Submitted:
29 June 2023
Posted:
30 June 2023
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Amino acid supplementation as a therapeutic strategy for DMD
3. Pre-clinical studies evaluating amino acids and derivatives in mdx
4. Combining amino acid supplements with DMD standard of care
5. Adverse effects and human clinical trials
6. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kourakis, S.; Timpani, C.A.; Campelj, D.G.; Hafner, P.; Gueven, N.; Fischer, D.; Rybalka, E. Standard of care versus new-wave corticosteroids in the treatment of Duchenne muscular dystrophy: Can we do better? Orphanet J Rare Dis 2021, 16, e117. [CrossRef]
- Cordova, G.; Negroni, E.; Cabello-Verrugio, C.; Mouly, V.; Trollet, C. Combined therapies for Duchenne muscular dystrophy to optimize treatment efficacy. Front Genet 2018, 9, 114. [CrossRef]
- Grounds, M.D.;, Radley, H.G.; Lynch, G.S.; Nagaraju, K.;, De Luca, A. Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy. Neurobiol Dis 2008, 31, 11-19. [CrossRef]
- Davidson, Z.E.; Rodden, G.; Mázala, D.A.G.; Moore, C.; Papillon, C.; Hasemann, A.J.; Truby, H.; Grange R.W. Practical Nutrition Guidelines for Individuals with Duchenne Muscular Dystrophy. Regenerative Medicine for Degenerative Muscle Diseases. Stem Cell Biology and Regenerative Medicine. Ed. Childers, M. Humana Press, New York, NY, 2016; pp. 225-276-9. ISBN 978-1-4939-3227-6. [CrossRef]
- Woodman, K.G.; Coles, C.A.; Lamandé, S.R.; White, J.D. Nutraceuticals and their potential to treat Duchenne muscular dystrophy: Separating the Credible from the Conjecture. Nutrients 2016, 8, 713. [CrossRef]
- Boccanegra, B.; Verhaart, I.E.C.; Cappellari, O.; Vroom, E.; De Luca, A. Safety issues and harmful pharmacological interactions of nutritional supplements in Duchenne muscular dystrophy: Considerations for Standard of Care and emerging virus outbreaks. Pharmacol Res 2020, 158, 104917. [CrossRef]
- Terrill, J.R.; Huchet, C.; Le Guiner, C.; Lafoux, A.; Caudal, D.; Tulangekar, A.; Bryson-Richardson, R.J.; Sztal, T.E.; Grounds, M.D.; Arthur, P.G. Muscle pathology in dystrophic rats and zebrafish is unresponsive to taurine treatment, compared to the mdx mouse model for Duchenne muscular dystrophy. Metabolites 2023, 13, 232. [CrossRef]
- Martins-Bach, A.B.; Bloise, A.C.; Vainzof, M.; Rabbani, S.R. Metabolic profile of dystrophic mdx mouse muscles analyzed with in vitro magnetic resonance spectroscopy (MRS). Magn Reson Imag 2012, 30, 1167-1176. [CrossRef]
- Panza, E.; Vellecco, V.; Iannotti, F.A.; Paris, D.; Manzo, O.L.; Smimmo, M.; Mitilini, N.; Boscaino, A.; de Dominicis, G.; Bucci, M.; Di Lorenzo, A.; Cirino, G. Duchenne’s muscular dystrophy involves a defective transsulfuration pathway activity. Redox Biol 2021, 45, 102040. [CrossRef]
- Terrill, J.R.; Grounds, M.D.; Arthur, P.G. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy. Int J Biochem Cell Biol 2015, 66, 141-148. [CrossRef]
- Culbertson, J.Y.; Kreider, R.B.; Greenwood, M.; Cooke, M. Effects of beta-alanine on muscle carnosine and exercise performance: A review of the current literature. Nutrients 2010, 2, 75-98. [CrossRef]
- Lu, S.C. Regulation of glutathione synthesis. Mol Aspects Med 2009, 30, 42-59. [CrossRef]
- Rapucci Moraes, L.H.; Constâncio Bollineli, R.; Sayuri Mizobuti, D.; Dos Reis Silveira, L.; Marques, MJ.; Minatel, E. Effect of N-acetylcysteine plus deferoxamine on oxidative stress and inflammation in dystrophic muscle cells. Redox Rep 2015, 20, 109-115. [CrossRef]
- Medved, I.; Brown, M.J.; Bjorksten, A.R.; Murphy, K.T.; Petersen, A.C.; Sostaric, S.; X Gong, X.; McKenna, M.J. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. J Appl Physiol 2004, 97, 1477-1485. [CrossRef]
- Merckx, C.; De Paepe, B. The role of taurine in skeletal muscle functioning and its potential as a supportive treatment for Duchenne muscular dystrophy. Metabolites 2022, 12, 193. [CrossRef]
- Lee, E.C.; Maresh, C.M.; Kraemer, W.J.; Yamamoto, L.M.; Hatfield, D.L.; Bailey, B.L.; Armstrong, L.E.; Volek, J.S.; McDermott, B.P.; As Craig, S. Ergogenic effects of betaine supplementation on strength and power performance. J Int Soc Sports Nutr 2010, 7, 27. [CrossRef]
- Ueland, P.M. Choline and betaine in health and disease. J Inherit Metab Dis 2011, 34, 3-15. [CrossRef]
- Hoffman, J.R.; Ratamess, N.A.; Kang, J.; Rashti, S.L.; Avery D Faigenbaum, A.D. Effect of betaine supplementation on power performance and fatigue. J Int Soc Sports Nutr 2009, 6, 7. [CrossRef]
- Hsieh, T.J.; Jaw, T.S.; Chuang, H.Y.; Jong, Y.J.; Liu, G.C.; Li, C.W. Muscle metabolism in Duchenne muscular dystrophy assessed by in vivo proton magnetic resonance spectroscopy. J Comput Assist Tomogr 2009, 33, 150-154.
- Graf, R.; Anzali, S.; Buenger, J.; Pfluecker, F.; Driller, H. The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol 2008, 26, 326-333. [CrossRef]
- Terrill, J.R.; Duong, M.N.; Turner, R.; Le Guiner, C.; Boyatzis, A.; Kettle, A.J.; Grounds, M.D.; Arthur, P.G. Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden retriever muscular dystrophy dog model for Duchenne muscular dystrophy. Redox Biol 2016, 9, 276-286. [CrossRef]
- Terrill, J.R.; Boyatzis, A.; Grounds, M.D.; Arthur, P.G. Treatment with the cysteine precursor l-2-oxothiazolidine-4-carboxylate (OTC) implicates taurine deficiency in severity of dystropathology in mdx mice. Int J Biochem Cell Biol 2013, 45, 2097-2108. [CrossRef]
- Stipanuk, M.H. Role of the liver in regulation of body cysteine and taurine levels: A brief review. Neurochem Res 2004, 29, 105-110. [CrossRef]
- Barbiera, A.; Sorrentino, S.; Lepore, E.; Carfì, A.; Sica, G.; Dobrowolny, G.; Scicchitano, B.M. Taurine Attenuates Catabolic Processes Related to the Onset of Sarcopenia. Int J Mol Sci 2020, 21, 8865. [CrossRef]
- Gupta, S.C.; Sundaram, C.; Reuter, S.; Aggarwal, B.B. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta 2010, 1799, 775–787. [CrossRef]
- McGreevy, J.W.; Hakim, C.H.; McIntosh, M.A.; Duan, D. Animal models of Duchenne muscular dystrophy: From basic mechanisms to gene therapy. Dis Model Mech 2015, 8, 195-213. [CrossRef]
- Putten, M.; Putker, K.; Overzier, M.; Adamzek, W.A.; Pasteuning-Vuhman, S.; Plomp, J.J; Aartsma-Rus, A. Natural disease history of the D2-mdx mouse model for Duchenne muscular dystrophy. FASEB J 2019, 33, 8110-8124. [CrossRef]
- Horvath, D.M.; Murphy, R.M.; Mollica, J.P.; Hayes, A.; Goodman, G.A. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice. Amino Acids 2016, 48, 2635–2645. [CrossRef]
- Barton, E.R.; Morris, L.; Kawana, M.; Bish, L.T.; Toursel, T. Systemic administration of L-arginine benefits mdx skeletal muscle function. Muscle Nerve 2005, 32, 751-60. [CrossRef]
- Voisin, V. ; Sébrié, C.; Matecki, S. ; Yu, H. ; Gillet, B.; Ramonatxo, M.; Israël, M.; De la Porte, S. L-arginine improves dystrophic phenotype in mdx mice. Neurobiol Dis 2005, 20, 123-30. [CrossRef]
- Hnia, K.; Gayraud, J.; Hugon, G.; Ramonatxo, M.; De La Porte, S.; Matecki, S.; Mornet, D. L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. Am J Pathol 2008, 172, 1509-1519. [CrossRef]
- Archer, J.D.; Vargas, C.C.; Anderson, J.E. Persistent and improved functional gain in mdx dystrophic mice after treatment with L-arginine and deflazacort. FASEB J 2006, 20, 738-740. [CrossRef]
- Dudley, R.W.R.; Comtois, A.S.; St-Pierre, D.H.; Danialou, G. Early administration of L-arginine in mdx neonatal mice delays the onset of muscular dystrophy in tibialis anterior (TA) muscle. FASEB Bioadv 2021, 3, 639-651. [CrossRef]
- Oh, J.; Kang, H.J.; Kim, H.J.; Lee, J.H.; Choi, K.G.; Park, K.D. The effect of L-carnitine supplementation on the dystrophic muscle and exercise tolerance of muscular dystrophy (mdx) mice. J Korean Neurol Assoc 2005, 23, 519-523.
- Tulimiero, B.; Boccanegra, P.; Mantuano, S.; Cirmi, M.; De Bellis, O.; Cappellari, De Luca, A. VP.86 Effect of a chronic treatment with L-citrulline on funtional, histological and molecular readouts of dystrophic mdx mouse model. Neuromuscul Disord 2022, 32, S1, S128. [CrossRef]
- Merckx,C.; Zschüntzsch, J.; Meyer, S.; Raedt, R.; Verschuere, H.; Schmidt, J.; De Paepe, B.; De Bleecker, J.L. Exploring the therapeutic potential of ectoine in Duchenne muscular dystrophy: Comparison with taurine, a supplement with known beneficial effects in the mdx mouse. Int J Mol Sci 2022, 23, 9567. [CrossRef]
- Mok, E.; Constantin, B.; Favreau, F.; Neveux, N.; Magaud, C.; Delwail, A.; Hankard, R. l-Glutamine administration reduces oxidized glutathione and MAP kinase signaling in dystrophic muscle of mdx mice. Pediatr Res 2008, 63, 268-273. [CrossRef]
- Ham, D.J.; Gardner, A.; Kennedy, T.L.; Trieu, J.; Naim, T.; Chee, A.; Alves, F.M.; Caldow, M.K.; Lynch, G.S.; Koopman, R. Glycine administration attenuates progression of dystrophic pathology in prednisolone-treated dystrophin/utrophin null mice. Sci Rep 2019, 9, 12982. [CrossRef]
- Whitehead, N.P.; Pham, C.; Gervasio, O.L.; Allen, D.G. N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol 2008, 586, 2003-2014. [CrossRef]
- Terrill, J.R.; Radley-Crabb, H.G.; Grounds, M.D.; Arthur, P.G. N-Acetylcysteine treatment of dystrophic mdx mice results in protein thiol modifications and inhibition of exercise induced myofibre necrosis. Neuromuscul Disord 2012, 22, 427-434. [CrossRef]
- de Senzi Moraes Pinto, R.; Ferretti, R.; Rapucci Moraes, L. H.; Santo Neto, H.; Marques, M.J.; Minatel, E. N-acetylcysteine treatment reduces TNF-α levels and myonecrosis in diaphragm muscle of mdx mice. Clin Nutr 2013, 32, 472-475. [CrossRef]
- Pinniger, G.J.; Terrill, J.R.; Assan, E.B.; Grounds, M.D.; Arthur, P.G. Pre-clinical evaluation of N-acetylcysteine reveals side effects in the mdx mouse model of Duchenne muscular dystrophy. J Physiol 2017, 595, 7093–7107. [CrossRef]
- Burns, D.P.; Drummond, S.E.; Bolger, D.; Coiscaud, A.; Murphy, K.H.; Edge, D.; O’Halloran, K.D. N-acetylcysteine decreases fibrosis and increases force-generating capacity of mdx diaphragm. Antioxidants 2019, 8, 581. [CrossRef]
- Redwan, A.; Kiriaev, L.; Kueh,S.; Morley, J.W.; Peter Houweling, P.; Perry, B.D.; Head, S.I. Six weeks of N-acetylcysteine antioxidant in drinking water decreases pathological fiber branching in mdx mouse dystrophic fast-twitch skeletal muscle. Front Physiol 2023, 14, 1109587. [CrossRef]
- Terrill, J.R.; Boyatzis, A.; Grounds, M.D.; Arthur, P.G. Treatment with the cysteine precursor l-2-oxothiazolidine-4-carboxylate (OTC) implicates taurine deficiency in severity of dystropathology in mdx mice. Int J Biochem Cell Biol 2013, 45, 2097-2108. [CrossRef]
- Terrill, J.R., Pinniger, G.J., Graves, J.A., Grounds, M.D.; Arthur, P.G. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy. J Physiol 2016, 594, 3095-3110. [CrossRef]
- De Luca, A.; Pierno, S.; Liantonio, A.; Cetrone, M.; Camerino, C.; Fraysse, B.; Mirabella, M.; Servidei, S.; Rüegg, U.T.; Conte Camerino, D. Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1. J Pharmacol Exp Ther 2003, 304, 453-463. [CrossRef]
- Capogrosso, R.F.; Cozzoli, A.; Mantuano, P.; Camerino, G.M.; Massari, A.M.; Sblendorio, V.T.; De Bellis, M.; Tamma, R.; Giustino, A.; Nico, B.; Montagnani, M.; De Luca, A. Assessment of resveratrol, apocynin and taurine on mechanical-metabolic uncoupling and oxidative stress in a mouse model of duchenne muscular dystrophy: A comparison with the gold standard, α-methyl prednisolone. Pharmacol Res 2016, 106, 101-113. [CrossRef]
- Terrill, J.R.; Pinniger, G.J.; Nair, K.V.; Grounds, M.D.; Arthur, P.G. Beneficial effects of high dose taurine treatment in juvenile dystrophic mdx mice are offset by growth restriction. PLoS ONE 2017, 12, e0187317. [CrossRef]
- Barker, R.G.; van der Poel, C.; Horvath, D.; Murphy, R.M. Taurine and methylprednisolone administration at close proximity to the onset of muscle degeneration is ineffective at attenuating force loss in the hind-limb of 28 days mdx mice. Sports 2018, 6, 109. [CrossRef]
- Banfi , S.; D’Antona, G.; Ruocco, C.; Meregalli, M.; Belicchi, M.; Bella, P.; Erratico, S.; Donato, E.; Rossi, F.; Bifari, F.; Lonati, C.; Campaner, S.; Nisoli, E.; Torrente, Y. Supplementation with a selective amino acid formula ameliorates muscular dystrophy in mdx mice. Sci Rep 2018, 8, 14659. [CrossRef]
- Holeček, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr Metab 2018, 15, 33. [CrossRef]
- White, J.P. Amino Acid Trafficking and Skeletal Muscle Protein Synthesis: A Case of Supply and Demand. Front Cell Dev Biol 2021, 9, 656604. [CrossRef]
- Dirks, M.; Wall, B.; van Loon, L.V. Interventional strategies to combat muscle disuse atrophy in humans: Focus on neuromuscular electrical stimulation and dietary protein. J Appl Physiol 2018, 125, 850-861. [CrossRef]
- Mantuano, P.; Boccanegra, B.; Bianchini, G.; Conte, E.; De Bellis, M.; Sanarica, F.; Camerino, G.M.; Pierno, S.; Cappellari, O.; Allegretti, M.; Aramini, A.; De Luca, A. BCAAs and Di-Alanine supplementation in the prevention of skeletal muscle atrophy: Preclinical evaluation in a murine model of hind limb unloading. Pharmacol Res 2021, 171, 105798. [CrossRef]
- Kourakis, S.; Timpani, C.A.; Campelj, D.G.; Hafner, P.; Gueven, N.; Fischer, D.; Rybalka, E. Standard of care versus new-wave corticosteroids in the treatment of Duchenne muscular dystrophy: Can we do better? Orphanet J Rare Dis 2021, 16, 117. [CrossRef]
- Ruocco, C.; Ragni, M.; Rossi, F.; Carullo, P.; Ghini, V.; Piscitelli, F.; Cutignano, A.; Manzo, E.; Ioris, R.M.; Bontems, F.; Tedesco, L.; Greco, C.M.; Pino, A.; Severi, I.; Liu, D.; Ceddia, R.P.; Ponzoni, L.; Tenori, L.; Rizzetto, L.; Scholz, M.; Tuohy, K.; Bifari, F.; Di Marzo, V.; Luchinat, C.; Carruba, M.O.; Cinti, S.; Decimo, I.; Condorelli, G.; Coppari, R.; Collins, S.; Valerio, A.; Nisoli, E. Manipulation of dietary amino acids prevents and reverses obesity in mice through multiple mechanisms that modulate energy homeostasis. Diabetes 2020, 69, 2324-2339. [CrossRef]
- Okekunle, A.P., Lee, H., Provido, S.M.P.; Chung, G.H.; Hong, S.; Yu, S.H.; Lee, C.B.; Lee, J.E. Dietary branched-chain amino acids and odds of obesity among immigrant Filipino women: The Filipino women’s diet and health study (FiLWHEL). BMC Public Health 2022, 22, 654. [CrossRef]
- De Bandt, J.P.; Coumoul, X.; Barouki, R. Branched-chain amino acids and insulin resistance, from protein supply to diet-induced obesity. Nutrients 2023, 15, 68. [CrossRef]
- Zhang, H.; Xiang, L.; Huo, M.; Wu, Y.; Yu, M.; Lau, C.W.; Tian, D.; Gou, L.; Huang, Y.; Luo, J.Y.; Wang, L.; Song, W.; Huang, J.; Cai, Z.; Chen, S.; Tian, X.Y.; Yu Huang, Y. Branched-chain amino acid supplementation impairs insulin sensitivity and promotes lipogenesis during exercise in diet-induced obese mice. Obesity 2022, 30, 1205-1218. [CrossRef]
- Ooi, D.S.Q.; Ling, J.Q.R.; Sadananthan, S.A.; Velan, S.S.; Ong, F.Y.; Khoo, C.M.; Tai, E.S.; Henry, C.J.; Leow, M.K.S.; Khoo, E.Y.H.; Tan, C.S.; Lee, Y.S.; Chong, M.F.F. Branched-chain amino acid supplementation does not preserve lean mass or affect metabolic profile in adults with overweight or obesity in a randomized controlled weight loss intervention. J Nutr 2021, 151, 911-920. [CrossRef]
- Ammann, P.; Laib, A.; Bonjour, J.P.; Meyer, J.M.; Rüegsegger, P.; Rizzoli, R. Dietary essential amino acid supplements increase bone strength by influencing bone mass and bone microarchitecture in ovariectomized adult rats fed an isocaloric low-protein diet. J Bone Miner Res 2002, 17, 1264-1272. [CrossRef]
- Panahi, N.; Fahimfar, N.; Roshani, S.; Arjmand, B.; Gharibzadeh, S.; Shafiee, G.; Migliavacca, E.; Breuille, D.; Feige, J.N.; Grzywinski, Y.; Corthesy, J.; Razi, F.; Heshmat, R.; Nabipour, I.; Farzadfar, F.; Soltani, A.; Larijani, B.; Ostovar, A. Association of amino acid metabolites with osteoporosis, a metabolomic approach: Bushehr elderly health program. Metabolomics 2022, 18, 63. [CrossRef]
- Su, Y.; Elshorbagy, A.; Turner, C.; Refsum, H.; Chan, R.; Kwok, T. Circulating amino acids are associated with bone mineral density decline and ten-year major osteoporotic fracture risk in older community-dwelling adults. Bone 2019, 129, 115082. [CrossRef]
- Lv, Z.; Shi, W.; Zhang, Q. Role of essential amino acids in age-induced bone loss. Int J Mol Sci 2022, 23, 11281. [CrossRef]
- Aartsma-Rus, A.; Straub, V.; Hemmings, R.; Haas, M.; Schlosser-Weber, G.; Stoyanova-Beninska, V.; Mercuri, E.; Muntoni, F.; Sepodes, B.; Vroom, E.; Balabanov, P. Development of exon skipping therapies for Duchenne muscular dystrophy: A critical review and a perspective on the outstanding Issues. Nucleic Acid Ther 2017, 27, 251-259. [CrossRef]
- Syed, Y.Y. Eteplirsen: First Global Approval. Drugs 2016, 76, 1699-1704. [CrossRef]
- Heo, Y.A. Golodirsen: First approval. Drugs 2020, 80, 329-333. [CrossRef]
- Dhillon, S. Viltolarsen: First approval. Drugs 2020, 80, 1027-1031. [CrossRef]
- Shirley, M. Casimersen: First approval. Drugs 2021, 81, 875-879. [CrossRef]
- Lin, C.; Han, G.; Ning, H.; Song, J.; Ran, N.; Yi, X.; Seow, Y.; Yin, H.F. Glycine enhances satellite cell proliferation, cell transplantation, and oligonucleotide efficacy in dystrophic muscle. Mol Ther 2020, 28, 1339-1358. [CrossRef]
- Han, G.; Lin, C.; Yin, H.F. Use of glycine to augment exon skipping and cell therapies for Duchenne muscular dystrophy. Methods Mol Biol 2023, 2587, 165-182. [CrossRef]
- Elangkovan, N.; Dickson, G. Gene therapy for Duchenne muscular dystrophy. J Neuromuscul Dis 2021, 8, S303-S316. [CrossRef]
- Holeček, M. Side effects of amino acid supplements. Physiol Res 2022, 71, 29-45. [CrossRef]
- Calverley, P.; Rogliani, P.; Papi, A. Safety of N-acetylcysteine at high doses in chronic respiratory diseases: A review. Drug Saf 2021, 44, 273-290. [CrossRef]
- Riedijk, M.A., van Beek, R.H.; Voortman, G.; de Bie, H.M.; Dassel, A.C.; van Goudoever, J.B. Cysteine: A conditionally essential amino acid in low-birth-weight preterm infants? Am J Clin Nutr 2007, 86, 1120-1125. [CrossRef]
- Swiderski, K.; Bindon, R.; Trieu, J.; Naim, T.; Schokman, S.; Swaminathan, M.; Leembruggen, A.J.L.; Hill-Yardin, E.L.; Koopman, R.; Bornstein, J.C.; Lynch, G.S. Spatiotemporal mapping reveals regional gastrointestinal dysfunction in mdx dystrophic mice ameliorated by oral L-arginine supplementation. J Neurogastroenterol Motil 2020, 26, 133-146. [CrossRef]
- Mok, E.; Eléouet-Da Violante, C.; Daubrosse, C.; Gottrand, F.; Rigal, O.; Fontan, J.E.; Cuisset, J.M.; Guilhot, J.; Hankard, R. Oral glutamine and amino acid supplementation inhibit whole-body protein degradation in children with Duchenne muscular dystrophy. Am J Clin Nutr 2006, 83, 823-828. [CrossRef]
- Mok, E.; Letellier, G.; Cuisset, J.M.; Denjean, A.; Gottrand, F.; Alberti, C.; Hankard, R. Lack of functional benefit with glutamine versus placebo in Duchenne muscular dystrophy: A randomized crossover trial. PLoS ONE 2009, 4, e5448. [CrossRef]
- Banerjee, B.; Sharma, U.; Balasubramanian, K.; Kalaivani, M.; Kalra, V.; Jagannathan, N.R. Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: A randomized, placebo-controlled 31P MRS study. Magn Reson Imaging 2010, 28, 698-707. [CrossRef]
- Escolar, D.M.; Buyse, G.; Henricson, E.; Leshner, R.; Florence, J.; Mayhew, J.; Tesi-Rocha, C.; Gorni, K.; Pasquali, L.; Patel, K.M.; McCarter, R.; Huang, J.; Mayhew, T.; Bertorini, T.; Carlo, J.; Connolly, A.M.; Clemens, P.R.; Goemans, N.; Iannaccone, S.T.; Igarashi, M.; Nevo, Y.; Pestronk, A.; Subramony, S.H.; Vedanarayanan, V.V.; Wessel, H.; CINRG Group. CINRG randomized controlled trial of creatine and glutamine in Duchenne muscular dystrophy. Ann Neurol 2005, 58, 151-155. [CrossRef]
- Hafner, P.; Bonati, U.; Klein, A.; Rubino, D.; Gocheva, V.; Schmidt, S.; Schroeder, J.; Bernert, G.; Laugel, V.; Steinlin, M.; Capone, A.; Gloor, M.; Bieri, O.; PhD9; Hemkens, L.G.; Speich, B.; Zumbrunn, T.; Gueven, N.; Fischer, D. Effect of combination L-Citrulline and metformin treatment on motor function in patients with Duchenne muscular dystrophy: A randomized clinical trial. JAMA Netw Open 2019, 2, e1914171. [CrossRef]
- Todd, J.J.; Lawal, T.A.; Witherspoon, J.W.; Chrismer, I.C.; Razaqyar, M.S.; Punjabi, M.; Elliott, J.S.; Tounkara, F.; Kuo, A.; Shelton, M.O.; Allen, C.; Cosgrove, M.M.; Linton, M.; Michael, D.; Jain, M.S.; Waite, M.; Drinkard, B.; Wakim, P.G.; Dowling, J.J.; Bönnemann, C.G.; Emile-Backer, M.; Meilleur, K.G. Randomized controlled trial of N-acetylcysteine therapy for RYR1-related myopathies. Neurology 2020, 94, e1434-e1444. [CrossRef]
- Moludi, J., Qaisar, S.A., Kadhim, M.M. et al. Protective and therapeutic effectiveness of taurine supplementation plus low calorie diet on metabolic parameters and endothelial markers in patients with diabetes mellitus: A randomized, clinical trial. Nutr Metab (Lond) 2022, 19, 49. [CrossRef]
- Ohsawa, Y.; Hagiwara, H.; Nishimatsu, S.I.; Hirakawa, A.; Kamimura, N.; Ohtsubo, H.; Fukai, Y.; Murakami, T.; Koga, Y.; Goto, Y.I.; Ohta, S.; Sunada, Y.; KN01 Study Group. Taurine supplementation for prevention of stroke-like episodes in MELAS: A multicentre, open-label, 52-week phase III trial. J Neurol Neurosurg Psychiatry 2019, 90, 529-536. [CrossRef]
- Vidot,H.; Cvejic, E.; Carey, S.; Strasser, S.I.; McCaughan, G.W.; Allman-Farinelli, M.; Shackel, N.A. Randomised clinical trial: Oral taurine supplementation versus placebo reduces muscle cramps in patients with chronic liver disease. Aliment Pharmacol Ther 2018, 48, 704-712. [CrossRef]
- Kurtz, J.A.; VanDusseldorp, T.A.; Doyle, J.A.; Otis, J.S. Taurine in sports and exercise. J Int Soc Sports Nutr 2021, 18, 39. [CrossRef]
- Akalp, K.; Vatansever, Ş.; Sönmez, G.T. Effects of acute taurine consumption on single bout of muscular endurance resistance exercise performance and recovery in resistance trained young male adults. Biomed Hum Kinet 2023, 15, 74-82. [CrossRef]
- Waldron, M.; Patterson, S.D.; Tallent, J.; Jeffries, O. The effects of an oral taurine dose and supplementation period on endurance exercise performance in humans: A meta-analysis. Sports Med 2018, 48, 1247-1253. [CrossRef]
- Singh, P.; Gollapalli, K.; Mangiola, S.; Schranner, D.; Aslam Yusuf, M.; Chamoli, M.; Shi, S.L.; Lopes Bastos, B.; Nair, T.; Riermeier, A.; Vayndorf, E.M.; Wu, J.Z.; Nilakhe, A.; Nguyen, C.Q.; Muir, M.; Kiflezghi, M.G.; Foulger, A.; Junker, A.; Devine, J.; Sharan, K.; Chinta, S.J.; Rajput, S.; Rane, A.; Baumert, P.; Schönfelder, M.; Iavarone, F.; di Lorenzo, G.; Kumari, S.; Gupta, A.; Sarkar, R.; Khyriem, C.; Chawla, A.S.; Sharma, A.; Sarper, N.; Chattopadhyay, N.; Biswal, B.K.; Settembre, C.; Nagarajan, P.; Targoff, K.L.; Picard, M.; Gupta, S.; Velagapudi, V.; Papenfuss, A.T.; Kaya, A.; Ferreira, M.; Kennedy, B.K.; Andersen, J.K.; Lithgow, G.J.; Ali, A.M.; Mukhopadhyay, A.; Palotie, A.; Kastenmüller, G.; Kaeberlein, M.; Wackerhage, H.; Pal, B.; Yadav, V.K. Taurine deficiency as a driver of aging. Science 2023, 380, eabn9257. [CrossRef]
- Miyatake, S.; Shimizu-Motohashi, Y.; Takeda, S.; Aoki, Y. Anti-inflammatory drugs for Duchenne muscular dystrophy: Focus on skeletal muscle-releasing factors. Drug Des Devel Ther 2016, 10, 2745-58. [CrossRef]
- Ren, S; Yao, C.; Liu, Y.; Feng, G.; Dong, X.; Gao, B.; Qian, S. Antioxidants for treatment of duchenne muscular dystrophy: A systematic review and meta-analysis. Eur Neurol 2022, 85, 377–388. [CrossRef]
- Muraine, L.; Bensalah, M.; Butler-Browne, G.; Bigot, A.; Trollet, C.; Mouly, V.; Negroni, E. Update on anti-fibrotic pharmacotherapies in skeletal muscle disease. Curr Opin Pharmacol 2023, 68, 102332. [CrossRef]
| Supplement | Mice | Administration & Dose | Muscle outcome | Reference |
|---|---|---|---|---|
| β-Alanine | Male mdx untreated (n=8) β-Ala treated (n=8); age 20 weeks. | 3% in drinking water for 4 weeks. | Increased resistance to fatigue after intermittent electrical stimulation for 1min in EDL ex vivo. | [28] |
| L-Arginine | Male mdx saline treated (n=7) Arg treated (n=7); age 8 weeks. | Intraperitoneal injection of 0.4g/kg/day for 4 weeks. | Improved contractile properties of EDL. Increased utrophin and ϒ-sarcoglycan protein levels in EDL | [29] |
| Female mdx saline treated (n=8) Arg treated (n=8); age 16 weeks. | Intraperitoneal injection of 0.2g/kg/5 days a week for 6 weeks. | Higher isometric twitch tension in DIA ex vivo. Reduced necrotic surface in TA, GAS, EDL, DIA. 3-fold increased utrophin protein levels in SOL, EDL, DIA, TA. |
[30] | |
| Male mdx untreated (n=7) Arg treated (n=7); age 5 weeks. | Intraperitoneal injection of 0.20g/kg/day for 2 weeks. | Decreased nonmuscle area and enhanced muscle regeneration in DIA. Decreased levels of TNFα, IL-1β, IL-6, NFκB protein in DIA. | [31] | |
| Mdx untreated (n=8) Arg treated (n=8); age 4 weeks. | 0.375% in drinking water + 1.2mg/kg/day deflazacort for 3 weeks. | Increased distance running capacity after and 3 months after treatment. Attenuated exercise-induced damage and regeneration of QUA. | [32] | |
| Mdx saline treated (n=6) Arg treated (n=6); age 1 week. | Intraperitoneal injection of 0.8g/kg/day for 6 weeks. | Reduced magnitude of contraction-induced force drop in TA in vivo. Lower level of central nucleation of muscle fibers in TA. |
[33] | |
| L-Carnitine | Mdx untreated (n=5) Carnitine treated (n=5) age 3 weeks. | Oral 0.75g/kg/day for 6 weeks. | Higher exercise tolerance and lower blood CK after 30min horizontal treadmill. Less severe QUA sarcolemmal disruption after 30min strenuous eccentric exercise. | [34] |
| L-Citrulline | MDX age 4-5 weeks. | 2g/kg/day for 8 weeks. | Improved increment of maximal forelimb strength. Increased specific isometric twitch and tetanic force in DIA ex vivo. Reduced inflammation and fibrosis in GAS and DIA. |
[35] |
| Ectoine | Male and female mdx untreated (n=10) Ect treated (n=11); age 1 week. | 0.5% (1.1g/kg/day) in drinking water for 5 weeks. | Decreased CCL2, TNFα and IL1β expression in TA. Increased amount of healthy fibers in TA. | [36] |
| Male and female mdx saline (n=8) Ect treated (n=9); age 1 week. | 0.075% in drinking water (0.2g/kg/day) for 2 weeks, followed by intraperitoneal 0.2g/kg/day for 2 weeks. | Increased amount of healthy fibers in TA. | [36] | |
| L-Glutamine | Mdx saline (n=4) Gln treated (n=4); age 4 weeks. | Intraperitoneal injections of 0.5g/kg/day for 3 days. | Decreased ERK1/2 activation and oxidative stress in QUAD | [37] |
| L-Glycine | Male mdx and mdx:utrophin-/- controls treated with 1.9% Ala in drinking water (2x n=8) Gly treated (2x n=8); age 4 weeks. | 1.9% (2.5g/kg/day) for 8 weeks (mdx) or 14 weeks (mdx:utrophin-/- ). | Reduced fibrosis in DIA. | [38] |
| NAC | Male mdx untreated (n=9) NAC treated (n=6); age 3 to 9 weeks. | 1% in drinking water for 6 weeks; Ex vivo perfusion of EDL with 20mM NAC. | Less centrally located myonuclei, reduced ROS, decreased nuclear NFκB and increased utrophin expression in EDL. Greater force value of EDL ex vivo |
[39] |
| Male mdx untreated (n=11) NAC treated (n=8); age 6 weeks. | 1% in drinking water for 6 weeks. | Prevention of exercise induced (30min horizontal treadmill) muscle fiber necrosis in QUA. | [40] | |
| Male mdx untreated (n=11) NAC treated (n=11), age 11 weeks. | 4% (2g/kg/day) in drinking water for 1 week. | Reduced CK increase after exercise. Prevention of exercise induced (30min horizontal treadmill) muscle fiber necrosis in QUA. Decreased protein thiol oxidation in QUA. |
[41] | |
| Male mdx saline treated (n=10) NAC treated (n=10); age 2 weeks. | Intraperitoneal injection of 0.15g/kg/day for 2 weeks. | Reduced blood CK. Decreased sarcolemmal leakage and muscle fiber necrosis in DIA. Reduced TNFα levels in DIA. |
[42] | |
| Male mdx untreated (n=8) NAC treated (n=8); age 6 weeks. | 2% in drinking water for 6 weeks. | Lower body weight, lower EDL muscle weight. Greater normalized forelimb grip strength. Unchanged ex vivo EDL muscle force. Activity of macrophages decreased in GAS muscle. Reduced protein thiol oxidation in EDL. |
[43] | |
| Male mdx untreated (n=) NAC treated (n=10); age 8 weeks. | 1% in drinking water for 2 weeks. | Improved force-generating capacity. Increased Smax and Vmax. Reduced immune cell infiltration and collagen deposition; reduced IL-1β and CXCL1 levels in DIA. | [44] | |
| Male mdx untreated (n=6) and NAC treated (n=6); age 3 weeks. | 2% in drinking water for 6 weeks. | Blunted growth and reduced EDL muscle weight. Unchanged maximum specific force of EDL ex vivo. Reduced abnormal fiber branching and splitting in EDL. | [45] | |
| OTC | Mdx untreated (n=6-8) OTC treated (n=6-8); age 6 to 12 weeks. | 0.5% in drinking water for 6 weeks. | Increased forelimb grip strength. Reduced protein oxidation in QUA. | [22] |
| Male and female mdx untreated (n=6) and OTC treated (n=8); age 2.5 weeks. | 0.8g/kg/day for 3.5 weeks. | Improved normalized forelimb grip strength. Increased maximum specific force of EDL muscle ex vivo. Decreased CSA of EDL. |
[46] | |
| Taurine | Male mdx untreated (n=5) Tau treated (n=5); age 3-4 weeks. | Male mdx untreated (n=5) and Tau treated (n=5); age 3-4 weeks. Subjected to chronic exercise on a treadmill. | Ameliorated negative threshold voltage values of EDL fibers. | [47] |
| Male mdx untreated (n=8) Tau treated (n=8); age 20 weeks. | 3% Tau in drinking water for 4 weeks. | Decreased body mass and EDL muscle mass. Increased recovery force production and increased resistance to fatigue after intermittent electrical stimulation for 1min in EDL ex vivo. | [28] | |
| Male and female mdx untreated (n=6) and Tau treated (n=8); age 2.5 weeks. | 4g/kg/day for 3.5 weeks. | Decreased CSA of EDL. 3-fold decreased protein thiol oxidation in EDL. | [46] | |
| Male mdx vehicle (n=19) and Tau treated (n=9); age 4-5 weeks. | 1g/kg/5 day a week in drinking water for 4 weeks. | Improved muscle force after exercise. Reduced percentages of damaged area and NFκB positive myonuclei in GAS. Reduced ROS production in TA. |
[48] | |
| Male and female mdx untreated (n=10) and Tau treated (n=8); age 1 week. | 8% (16g/kg/day) in drinking water for 5 weeks. | 12% reduced tibia length and 25% reduced CSA of EDL. 20% reduced protein thiol oxidation in EDL. | [49] | |
| Male mdx untreated (n=14) and Tau treated (n=10) prior to conception | 2.5% in drinking water evaluated at 4 and 10 weeks of age. | 50% reduction of non-contractile tissue in TA muscle at 4 weeks, but no change at 10 weeks. | [50] | |
| Male and female mdx untreated (n=10) and Tau treated (n=11); age 1 week. | 2.5% (4.6g/kg/day) in drinking water for 5 weeks. | Decreased CCL2 and SPP1 expression in TA. | [36] | |
| Branched chain | Male and female mdx untreated (n=10) and BCAA treated (n=10) mdx; age 12 weeks. | 1.5g/kg/day in drinking water for 2 weeks. | 20% increased endurance time on treadmill. Higher numbers of slow fibers in TA and VM. | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
