Arumugam, B.; Mayakrishnan, G.; Subburayan Manickavasagam, S.K.; Kim, S.C.; Vanaraj, R. An Overview of Active Electrode Materials for the Efficient High-Performance Supercapacitor Application. Crystals2023, 13, 1118.
Arumugam, B.; Mayakrishnan, G.; Subburayan Manickavasagam, S.K.; Kim, S.C.; Vanaraj, R. An Overview of Active Electrode Materials for the Efficient High-Performance Supercapacitor Application. Crystals 2023, 13, 1118.
Arumugam, B.; Mayakrishnan, G.; Subburayan Manickavasagam, S.K.; Kim, S.C.; Vanaraj, R. An Overview of Active Electrode Materials for the Efficient High-Performance Supercapacitor Application. Crystals2023, 13, 1118.
Arumugam, B.; Mayakrishnan, G.; Subburayan Manickavasagam, S.K.; Kim, S.C.; Vanaraj, R. An Overview of Active Electrode Materials for the Efficient High-Performance Supercapacitor Application. Crystals 2023, 13, 1118.
Abstract
The present review article concludes with three different types of materials recently used to enhance the efficiency of supercapacitors. The first type involves carbon-based materials for storage and supercapacitor applications. The carbon materials could be obtained naturally and synthesized manually based on the needs. The second type discusses the recent advances in metal oxide materials for high-performance supercapacitors. The metal oxide materials involve in different types of attachment through the bi-tri metallic bonding, which enhances the specific capacitance. The third type involves recently advanced materials for high energy and power density application. The power and energy density of the materials is enhanced by the surface modification of the materials. In recent days, the MXene and Nano-composite materials seems to be an appropriate material to increase the power and energy density of the device.
Keywords
Supercapacitor; Carbon; Metal oxides; MXene; Power; Energy density
Subject
Chemistry and Materials Science, Electrochemistry
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.