Submitted:
22 June 2023
Posted:
23 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
2.1. Content-Based Filtering
2.2. Vectorizing Attributes
2.3. Jaccard Similarity
2.4. Cosine Similarity
2.5. Mean Absolute Error
3. Recommendation Process
3.1. Datasets
3.2. Data Preparation
3.3. Content-Based Filtering Using Jaccard Simmilarity Algorithm
3.4. Content Based Filtering Using Cosine Similarity Algorithm
3.5. Accuracy Level Measurement Using Mean Absolute Error (MEA)
4. Results
4.1. Recommendation System with Jaccard Similarity
4.2. Recommendation System with Cosine Similarity
4.3. Accuracy of Recommendation System Using Mean Absolute Error (MEA)
| Iteration | Jaccard Similarity | Cosine Similarity |
|---|---|---|
| 1 | 0.02733812949640280 | 0.01525179856115100 |
| 2 | 0.01237410071942440 | 0.02071942446043160 |
| 3 | 0.00690647482014388 | 0.01534772182254190 |
| 4 | 0.00402877697841726 | 0.01016786570743400 |
| 5 | 0.01438848920863300 | 0.00738609112709832 |
5. Discussion
5.1. Recommendation System Using Content-Based Filtering with Jaccard Similarity and Cosine Similarity
5.2. Efficiency Recommendation System Using Content-Based Filtering with Jaccard Similarity and Cosine Similarity
5.3. Accuracy of Recommendation System Using Mean Absolute Error (MEA)
6. Conclusion
References
- B. R. A. Safitri and L. Herayanti, “Pengaruh Video Pembelajaran Berbasis Zenius. Net Dalam Meningkatkan Motivasi Dan Pemahaman Konsep Siswa,” JISIP (Jurnal Ilmu Sosial dan Pendidikan), 2020.
- M. Chinmi and R. F. Marta, “RuangGuru as an Ideation of Interaction and Education Revolution during COVID-19 Pandemic in Indonesia,” Revista Romaneasca pentru Educatie Multidimensionala, vol. 12, no. 2Sup1, pp. 118–129, 2020. [CrossRef]
- G. Xu, G. G. Xu, G. Jia, L. Shi, and Z. Zhang, “Personalized Course Recommendation System Fusing with Knowledge Graph and Collaborative Filtering,” Comput Intell Neurosci, vol. 2021, 2021. [CrossRef]
- J. Xiao, M. J. Xiao, M. Wang, B. Jiang, and J. Li, “A personalized recommendation system with combinational algorithm for online learning,” J Ambient Intell Humaniz Comput, vol. 9, no. 3, pp. 667–677, Jun. 2018. [CrossRef]
- H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research Directions,” SN Computer Science, vol. 2, no. 3. Springer, May 01, 2021. [CrossRef]
- S. Reddy, S. S. Reddy, S. Nalluri, S. Kunisetti, S. Ashok, and B. Venkatesh, “Content-based movie recommendation system using genre correlation,” in Smart Innovation, Systems and Technologies, Springer Science and Business Media Deutschland GmbH, 2019, pp. 391–397. [CrossRef]
- D. Jannach and M. Jugovac, “Measuring the business value of recommender systems,” ACM Transactions on Management Information Systems, vol. 10, no. 4. Association for Computing Machinery, Dec. 01, 2019. [CrossRef]
- Y. Afoudi, M. Y. Afoudi, M. Lazaar, and M. Al Achhab, “Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network,” Simul Model Pract Theory, vol. 113, Dec. 2021. [CrossRef]
- M. Chiny, M. M. Chiny, M. Chihab, O. Bencharef, and Y. Chihab, “Netflix Recommendation System based on TF-IDF and Cosine Similarity Algorithms,” Scitepress, May 2022, pp. 15–20. [CrossRef]
- G. Jain, T. G. Jain, T. Mahara, and K. N. Tripathi, “A Survey of Similarity Measures for Collaborative Filtering-Based Recommender System,” in Advances in Intelligent Systems and Computing, Springer, 2020, pp. 343–352. [CrossRef]
- J. Joy and V. G. Renumol, “Comparison of generic similarity measures in E-learning content recommender system in cold-start condition,” in 2020 IEEE Bombay Section Signature Conference, IBSSC 2020, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 175–179. [CrossRef]
- R. H. Singh, S. R. H. Singh, S. Maurya, T. Tripathi, T. Narula, and G. Srivastav, “Movie Recommendation System using Cosine Similarity and KNN,” Int J Eng Adv Technol, 2020. [CrossRef]
- C. C. Aggarwal, Recommender Systems, vol. 1. Cham: Springer International Publishing, 2016.
- K. Falk, Practical recommender systems. Simon and Schuster, 2019.
- J. Patterson and A. Gibson, Deep Learning A Practitioner’s Approach. O’Reilly Media, Inc, 2017. [Online]. Available online: http://oreilly.com/safari.
- Bhatia and, B. Kaluza, Machine Learning in Java Second Edition Helpful techniques to design, build, and deploy powerful machine learning applications in Java. Packt Publishing Ltd, 2018.
- P. Dangeti, Statistics for machine learning. Packt Publishing Ltd, 2017.
- F. Berisha, “Quality of the predictions: mean absolute error, accuracy and coverage,” Sep. 2017.

| Title | Skill 1 | Skill 2 | Skill 3 | … | Skill n |
|---|---|---|---|---|---|
| E-Course 1 | 1 | 0 | 0 | … | 1 |
| E-Course 2 | 0 | 1 | 0 | … | 0 |
| … | … | … | … | … | … |
| E-Course n | 0 | 0 | 0 | … | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).