Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

An In-depth Analysis of Strength and Stiffness Variability in 3D-Printed Sandstones: Implications for Geomechanics

Version 1 : Received: 23 June 2023 / Approved: 26 June 2023 / Online: 26 June 2023 (15:13:39 CEST)

A peer-reviewed article of this Preprint also exists.

Sanchez-Barra, A.; Zambrano-Narvaez, G.; Chalaturnyk, R. An In-Depth Analysis of Strength and Stiffness Variability in 3D-Printed Sandstones: Implications for Geomechanics. Energies 2023, 16, 5406. Sanchez-Barra, A.; Zambrano-Narvaez, G.; Chalaturnyk, R. An In-Depth Analysis of Strength and Stiffness Variability in 3D-Printed Sandstones: Implications for Geomechanics. Energies 2023, 16, 5406.

Abstract

Natural rocks are highly heterogeneous due to various geological processes that constantly alter their properties. The accumulation, deposition, and cementation of mineral and organic particles continuously modify the spatial characteristics of rock properties. Property variability or anisotropy is commonly observed in most rock types and influences strength, transport, and thermal conductivity behavior. This unpredictability presents a significant challenge for laboratory testing. Binder-jet additive manufacturing (3D printing) has emerged as a valuable technology for characterizing rock properties in geoscience and engineering. This study proposes a methodology to evaluate the variability and repeatability of mechanical properties of 3D-printed sandstones during binder-jet additive manufacturing. The mechanical properties were analyzed statistically for samples located in various parts of the 3D printer build volume. The results showed that the 3D-printed sandstones exhibited significant variations in their strength and stiffness properties when measured from samples produced within the same build volume during binder-jet additive manufacturing. The Uniaxial Compressive Strength (UCS) varied from 23 to 38 MPa, with an average value of 29 MPa. The Young's modulus, on the other hand, ranged from 1.5 to 4.05 GPa, with an average value of 2.33 GPa. The variability of the mechanical properties, quantified by the standard deviation, decreased when the entire population of 3D-printed sandstones was divided into smaller samples situated at different elevations of the build platform.

Keywords

Binder-jet additive manufacturing; 3D-printed sandstones; variability; uniaxial compressive strength; property anisotropy; geomechanics.

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.