.3) | 41 (7.3) | 37 (6.6) | 51 (9.1) | 12 (2.2) | 22 (3.9) | 23 (4.1) | 38 (6.8) | 558 | 4,0 | 1,0 | 8,0 |
| 1st generation cephalosporins (eg Cefazolin, cephalexin) |
19 (3.4) | 31 (5.6) | 24 (4.3) | 22 (3.9) | 32 (5.7) | 37 (6.6) | 58 (10.4) | 57 (10.2) | 88 (15.8) | 24 (4.3) | 46 (8.2) | 66 (11.8) | 54 (9.7) | 558 | 7,0 | 5,0 | 10,0 |
| 3rd generation cephalosporins (e.g. cefovecin) |
26 (4.7) | 47 (8.4) | 51 (9.1) | 51 (9.1) | 48 (8.6) | 53 (9.5) | 54 (9.7) | 56 (10.0) | 41 (7.3) | 41 (7.3) | 57 (10.2) | 22 (3.9) | 11 (2.0) | 558 | 6,0 | 3,0 | 8,0 |
| Fluoroquinolones (e.g. enrofloxacin, marbofloxacin) |
9 (1.6) | 28 (5.0) | 21 (3.8) | 52 (9.3) | 53 (9.5) | 66 (11.8) | 64 (11.5) | 45 (8.1) | 65 (11.6) | 50 (9.0) | 48 (8.6) | 41 (7.3) | 16 (2.9) | 558 | 6,0 | 4,0 | 9,0 |
| Nitroimidazoles (e.g. metronidazol) |
29 (5.2) | 46 (8.2) | 27 (4.8) | 53 (9.5) | 50 (9.0) | 62 (11.1) | 55 (9.9) | 47 (8.4) | 78 (14.0) | 39 (7.0) | 33 (5.9) | 24 (4.3) | 15 (2.7) | 558 | 6,0 | 3,0 | 8,0 |
| Potentiated sulfonamides (e.g. Sulfamethoxazole - trimethoprim) |
68 (12.2) | 172 (30.8) | 78 (14.0) | 40 (7.2) | 50 (9.0) | 41 (7.3) | 47 (8.4) | 25 (4.5) | 14 (2.5) | 10 (1.8) | 7 (1.3) | 4 (0.7) | 2 (0.4) | 558 | 2,0 | 1,0 | 5,0 |
| Tetracyclines (e.g. doxycycline) |
54 (9.7) | 120 (21.5) | 47 (8.4) | 52 (9.3) | 50 (9.0) | 68 (12.2) | 48 (8.6) | 43 (7.7) | 39 (7.0) | 13 (2.3) | 12 (2.2) | 8 (1.4) | 4 (0.7) | 558 | 4,0 | 1,0 | 6,0 |
| Macrolides (e.g. erythromycin) |
119 (21.3) | 262 (47.0) | 65 (11.6) | 50 (9.0) | 18 (3.2) | 14 (2.5) | 10 (1.8) | 12 (2.2) | 3 (0.5) | 2 (0.4) | 1 (0.2) | 0 (0) | 2 (0.4) | 558 | 1,0 | 1,0 | 2,0 |
| Lincosamides (e.g. clindamycin) |
82 (14.7) | 153 (27.4) | 78 (14.0) | 56 (10.0) | 56 (10.0) | 35 (6.3) | 35 (6.3) | 29 (5.2) | 15 (2.7) | 9 (1.6) | 5(0.9) | 5(0.9) | 0 (0) | 558 | 2,0 | 1,0 | 4,0 |
| Aminoglycosides (e.g. gentamicin, amikacin) |
104 (18.6) | 216 (38.7) | 86 (15.4) | 57 (10.2) | 24 (4.3) | 31 (5.6) | 16 (2.9) | 7 (1.3) | 6 (1.1) | 4 (0.7) | 4 (0.7) | 2 (0.4) | 1(0.2) | 558 | 1,0 | 1,0 | 3,0 |
| Phenicols (e.g. chloramphenicol, florfenicol) |
119 (21.3) | 300 (53.8) | 58 (10.4) | 30 (5.4) | 14 (2.5) | 10 (1.8) | 14 (2.5) | 4 (0.7) | 5 (0.9) | 1 (0.2) | 1 (0.2) | 0 (0) | 2 (0.4) | 558 | 1,0 | 1,0 | 1,3 |
| Factors | 1 (%) | 2 (%) | 3 (%) | 4 (%) | 5 (%) | n | Median | 25 | 75 |
|---|---|---|---|---|---|---|---|---|---|
| Antimicrobial potency | 16 (2.9) | 32 (5.8) | 139 (25.1) | 205 (37.1) | 161 (29.1) | 553 | 4.0 | 3.0 | 5.0 |
| Activity spectrum | 2 (0.4) | 4 (0.7) | 20 (3.6) | 113 (20.3) | 417 (75.0) | 556 | 5.0 | 4.3 | 5.0 |
| Duration of activity | 19 (3.4) | 51 (9.2) | 136 (24.6) | 174 (31.5) | 172 (31.2) | 552 | 4.0 | 3.0 | 5.0 |
| Intensity of side effects | 12 (2.2) | 54 (9.7) | 142 (25.6) | 171 (30.9) | 175 (31.6) | 554 | 4.0 | 3.0 | 5.0 |
| Bactericidal versus bacteriostatic | 42 (7.6) | 56 (10.1) | 129 (23.4) | 190 (34.4) | 135 (24.5) | 552 | 4.0 | 3.0 | 4.0 |
| The antimicrobial has a license for veterinary use | 116 (20.9) | 86 (15.5) | 119 (21.4) | 107 (29.2) | 128 (23.0) | 556 | 3.0 | 2.0 | 4.0 |
| Potential to produce microbial resistance | 46 (8.3) | 64 (11.6) | 116 (21.0) | 135 (24.5) | 191 (34.6) | 552 | 4.0 | 3.0 | 5.0 |
| Available administration routes | 10 (1.8) | 27 (4.9) | 106 (19.1) | 216 (38.9) | 196 (35.3) | 555 | 4.0 | 3.0 | 5.0 |
| Wound location | 38 (6.9) | 64 (11.6) | 142 (25.6) | 175 (31.6) | 135 (24.4) | 554 | 4.0 | 3.0 | 4.0 |
| Recommended clinical action protocols | 23 (4.2) | 20 (3.6) | 138 (25.0) | 217 (39.3) | 154 (27.9) | 552 | 4.0 | 3.0 | 5.0 |
| Cost | 58 (10.5) | 92 (16.6) | 195 (35.1) | 148 (26.7) | 62 (11.2) | 555 | 3.0 | 2.0 | 4.0 |
| Shelf life | 62 (11.2) | 89 (16.0) | 173 (31.2) | 157 (28.3) | 74 (13.3) | 555 | 3.0 | 2.0 | 4.0 |
| Category | Before surgery n (%) | During surgery n (%) | After surgery n (%) | Postoperatory n (%) | Administration route of not used n (%) |
|---|---|---|---|---|---|
| Subcutaneous | 312 (55.9) | 26 (4.7) | 106 (19.0) | 41 (7.3) | 73 (13.1) |
| Intravenous | 178 (31.9) | 247 (44.3) | 17 (3.0) | 9 (1.6) | 107 (19.2) |
| Intramuscular | 105 (18.8) | 18 (3.2) | 60 (10.8) | 28 (5.0) | 347 (62.2) |
| Oral | 61 (10.9) | 0 (0.0) | 8 (1.4) | 469 (84.1) | 20 (3.6) |
| Topical | 41 (7.3) | 3 (0.5) | 50 (9.0) | 163 (29.2) | 301 (53.9) |
| Category | 1 (%) | 2 (%) | 3 (%) | 4 (%) | n | Median | 25 | 75 |
|---|---|---|---|---|---|---|---|---|
| Prospectus / Vademecum | 102 (21.2) | 85 (17.7) | 140 (29.1) | 154(32) | 481 | 3.0 | 2.0 | 4.0 |
| Books and user guidelines | 22 (4.6) | 33 (6.9) | 127 (26.5) | 298 (62.1) | 480 | 4.0 | 3.0 | 4.0 |
| Conference proceedings | 83 (17.4) | 136 (28.6) | 143 (30) | 114 (23.9) | 476 | 3.0 | 2.0 | 3.0 |
| Scientific articles | 95 (19.6) | 119 (24.6) | 120 (24.8) | 150 (31) | 484 | 3.0 | 2.0 | 4.0 |
| Variable | No (%) | Yes (%) |
|---|---|---|
| Preoperative antimicrobials decrease the risk of wound infection in clean surgery | 324 (58.1) | 234 (41.9) |
| Postoperative antimicrobials decrease the risk of wound infection in clean surgery | 257 (46.1) | 301 (53.9) |
| Preoperative antimicrobials decrease the risk of wound infection in clean-contaminated surgery | 56 (10.0) | 502 (90.0) |
| Postoperative antimicrobials decrease the risk of wound infection in clean-contaminated surgery | 56 (10.0) | 502 (90.0) |
| Preoperative antimicrobials decrease the risk of infection of a contaminated surgical wound | 65 (11.6) | 493 (88.4) |
| Postoperative antimicrobials decrease the risk of infection of a contaminated surgical wound | 30 (5.4) | 528 (94.6) |
| The owners agree with the budget that the administration of antimicrobials entails | 37 (6.6) | 521 (93.4) |
| I'm not sure if antimicrobial prophylaxis is necessary, but I usually prescribe it | 269 (48.2) | 289 (51.8) |
| The use of preoperative antimicrobials is necessary in all surgical procedures | 439 (78.7) | 119 (21.3) |
| The use of postoperative antimicrobials is necessary in all surgical procedures | 461 (82.6) | 97 (17.4) |
| The inappropriate use of antimicrobials in small animals leads to resistant bacteria | 1 (0.2) | 557 (99.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
