Submitted:
15 June 2023
Posted:
21 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Material and Methods
2.1. Animals
2.2. Polymorphism analysis
2.3. Statistical analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Roberts, J.; Middleton, A. Genetics in the 21st Century: Implications for patients. consumers and citizens. F1000Res. 2017, 6, 2020. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Kgwatalala, P.; Zhao, X. A critical analysis of production-associated DNA polymorphisms in the genes of cattle. goat. sheep. and pig. Mamm Genome 2008, 19, 591–617. [Google Scholar] [CrossRef] [PubMed]
- Bello, S.F.; Adeola, A.C.; Nie, Q. The study of candidate genes in the improvement of egg production in ducks – a review. Poult Sci. 2022, 101, 101850. [Google Scholar] [CrossRef] [PubMed]
- Knol, E.F.; van der Spek, D.; Zak, L.J. Genetic aspects of piglet survival and related traits: a review. J Anim Sci. 2022, 100, skac190. [Google Scholar] [CrossRef] [PubMed]
- OECD (2022). Meat consumption (indicator), accessed on 02 November 2022. 02 November.
- Rothschild, M.F. Porcine genomics delivers new tools and results: This little piggy did more than just go to market. Genet Res. 2004, 83, 1–6. [Google Scholar] [CrossRef]
- Spötter, A.; Distl, O. Genetic approaches to the improvement of fertility traits in the pig. Vet J. 2006, 172, 234–247. [Google Scholar] [CrossRef]
- Kumalska, M.; Terman, A. Genetic associations of reproductive traits in pigs. Ann. Wars. Univ. Life Sci.-SGGW, Anim. Sci. 2017, 56, 265–275. [Google Scholar] [CrossRef]
- Linville, R.C.; Pomp, D.; Johnson, R.K.; Rothschild, M.F. Candidate gene analysis for loci affecting litter size and ovulation rate in swine. J Anim Sci. 2001, 79, 60–67. [Google Scholar] [CrossRef]
- Rohrer, G.A.; Ford, J.J.; Wise, T.H.; Vallet, J.L. Christenson, R.K. Identification of quantitative trait loci affecting female reproductive traits in a multigeneration Meishan-White composite swine population. J Anim Sci. 1999, 77, 1385–1391. [Google Scholar] [CrossRef]
- Vallet, J.L.; Christenson, R.K. Effect of progesterone. mifepristone. and estrogen treatment during early pregnancy on conceptus development and uterine capacity in Swine. Biol Reprod. 2004, 70, 92–98. [Google Scholar] [CrossRef]
- Bidanel, J.P.; Rosendo, A.; Iannuccelli, N.; Riquet, J.; Gilbert, H.; Caritez, J.C.; Billon, Y.; Amigues, Y.; Prunier, A.; Milan, D. Detection of quantitative trait loci for teat number and female reproductive traits in Meishan × Large White F2 pigs. Animal 2008, 2, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Wijesena, H.R.; Kachman, S.D.; Lents, C.A.; Riethoven, J.J.; Trenhaile-Grannemann, M.D.; Safranski, T.J.; Spangler, M.L.; Ciobanu, D.C. Fine mapping genetic variants associated with age at puberty and sow fertility using SowPro90 genotyping array. J Anim Sci. 2020, 98, skaa293. [Google Scholar] [CrossRef] [PubMed]
- Nonneman, D.J.; Lents, C.A. Functional genomics of reproduction in pigs: Are we there yet? Mol Reprod Dev. 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Von Steinheuer, R.; Drögemüller, C.; Hamann, H.; Götz, K-U.; Distl, O. Einfluss von Kandidatengeneffekten auf die Anzahl lebend geborener und aufgezogener Ferkel bei Besamungsebern der Deutschen Landrasse. Züchtungskunde 2003, 75, 204–213. [Google Scholar]
- Katska-Ksiazkiewicz, L. ; Lechniak-Cieślak, D.; Korwin-Kossakowska,; A. Alm,; H. Ryńska,; B. Warzych,; E. Sosnowski,; J. Sender, G. Genetical and biotechnological methods of utilization of female reproductive potential in mammals. Reprod Biol. 2006, 6 Suppl 1, 21–36.
- Onteru, S.K.; Ross, J.W.; Rothschild, M.F. The role of gene discovery. QTL analyses and gene expression in reproductive traits in the pig. Soc Reprod Fertil. 2009, Suppl. 66, 87–102. [Google Scholar] [CrossRef]
- Ding, R.; Qiu, Y.; Zhuang, Z.; Ruan, D.; Wu, J.; Zhou, S.; Ye, J.; Cao, L.; Hong, L.; Xu, Z.; Zheng, E.; Li, Z.; Wu, Z.; Yang, J. Genome-wide association studies reveals polygenic genetic architecture of litter traits in Duroc pigs. Theriogenology 2021, 173, 269–278. [Google Scholar] [CrossRef]
- Sell-Kubiak, E.; Dobrzanski, J.; Derks, M.F.L.; Lopes, M.S.; Szwaczkowski, T. ; Meta-Analysis of SNPs Determining Litter Traits in Pigs. Genes (Basel) 2022, 13, 1730. [Google Scholar] [CrossRef]
- Wu, Z.C.; Wang, Y.; Huang, X.; Wu, S.; Bao, W. A genome-wide association study of important reproduction traits in large white pigs. Gene 2022, 838, 146702. [Google Scholar]
- Rothschild, M,F.; Messer, L.; Day, A.; Wales, R.; Short, T.; Southwood, O.; Plastow, G. Investigation of the retinol-binding protein 4 (RBP4) gene as a candidate gene for increased litter size in pigs. Mamm Genome. 2000, 11, 75–77. [CrossRef]
- Rohrer, G.A.; Alexander, L.J.; Beattie, C.W. Mapping the beta subunit of follicle stimulating hormone (FSHB) in the porcine genome. Mamm Genome 1994, 5, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Mendez, E.A.; Messer, L.A.; Larsen, N.J.; Robic, A.; Rothschild, M.F. Epidermal growth factor maps to pig chromosome 8. J Anim Sci. 1999, 77, 494–495. [Google Scholar] [CrossRef] [PubMed]
- Bińkowski, J.; Miks, S. Gene-Calc [Computer software] (2018, September). Available from: www.gene-calc.pl.
- Vaishnav, S.; Chauhan, A.; Ajay, A.; Saini, B.L.; Kumar, S.; Kumar, A.; Bhushan, B.; Gaur, G.K. Allelic to genome wide perspectives of swine genetic variation to litter size and its component traits. Mol Biol Rep. 2023, 50, 3705–3721. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, M.F. Genetics and reproduction in the pig. Anim Reprod Sci. 1996, 42, 143–151. [Google Scholar] [CrossRef]
- Wu, P.; Wang, K.; Yang, Q.; Zhou, J.; Chen, D.; Ma, J.; Tang, Q.; Jin, L.; Xiao, W.; Jiang, A.; Jiang, Y.; Zhu, L.; Li, M.; Li, X.; Tang, G. Identifying SNPs and candidate genes for three litter traits using single-step GWAS across six parities in Landrace and Large White pigs. Physiol Genomics 2018, 50, 1026–1035. [Google Scholar] [CrossRef]
- Ma, X.; Li, P.H.; Zhu, M.X.; He, L.C.; Sui, S.P.; Gao, S.; Su, G.S.; Ding, N.S.; Huang, Y.; Lu, Z.Q.; Huang, X.G.; Huang, R.H. Genome-wide association analysis reveals genomic regions on Chromosome 13 affecting litter size and candidate genes for uterine horn length in Erhualian pigs. Animal 2018, 12, 2453–2461. [Google Scholar] [CrossRef]
- Bakoev, S.; Getmantseva, L.; Bakoev, F.; Kolosova, M.; Gabova, V.; Kolosov, A.; Kostyunina, O. Survey of SNPs Associated with Total Number Born and Total Number Born Alive in Pig. Genes (Basel) 2020, 11, 491. [Google Scholar] [CrossRef]
- Brief, S.; Chew, B.P. Effects of vitamin A and beta-carotene on reproductive performance in gilts. J Anim Sci. 1985, 60, 998–1004. [Google Scholar] [CrossRef]
- Harney, J.P.; Ott, T.L.; Geisert, R.D.; Bazer, F.W. Retinol-binding protein gene expression in cyclic and pregnant endometrium of pigs. sheep. and cattle. Biol Reprod. 1993, 49, 1066–1073. [Google Scholar] [CrossRef]
- Messer, L.A.; Wang, L.; Yelich, J.; Pomp, D.; Geisert, R.D.; Rothschild, M.F. Linkage mapping of the retinol-binding protein 4 (RBP4) gene to porcine chromosome 14. Mamm Genome 1996, 7, 396. [Google Scholar] [CrossRef]
- Suwannasing, R.; Duangjinda, M.; Boonkum, W.; Taharnklaew, R.; Tuangsithtanon, K. The identification of novel regions for reproduction trait in Landrace and Large White pigs using a single step genome-wide association study. Asian-Australas J Anim Sci. 2018, 31, 1852–1862. [Google Scholar] [CrossRef]
- Ollivier, L.; Messer, L.A.; Rothschild, M.F.; Legault, C. The use of selection experiments for detecting quantitative trait loci. Genet Res. 1997, 69, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Blowe, C.D.; Boyette, K.E.; Ashwell, M.S.; Eisen, E.J.; Robison, O.W.; Cassady, J.P. Characterization of a line of pigs previously selected for increased litter size for RBP4 and follistatin. J Anim Breed Genet. 2006, 123, 389–395. [Google Scholar] [CrossRef]
- Omelka, R.; Martiniaková, M.; Peškovičová, D.; Bauerová, M. Associations between RBP4/MspI polymorphism and reproductive traits in pigs: an application of animal model. J Agrobiol. 2008, 25, 77–80. [Google Scholar]
- Spötter, A.; Müller, S.; Hamann, H.; Distl, O. Effect of polymorphisms in the genes for LIF and RBP4 on litter size in two German pig lines. Reprod Domest Anim. 2009, 44, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.Y.; Wang, X.P.; Hao, F.G.; Zhao, R.X. (2008) Effect of the polymorphism of RBP4 and OPN genes on litter size in Tibet pigs. Acta Agric Scand Sect A 2008, 58, 10–13. [Google Scholar]
- Sun, Y.X.; Zeng, Y.Q.; Tang, H.; Fan, X.Z.; Chen, Q.M.; Li, H.; Qian, Y.; Song, Y.P. [Relationship of genetic polymorphism of PRLR and RBP4 genes with litter size traits in pig]. Yi Chuan. 2009, 31, 63–86, [Article in Chinese]. [Google Scholar] [CrossRef]
- Marantidis, A.; Laliotis, G.P.; Avdi, M. Association of RBP4 Genotype with Phenotypic Reproductive Traits of Sows. Genet Res Int. 2016, 4940532. [Google Scholar] [CrossRef]
- Mencik, S.; Vukovic, V.; Spehar, M.; Modric, M.; Ostovic, M.; Ekert Kabalin, A. Association between ESR1 and RBP4 genes and litter size traits in a hyperprolific line of Landrace × Large White cross sows. Veterinarni Medicina 2019, 64, 109–117. [Google Scholar] [CrossRef]
- Drogemuller, C.; Hamann, H.; Distl, O. Candidate gene markers for litter size in different German pig lines. J Anim Sci. 2001, 79, 2565–2570. [Google Scholar] [CrossRef]
- Wang, X.; Wang, A.; Fu, J.; Lin, H. Effects of ESR1. FSHβ and RBP4 genes on litter size in a large white and a landrace herd. Arch. Anim. Breed. 2006, 49, 64–70. [Google Scholar] [CrossRef]
- Korwin-Kossakowska, A.; Kapelański, W.; Bocian, M.; Kamyczek, M.; Sender, G. Preliminary study of the RBP4. EGF and PTGS2 genes polymorphism in pigs and its association with reproduction traits of sows. Anim Sci Pap Rep. 2005, 23, 95–105. [Google Scholar]
- Liu, X.; Chamba, Y.; Wang, Q.; Ling, Y.; Gu, X.D.; Wu, K.L.; Zhang, H. [Effects of multi-genes for reproductive traits in Tibet pig]. Yi Chuan 2010, 32, 480–485, [Article in Chinese]. [Google Scholar] [CrossRef] [PubMed]
- Vashi, Y.; Magotra, A.; Kalita, D.; Banik, S.; Sahoo, N.R.; Gupta, S.K.; Naskar, S. Evaluation of candidate genes related to litter traits in Indian pig breeds. Reprod Domest Anim. 2021, 56, 577–585. [Google Scholar] [CrossRef]
- Dall'Olio, S.; Fontanesi, L.; Tognazzi, L.; Russo, V. Genetic structure of candidate genes for litter size in Italian Large White pigs. Vet Res Commun. 2010, 34 Suppl 1, 203–206. [Google Scholar] [CrossRef]
- Terman, A.; Kmiec, M.; Polasik, D.; Pradziadowicz, K. Retinol binding protein 4 gene and reproductive traits in pigs. Arch. Anim. Breed. 2007, 50, 181–185. [Google Scholar]
- Terman, A.; Kmiec, M.; Polasik, D.; Rybarczyk, A. Association between RBP4 gene polymorphism and reproductive traits in Polish sows. J Anim Vet Adv. 2011, 10, 2639–2641. [Google Scholar]
- Vinh, N.T.; Luc, D.D.; Thinh, N.H.; Bo, H.X.; Mai, H.N.; Phuong, N.T.; Farnir, F.; Ton, V.D. Additive Genetic Effects of RNF4. RBP4. and IGF2 Polymorphisms on Litter Size in Landrace and Yorkshire Sows. VJAS 2019, 2, 314–320. [Google Scholar]
- Muñoz, M.; Fernández, A.I.; Ovilo, C.; Muñoz, G.; Rodriguez, C.; Fernández, A.; Alves, E.; Silió, L. Non-additive effects of RBP4. ESR1 and IGF2 polymorphisms on litter size at different parities in a Chinese-European porcine line. Genet Sel Evol. 2010, 42, 23. [Google Scholar] [CrossRef]
- Laliotis, G.P.; Marantidis, A.; Avdi, M. Association of BF. RBP4. and ESR2 Genotypes with Litter Size in an Autochthonous Pig Population. Anim Biotechnol. 2017, 28, 138–143. [Google Scholar] [CrossRef]
- Cui, H.X.; Zhao, S.M.; Cheng, M.L.; Guo, L.; Ye, R.Q.; Liu, W.Q.; Gao, S.Z. Cloning and expression levels of genes relating to the ovulation rate of the Yunling black goat. Biol Reprod. 2009, 80, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.G. ; Urbanek, M. ; Ehrmann, D.A. ; Armstrong, L.L. ; Lee, J.Y. ; Sisk, R. ; Karaderi, T. ; Barber, T.M. ; McCarthy, M.I. ; Franks, S. ; Lindgren, C.M. ; Welt, C.K. ; Diamanti-Kandarakis, E. ; Panidis, D. ; Goodarzi, M.O. ; Azziz, R. ; Zhang, Y. ; James, R.G. ; Olivier, M. ; Kissebah, A.H.; Reproductive Medicine Network; Stener-Victorin, E.; Legro, R.S.; Dunaif A. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat Commun. 2015, 6, 7502.
- Tian, Y.; Zhao, H.; Chen, H.; Peng, Y.; Cui, L.; Du, Y.; Wang, Z.; Xu, J.; Chen, Z.J. Variants in FSHB Are Associated With Polycystic Ovary Syndrome and Luteinizing Hormone Level in Han Chinese Women. J Clin Endocrinol Metab. 2016, 101, 2178–2184. [Google Scholar] [CrossRef] [PubMed]
- Riccetti, L.; De Pascali, F.; Gilioli, L.; Santi, D.; Brigante, G.; Simoni, M.; Casarini, L. Genetics of gonadotropins and their receptors as markers of ovarian reserve and response in controlled ovarian stimulation. Best Pract Res Clin Obstet Gynaecol. 2017, 44, 15–25. [Google Scholar] [CrossRef]
- Ye, R.S.; Li, M.; Li, C.Y.; Qi, Q.E.; Chen, T.; Cheng, X.; Wang, S.B.; Shu, G.; Wang, L.N.; Zhu, X.T.; Jiang, Q.Y.; Xi, Q.Y.; Zhang, Y.L. miR-361-3p regulates FSH by targeting FSHB in a porcine anterior pituitary cell model. Reproduction 2017, 153, 341–349. [Google Scholar] [CrossRef]
- Li, M.D.; Rohrer, G.A.; Wise, T.H.; Ford, J.J. Identification and characterization of a new allele for the beta subunit of follicle-stimulating hormone in Chinese pig breeds. Anim Genet. 2000, 31, 28–30. [Google Scholar] [CrossRef]
- Luoreng, Z.; Wang, L.X.; Sun, S.D. [Genetic polymorphism of FSH b subunit gene and correlation with reproductive traits in Beijing Black Pig]. Yi Chuan. 2007, 29, 1497–1503, [Article in Chinese]. [Google Scholar] [PubMed]
- Zhao, Y.; Li, N.; Xiao, L.; Cao, G.; Chen, Y.; Zhang, S.; Chen, Y.; Wu, C.; Zhang, J.; Sun, S.; Xu, X. FSHB subunit gene is associated with major gene controlling litter size in commercial pig breeds. Sci China C Life Sci. 1998, 41, 664–668. [Google Scholar] [CrossRef]
- Pang, P.; Li, Z.; Hu, H.; Wang, L.; Sun, H.; Mei, S.; Li, F. Genetic effect and combined genotype effect of ESR. FSHβ. CTNNAL1 and miR-27a loci on litter size in a Large White population. Anim Biotechnol. 2019, 30, 287–292. [Google Scholar] [CrossRef]
- Korwin-Kossakowska, A.; Kamyczek, M.; Cieslak, D.; Pierzchala, M.; Kuryl, J. Candidate gene markers for reproductive traits in polish 990 pig line. J. Anim. Breed. Genet. 2003, 120, 181–191. [Google Scholar] [CrossRef]
- Polasik, D.; Kumalska, M.; Żak, G.; Tyra, M. .; Urbański, P.; Terman A. Analysis of FSHB gene polymorphism in Polish landrace and Polish large white x Polish landrace sows. EJPAU 2016, 19, 1–6. [Google Scholar]
- Hunyadi-Bagi, Á.; Balogh, P.; Nagy, K.; Kusza, S. Association and polymorphism study of seven candidate genes with reproductive traits in three pig breeds in Hungary. Acta Biochim Pol. 2016, 63, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Vallet, J.L.; Rohrer, G.A.; Christenson, R.K. Mapping of the porcine AREG and EGF genes to SSC8. Anim Genet. 2002, 334, 314–315. [Google Scholar] [CrossRef]
- Swanchara, K.W.; Henricks, D.M.; Birrenkott, G.P.; Bodine, A.B.; Richardson, M.E. Expression of epidermal growth factor (EGF) and the EGF receptor in the porcine oviduct. Biol Reprod. 1995, 53, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Downs, S.M.; Daniel, S.A.; Eppig, J.J. Induction of maturation in cumulus cell-enclosed mouse oocytes by follicle-stimulating hormone and epidermal growth factor: evidence for a positive stimulus of somatic cell origin. J Exp Zool. 1988, 245, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Umehara, T.; Hoshino, Y. Roles of epidermal growth factor (EGF)-like factor in the ovulation process. Reprod Med Biol. 2016, 15, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Brigstock, D.R.; Kim, G.Y. Steffen,; C.L. Liu, A.; Vegunta, R.K.; Ismail, N.H.; High molecular mass forms of epidermal growth factor in pig uterine secretions. J Reprod Fertil. 1996 108, 313–320.
- Vaughan, T.J.; James, P.S.; Pascall, J.C.; Brown, K.D. Expression of the genes for TGF alpha. EGF and the EGF receptor during early pig development. Development 1992, 116, 663–669. [Google Scholar] [CrossRef]
- Wollenhaupt, K.; Einspanier, R.; Gabler, C.; Schneider, F.; Kanitz, W.; Brüssow, K.P. Identification of the EGF/EGF-R system in the oviduct and endometrium of pigs in early stages of pregnancy and early conceptus. Exp Clin Endocrinol Diabetes. 1999, 107, 530–508. [Google Scholar] [CrossRef]
- Kim, J.G.; Vallet, J.L. Christenson, R.K. Characterization of uterine epidermal growth factor during early pregnancy in pigs. Domest Anim Endocrinol. 2001, 20, 253–265. [CrossRef]
- Mucha, A.; Ropka-Molik, K.; Piórkowska, K.; Tyra, M.; Oczkowicz, M. Effect of EGF. AREG and LIF genes polymorphisms on reproductive traits in pigs. Anim Reprod Sci. 2013, 137, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Kikuchi, T.; Uemoto, Y.; Mikawa, S.; Suzuki, K. Effect of candidate gene polymorphisms on reproductive traits in a Large White pig population. Anim Sci J. 2016, 87, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xiao, S.; Yang, G.; Chen, C.; Ding, N.; Gao, J. Genetic variation of the porcine epidermal growth factor gene and its association with litter size. China Anim Husb Vet Med. 2010, 37, 147–150. [Google Scholar]
| Gene | Primer sequences | Ta | RE | Source |
| RBP4 | F 5′-GAGCAAGATGGAATGGGTT-3′ R 5′-CTCGGTGTCTGTAAAGGTG-3′ |
56 | MspI | [21] |
| FSHB | F 5′-AGTTCTGAAATGATTTTTCGGG-3′ R 5′-TTTGCCATTGACTGTCTTAAAGG-3′ |
58 | HaeIII | [22] |
| EGF | F 5′-GAAACAATTCCCGTGTTCTCTA-3′ R 5′-TCACTTCCACACCTGTAACATCT 3′ |
58 | indel | [23] |
| Gene | Breed | n | Genotypes |
χ2 (p-value) |
||
| AA | AB | BB | ||||
| RBP4 | PLW x PLR | 288 | 0.27 (n=77) |
0.35 (n=102) |
0.38 (n=109) |
13.458 (0.001) |
| DLW | 195 | 0.34 (n=66) |
0.44 (n=86) |
0.22 (n=43) |
||
| FSHB | PLW x PLR | 288 | 0.03 (n=8) |
0.34 (n=97) |
0.63 (n=183) |
12.633 (0.002) |
| DLW | 195 | 0.09 (n=18) |
0.39 (n=76) |
0.52 (n=101) |
||
| EGF | PLW x PLR | 288 | 0.07 (n=20) |
0.47 (n=135) |
0.46 (n=133) |
90.826 (0.000) |
| DLW | 195 | 0.02 (n=4) |
0.09 (n=18) |
0.89 (n=173) |
||
| Gene | Genotype | PLW x PLR1 | DLW2 |
HWE p-value |
Allele frequencies | |||
| Obs. | Exp. | Obs. | Exp. | A | B | |||
| RBP4 | AA | 77 | 88.89 | 66 | 60.93 | 0.0011 0.3382 |
0.4441 0.5592 |
0.5561 0.4412 |
| AB | 102 | 142.22 | 86 | 96.14 | ||||
| BB | 109 | 56.89 | 43 | 37.93 | ||||
| FSHB | AA | 8 | 11.08 | 18 | 16.08 | 0.5151 0.7982 |
0.1961 0.2872 |
0.8041 0.7132 |
| AB | 97 | 90.83 | 76 | 79.84 | ||||
| BB | 183 | 186.08 | 101 | 99.08 | ||||
| EGF | AA | 20 | 26.58 | 4 | 0.87 | 0.1861 0.0012 |
0.3041 0.0672 |
0.6961 0.9332 |
| AB | 135 | 121.83 | 18 | 24.27 | ||||
| BB | 133 | 139.58 | 173 | 169.87 | ||||
| Litter | Trait | RBP4genotypes | |||||
| AA | AB | BB | |||||
| LSM | SD | LSM | SD | LSM | SD | ||
| 1 | TNB | 11.57 A | 2.46 | 12.37 Ba | 1.95 | 11.87 b | 2.58 |
| NBA | 11.18 A | 2.33 | 11.99 Ba | 2.06 | 11.62 b | 2.45 | |
| 2 | TNB | 12.28 A | 2.95 | 13.25 Ba | 2.45 | 12.41 b | 2.42 |
| NBA | 12.02 A | 2.62 | 12.85 Ba | 2.10 | 12.19 b | 2.15 | |
| 3 | TNB | 12.88 | 3.01 | 13.21 | 2.40 | 12.59 | 2.45 |
| NBA | 12.62 | 2.87 | 12.86 | 2.15 | 12.42 | 2.21 | |
| 4 | TNB | 12.65 | 2.80 | 12.85 | 2.56 | 12.27 | 2.63 |
| NBA | 12.39 | 2.49 | 12.48 | 2.51 | 12.08 | 2.36 | |
| 5 | TNB | 12.64 A | 2.23 | 12.51 | 1.89 | 11.88 B | 2.15 |
| NBA | 13.80 | 2.68 | 12.14 | 2.04 | 12.15 | 2.03 | |
| 6 | TNB | 12.56 | 2.28 | 12.39 | 2.13 | 11.91 | 2.05 |
| NBA | 12.89 | 2.07 | 12.16 | 1.98 | 11.73 | 2.01 | |
| Total | TNB | 12.37A | 2.70 | 12.80B | 2.28 | 12.17A | 2.43 |
| NBA | 12.10A | 2.51 | 12.47B | 2.14 | 11.98A | 2.26 | |
| Litter | Trait | FSHBgenotypes | |||||
| AA | AB | BB | |||||
| LSM | SD | LSM | SD | LSM | SD | ||
| 1 | TNB | 13.21 A | 2.57 | 12.08 | 2.57 | 11.60 B | 2.20 |
| NBA | 13.00 A | 2.40 | 11.76 | 2.19 | 11.32 B | 2.23 | |
| 2 | TNB | 14.56 A | 3.01 | 13.15 a | 2.52 | 12.08 Bb | 2.44 |
| NBA | 14.19 Aca | 2.59 | 12.82 Bd | 2.12 | 11.90 b | 2.26 | |
| 3 | TNB | 13.80 | 1.81 | 12.91 | 2.47 | 12.49 | 2.48 |
| NBA | 13.60 | 1.91 | 12.57 | 2.29 | 12.30 | 2.31 | |
| 4 | TNB | 12.83 | 2.93 | 12.91 | 2.63 | 12.26 | 2.46 |
| NBA | 12.83 | 2.93 | 12.48 | 2.73 | 12.06 | 2.34 | |
| 5 | TNB | 13.80 | 2.68 | 12.26 | 2.16 | 12.25 | 2.09 |
| NBA | 13.80 | 2.68 | 12.14 | 2.04 | 12.15 | 2.03 | |
| 6 | TNB | 12.67 | 2.08 | 12.20 | 1.99 | 12.20 | 2.20 |
| NBA | 12.67 | 2.08 | 12.15 | 1.98 | 12.01 | 2.04 | |
| Total | TNB | 13.70 A | 2.59 | 12.6 AB | 2.41 | 12.1 B | 2.34 |
| NBA | 13.46 A | 2.40 | 12.33 AB | 2.26 | 11.93 B | 2.24 | |
| Litter | Trait | EGF genotypes | |||||
|---|---|---|---|---|---|---|---|
| AA | AB | BB | |||||
| LSM | SD | LSM | SD | LSM | SD | ||
| 1 | TNB | 11.04 A | 1.68 | 11.52 a | 2.20 | 12.50 Bb | 2.45 |
| NBA | 10.88 | 1.57 | 11.35 A | 2.12 | 12.00 B | 2.43 | |
| 2 | TNB | 11.76 A | 1.76 | 11.93 a | 2.15 | 13.30 Bb | 2.76 |
| NBA | 11.76 | 1.76 | 11.81 A | 1.97 | 12.82 B | 2.46 | |
| 3 | TNB | 12.00 A | 1.95 | 12.01 a | 2.18 | 13.70 Bb | 2.73 |
| NBA | 12.00 A | 1.95 | 11.81 a | 2.27 | 13.27 Bb | 2.21 | |
| 4 | TNB | 11.11 A | 1.97 | 12.04 a | 2.21 | 13.26 Bb | 2.84 |
| NBA | 11.11 A | 1.97 | 12.03 a | 2.18 | 12.71 Bb | 2.76 | |
| 5 | TNB | 11.06 A | 2.04 | 12.11 a | 2.19 | 12.76 Bb | 2.01 |
| NBA | 11.06 A | 2.04 | 12.09 | 2.11 | 12.47 B | 1.96 | |
| 6 | TNB | 11.00 A | 1.64 | 11.75 a | 2.02 | 12.85 Bb | 2.20 |
| NBA | 11.00 A | 1.64 | 11.74 a | 2.01 | 12.55 Bb | 2.02 | |
| Total | TNB | 11.34 Aa | 1.84 | 11.88 Ab | 2.15 | 13.07 B | 2.62 |
| NBA | 11.31A | 1.83 | 11.78 A | 2.10 | 12.63 B | 2.47 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
