Submitted:
09 June 2023
Posted:
12 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. The study area
- “THALASSIA PERIOCHI DYTIKIS LESVOU” (Site Code: GR4110016) - Birds Directive Sites (SPA) - Area: 21,372.65 ha
- “DYTIKI CHERSONISOS - APOLITHOMENO DASOS” (Site Code: GR4110003) - Habitats Directive Sites (pSCI, SCI or SAC) - Area: 20,545.28 ha
- “NOTIODYTIKI CHERSONISOS, APOLITHOMENO DASOS LESVOU” (Site Code: GR4110010) - Birds Directive Sites (SPA) - Area: 28,750.07 ha
- “LESVOS: KOLPOS KALLONIS KAI CHERSAIA PARAKTIA ZONI” (Site Code: GR4110004) - Habitats Directive Sites (pSCI, SCI or SAC) - Area: 18,802.69 ha
- “LESVOS PARAKTIOI YGROTOPOI KAI KOLPOS KALLONIS” (Site Code: GR4110007) - Birds Directive Sites (SPA) - Area: 14,778.91 ha
- “OROS OLYMPOS LESVOU” (Site Code: GR4110011) - Birds Directive Sites (SPA) - Area: 14,808.52 ha
- “LESVOS KOLPOS GERAS, ELOS NTIPI KAI OROS OLYMPOS – POTAMOS EVEGETOULAS” (Site Code: GR4110005) - Habitats Directive Sites (pSCI, SCI or SAC) - Area: 11,914.61 ha
- “VOREIA LESVOS” (Site Code: GR4110012) - Birds Directive Sites (SPA) - Area: 9,268.28 ha
- “NISIDES LESVOU (SYMPLEGMA TOMARONISION, KODONAS, AGIOS GEORGIOS, GLARONISI, KLP) KAI THALASSIA PERIOCHI)” (Site Code: GR4110009) - Birds Directive Sites (SPA) - Area: 8,360.25 ha
- “THALASSIA PERIOCHI NISIDON TOKMAKIA” (Site Code: GR4110015) - Habitats Directive Sites (pSCI, SCI or SAC) - Area: 6,192.38 ha
2.2. The field survey
2.3. The PIVlab software
3. Results
4. Discussion
- physical habitat assessment;
- riparian habitat assessment;
- morphological assessment;
- assessment of hydrological regime alteration.
- Flow measurement: Install a flow measurement system to determine the river's flow rate. This can be accomplished using a variety of tools, such as current meters, acoustic Doppler current profilers, and flow gauges;
- Flow duration: Calculate the length of the river that is flowing at different times, as well as the duration of flow events and dry periods;
- Flow timing: Keep track of the timing of flow events, such as the onset and cessation of flow;
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Pumo, D.; Conti, F.L.; Viola, F.; Noto, L. An automatic tool for reconstructing monthly time-series of hydro-climatic variables at ungauged basins. Environ. Model. Softw. 2017, 95, 381–400. [Google Scholar] [CrossRef]
- Stein, R.; Dittmers, K.; Fahl, K.; Kraus, M.; Matthießen, J.; Niessen, F.; Pirrung, M.; Polyakova, Y.; Schoster, F.; Steinke, T.; Fütterer, D.K. Arctic (palaeo) river discharge and environmental change: evidence from the Holocene Kara Sea sedimentary record. Quat. Sci. Rev. 2004, 23, 1485–1511. [Google Scholar] [CrossRef]
- Auble, G.T.; Friedman, J.M.; Scott, M.L. Relating Riparian Vegetation to Present and Future Streamflows. Ecol. Appl. 1994, 4, 544–554. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. RIPARIAN LAND USES AND PRECIPITATION INFLUENCES ON STREAM BANK EROSION IN CENTRAL IOWA1. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 83–97. [Google Scholar] [CrossRef]
- Al-Mamari, M.M.; Kantoush, S.A.; Kobayashi, S.; Sumi, T.; Saber, M. Real-Time Measurement of Flash-Flood in a Wadi Area by LSPIV and STIV. Hydrology 2019, 6, 27. [Google Scholar] [CrossRef]
- Stamataki, M.-D.; Tzoraki, O.; Sauquet, E. Time-lapse graphical representation methods for mapping of Intermittent Rivers and Ephemeral Streams (IRES). Eur. J. Geogr. 2021, 12, 51–67. [Google Scholar] [CrossRef]
- Martin, J.; Kurc, S.; Zaimes, G.; Crimmins, M.; Hutmacher, A.; Green, D. Elevated air temperatures in riparian ecosystems along ephemeral streams: The role of housing density. J. Arid. Environ. 2012, 84, 9–18. [Google Scholar] [CrossRef]
- Datry, T.; Singer, G.; Sauquet, E.; Capdevilla, D.J.; Von Schiller, D.; Subbington, R.; Magrand, C.; Paril, P.; Milisa, M.; Acuña, V.; Alves, M.H. Science and management of intermittent rivers and ephemeral streams (SMIRES). Res. Ideas Outcomes 2017, 3, 1–23. [Google Scholar] [CrossRef]
- Nabih, S.; Tzoraki, O.; Zanis, P.; Tsikerdekis, T.; Akritidis, D.; Kontogeorgos, I.; Benaabidate, L. Alteration of the Ecohydrological Status of the Intermittent Flow Rivers and Ephemeral Streams due to the Climate Change Impact (Case Study: Tsiknias River). Hydrology 2021, 8, 43. [Google Scholar] [CrossRef]
- Tzoraki, O.; Amaxidis, Y.; Skoulikidis, N.T.; Nikolaidis, N.P. In-Stream Geochemical Processes of Temporary Rivers – Krathis River Case Study. In Proceedings of the Restoration and Protection of the Environment VII Conference, Mykonos, Greece, 28 June–1 July 2004. [Google Scholar]
- Tramblay, Y.; Rutkowska, A.; Sauquet, E.; Sefton, C.; Laaha, G.; Osuch, M.; Albuquerque, T.; Alves, M.H.; Banasik, K.; Beaufort, A.; et al. Trends in flow intermittence for European rivers. Hydrol. Sci. J. 2020, 66, 37–49. [Google Scholar] [CrossRef]
- Sauquet, E.; van Meerveld, I.; Gallart, F.; Sefton, C.; Parry, S.; Gauster, T.; Laaha, G.; Alves, M.H.; Arnaud, P.; Banasik, K.; et al. A catalogue of European Intermittent Rivers and Ephemeral Streams; Technical Report SMIRES COST Action CA15113. Science and Management of Intermittent Rivers and Ephemeral Streams (SMIRES). 2020. Available online: https://hal.archives-ouvertes.fr/hal-02914572/file/Sauquet_et_al_2020Catalogue_SMIRES.pdf (accessed on 5 August 2022).
- Tzoraki, O.; Nikolaidis, N.P.; Amaxidis, Y.; Skoulikidis, N.T. In-Stream Biogeochemical Processes of a Temporary River. Environ. Sci. Technol. 2007, 41, 1225–1231. [Google Scholar] [CrossRef]
- Tzoraki, O.; Nikolaidis, N.P. A generalized framework for modeling the hydrologic and biogeochemical response of a Mediterranean temporary river basin. J. Hydrol. 2007, 346, 112–121. [Google Scholar] [CrossRef]
- Garcia, C.; Amengual, A.; Homar, V.; Zamora, A. Losing water in temporary streams on a Mediterranean island: Effects of climate and land-cover changes. Glob. Planet. Chang. 2017, 148, 139–152. [Google Scholar] [CrossRef]
- Tzoraki, O. Operating Small Hydropower Plants in Greece under Intermittent Flow Uncertainty: The Case of Tsiknias River (Lesvos). Challenges 2020, 11, 17. [Google Scholar] [CrossRef]
- Costigan, K.H.; Kennard, M.J.; Leigh, C.; Sauquet, E.; Datry, T.; Boulton, A.J. Flow Regimes in Intermittent Rivers and Ephemeral Streams. In Intermittent Rivers and Ephemeral Streams; Elsevier: London, UK, 2017; pp. 51–78. [Google Scholar]
- Gutiérrez-Jurado, K.Y.; Partington, D.; Batelaan, O.; Cook, P.; Shanafield, M. What Triggers Streamflow for Intermittent Rivers and Ephemeral Streams in Low-Gradient Catchments in Mediterranean Climates. Water Resour. Res. 2019, 55, 9926–9946. [Google Scholar] [CrossRef]
- Boulton, A.J.; Rolls, R.J.; Jaeger, K.L.; Datry, T. Hydrological connectivity in intermittent rivers and ephemeral streams. In Intermittent rivers and ephemeral streams; Elsevier: London, UK, 2017; pp. 79–108. [Google Scholar]
- Datry, T.; Boulton, A.J.; Bonada, N.; Fritz, K.; Leigh, C.; Sauquet, E.; Tockner, K.; Hugueny, B.; Dahm, C.N. Flow intermittence and ecosystem services in rivers of the Anthropocene. J. Appl. Ecol. 2017, 55, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.C.; Leigh, C.; Mazor, R.; Cid, N.; Resh, V. Anthropogenic threats to intermittent rivers and ephemeral streams. In Intermittent rivers and ephemeral streams; Elsevier: London, UK, 2017; pp. 433–454. [Google Scholar]
- Aslam, S.; Tzoraki, O.; Krasakopoulou, E. Anthropogenic litter in freshwater bodies and their estuaries: an empirical analysis in Lesvos, Greece. Environ. Sci. Pollut. Res. 2021, 29, 16563–16575. [Google Scholar] [CrossRef] [PubMed]
- Brownson, R.C.; Hoehner, C.M.; Day, K.; Forsyth, A.; Sallis, J.F. Measuring the Built Environment for Physical Activity: State of the Science. Am. J. Prev. Med. 2009, 36, S99–S123. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Bauman, A.; Pratt, M. Environmental and policy interventions to promote physical activityaaThis work was prepared for the CIAR Conference on Physical Activity Promotion: An ACSM Specialty Conference. Am. J. Prev. Med. 1998, 15, 379–397. [Google Scholar] [CrossRef] [PubMed]
- De'ath, G.; Fabricius, K.E. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Moretti, M.; Dias, A.T.C.; de Bello, F.; Altermatt, F.; Chown, S.L.; Azcárate, F.M.; Bell, J.R.; Fournier, B.; Hedde, M.; Hortal, J.; et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 2016, 31, 558–567. [Google Scholar] [CrossRef]
- Qureshi, A.; Pariva; Badola, R. ; Hussain, S.A. A review of protocols used for assessment of carbon stock in forested landscapes. Environ. Sci. Policy 2012, 16, 81–89. [Google Scholar] [CrossRef]
- Forsyth, A.; Schmitz, K.H.; Oakes, M.; Zimmerman, J.; Koepp, J. Standards for Environmental Measurement Using GIS: Toward a Protocol for Protocols. J. Phys. Act. Heal. 2006, 3, S241–S257. [Google Scholar] [CrossRef] [PubMed]
- Tmušić, G.; Manfreda, S.; Aasen, H.; James, M.R.; Gonçalves, G.; Ben-Dor, E.; Brook, A.; Polinova, M.; Arranz, J.J.; Mészáros, J.; et al. Current Practices in UAS-based Environmental Monitoring. Remote. Sens. 2020, 12, 1001. [Google Scholar] [CrossRef]
- Singhal, G.; Bansod, B.; Mathew, L. Unmanned aerial vehicle classification, applications and challenges: A review. Preprints 2018, 2018110601. [Google Scholar] [CrossRef]
- Bollard, B.; Doshi, A.; Gilbert, N.; Poirot, C.; Gillman, L. Drone technology for monitoring protected areas in remote and fragile environments. Drones 2022, 6, 42. [Google Scholar] [CrossRef]
- Fallati, L.; Polidori, A.; Salvatore, C.; Saponari, L.; Savini, A.; Galli, P. Anthropogenic Marine Debris assessment with Unmanned Aerial Vehicle imagery and deep learning: A case study along the beaches of the Republic of Maldives. Sci. Total. Environ. 2019, 693, 133581. [Google Scholar] [CrossRef]
- Hughes, M.; Hornby, D.D.; Bennion, H.; Kernan, M.; Hilton, J.; Phillips, G.; Thomas, R. The Development of a GIS-based Inventory of Standing Waters in Great Britain together with a Risk-based Prioritisation Protocol. Water, Air, Soil Pollution: Focus 2004, 4, 73–84. [Google Scholar] [CrossRef]
- Doukari, M.; Batsaris, M.; Papakonstantinou, A.; Topouzelis, K. A Protocol for Aerial Survey in Coastal Areas Using UAS. Remote. Sens. 2019, 11, 1913. [Google Scholar] [CrossRef]
- Casado, M.R.; Gonzalez, R.B.; Kriechbaumer, T.; Veal, A. Automated Identification of River Hydromorphological Features Using UAV High Resolution Aerial Imagery. Sensors 2015, 15, 27969–27989. [Google Scholar] [CrossRef]
- Lane, S.N.; Gentile, A.; Goldenschue, L. Combining UAV-based SfM-MVS photogrammetry with conventional monitoring to set environmental flows: modifying dam flushing flows to improve alpine stream habitat. Remote Sens. 2020, 12, 3868. [Google Scholar] [CrossRef]
- Galea, A.B.; Sadler, J.P.; Hannah, D.M.; Datry, T.; Dugdale, S.J. Mediterranean intermittent rivers and ephemeral streams: Challenges in monitoring complexity. Ecohydrology 2019, 12. [Google Scholar] [CrossRef]
- Tauro, F.; Piscopia, R.; Grimaldi, S. Streamflow observations from cameras: Large-scale particle image velocimetry or particle tracking velocimetry? Water Resour. Res. 2017, 53, 10374–10394. [Google Scholar] [CrossRef]
- Kim, Y.; Muste, M.; Hauet, A.; Krajewski, W.F.; Kruger, A.; Bradley, A. Stream discharge using mobile large-scale particle image velocimetry: A proof of concept. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Sasso, S.F.D.; Pizarro, A.; Manfreda, S. Recent Advancements and Perspectives in UAS-Based Image Velocimetry. Drones 2021, 5, 81. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- Koutalakis, P.; Tzoraki, O.; Zaimes, G.N. Software utilized for image-based velocimetry methods focused on water resources. Desalination Water Treat. 2021, 218, 1–17. [Google Scholar] [CrossRef]
- Muste, M.; Fujita, I.; Hauet, A. Large-scale particle image velocimetry for measurements in riverine environments. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Bechle, A.J.; Wu, C.H.; Liu, W.-C.; Kimura, N. Development and Application of an Automated River-Estuary Discharge Imaging System. J. Hydraul. Eng. 2012, 138, 327–339. [Google Scholar] [CrossRef]
- Dramais, G.; Le Coz, J.; Camenen, B.; Hauet, A. Advantages of a mobile LSPIV method for measuring flood discharges and improving stage–discharge curves. J. Hydro-Environ. Res. 2011, 5, 301–312. [Google Scholar] [CrossRef]
- Rozos, E.; Dimitriadis, P.; Mazi, K.; Lykoudis, S.; Koussis, A. On the Uncertainty of the Image Velocimetry Method Parameters. Hydrology 2020, 7, 65. [Google Scholar] [CrossRef]
- Gleason, C.J.; Durand, M.T. Remote Sensing of River Discharge: A Review and a Framing for the Discipline. Remote. Sens. 2020, 12, 1107. [Google Scholar] [CrossRef]
- Zhu, X.; Kouyi, G.L. An Analysis of LSPIV-Based Surface Velocity Measurement Techniques for Stormwater Detention Basin Management. Water Resour. Res. 2019, 55, 888–903. [Google Scholar] [CrossRef]
- Fujita, I.; Muste, M.; Kruger, A. Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. J. Hydraul. Res. 1998, 36, 397–414. [Google Scholar] [CrossRef]
- Tauro, F.; Petroselli, A.; Arcangeletti, E. Assessment of drone-based surface flow observations. Hydrol. Process. 2015, 30, 1114–1130. [Google Scholar] [CrossRef]
- Perks, M.T.; Sasso, S.F.D.; Hauet, A.; Jamieson, E.; Le Coz, J.; Pearce, S.; Peña-Haro, S.; Pizarro, A.; Strelnikova, D.; Tauro, F.; et al. Towards harmonisation of image velocimetry techniques for river surface velocity observations. Earth Syst. Sci. Data 2020, 12, 1545–1559. [Google Scholar] [CrossRef]
- Koutalakis, P.; Tzoraki, O.; Zaimes, G. UAVs for Hydrologic Scopes: Application of a Low-Cost UAV to Estimate Surface Water Velocity by Using Three Different Image-Based Methods. Drones 2019, 3, 14. [Google Scholar] [CrossRef]
- Raffel, M.; Willert, C.E.; Scarano, F.; Kähler, C.; Wereley, S.; Kompenhans, J. Particle Image Velocimetry: A Practical Guide; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–32. [Google Scholar]
- Patalano, A.; Garcia, C.M.; Brevis, W.; Bleninger, T.; Guillen, N.; Moreno, L.; Rodriguez, A. Recent advances in Eulerian and Lagragian large-scale particle image velocimetry. In E-proceedings of the 36th IAHR World Congress, The Hauge, Netherlands, 28 June–3 July 2015; The International Association for Hydro-Environment Engineering and Research (IAHR), 2015. 3 July.
- Gollin, D.; Brevis, W.; Bowman, E.T.; Shepley, P. Performance of PIV and PTV for granular flow measurements. Granul. Matter 2017, 19, 42. [Google Scholar] [CrossRef]
- Fujita, I.; Watanabe, H.; Tsubaki, R. Development of a non-intrusive and efficient flow monitoring technique: The space-time image velocimetry (STIV). Int. J. River Basin Manag. 2007, 5, 105–114. [Google Scholar] [CrossRef]
- Yu, K.; Kim, S.; Kim, D. Correlation analysis of spatio-temporal images for estimating two-dimensional flow velocity field in a rotating flow condition. J. Hydrol. 2015, 529, 1810–1822. [Google Scholar] [CrossRef]
- Cameron, S.M. PIV algorithms for open-channel turbulence research: Accuracy, resolution and limitations. J. Hydro-environment Res. 2011, 5, 247–262. [Google Scholar] [CrossRef]
- Tauro, F. Particle tracers and image analysis for surface flow observations. WIREs Water 2015, 3, 25–39. [Google Scholar] [CrossRef]
- Muste, M.; Xiong, Z.; Bradley, A.; Kruger, A. Large-Scale Particle Image Velocimetry–a reliable tool for physical modeling. In Proceedings of the ASCE 2000 Joint Conference on Water Resources Engineering and Water Resources Planning & Management, Minneapolis, MN, USA, 30 July–2 August 2000. [Google Scholar]
- Koutalakis, P.; Zaimes, G.N. River Flow Measurements Utilizing UAV-Based Surface Velocimetry and Bathymetry Coupled with Sonar. Hydrology 2022, 9, 148. [Google Scholar] [CrossRef]
- Huang, W.-C.; Young, C.-C.; Liu, W.-C. Application of an Automated Discharge Imaging System and LSPIV during Typhoon Events in Taiwan. Water 2018, 10, 280. [Google Scholar] [CrossRef]
- Herzog, A.; Stahl, K.; Blauhut, V.; Weiler, M. Measuring zero water level in stream reaches: A comparison of an image-based versus a conventional method. Hydrol. Process. 2022, 36. [Google Scholar] [CrossRef]
- Guillén, N.F.; Patalano, A.; García, C.M.; Bertoni, J.C. Use of LSPIV in assessing urban flash flood vulnerability. Nat. Hazards 2017, 87, 383–394. [Google Scholar] [CrossRef]
- Perks, M.T.; Russell, A.J.; Large, A.R.G. Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs). Hydrol. Earth Syst. Sci. 2016, 20, 4005–4015. [Google Scholar] [CrossRef]
- Tauro, F.; Porfiri, M.; Grimaldi, S. Surface flow measurements from drones. J. Hydrol. 2016, 540, 240–245. [Google Scholar] [CrossRef]
- Detert, M.; Weitbrecht, V. A low-cost airborne velocimetry system: proof of concept. J. Hydraul. Res. 2015, 53, 532–539. [Google Scholar] [CrossRef]
- Lewis, Q.W.; Rhoads, B.L. LSPIV measurements of two-dimensional flow structure in streams using small unmanned aerial systems: 1. Accuracy assessment based on comparison with stationary camera platforms and in-stream velocity measurements. Water Resour. Res. 2018, 54, 8000–8018. [Google Scholar] [CrossRef]
- Unsworth, C.A. Particle Image Velocimetry. In Geomorphological Techniques (Online Edition); Cook, S.J., Clarke, L.E., Nield, J.M., Eds.; British Society for Geomorphology: London, UK, 2015. [Google Scholar]
- Al-Mamari, M.M.; Kantoush, S.A.; Kobayashi, S.; Sumi, T.; Saber, M. Real-Time Measurement of Flash-Flood in a Wadi Area by LSPIV and STIV. Hydrology 2019, 6, 27. [Google Scholar] [CrossRef]
- Cristo, C. Particle Imaging Velocimetry and its applications in hydraulics: A state-of-the-art review. In Experimental Methods in Hydraulic Research. Geoplanet: Earth and Planetary Sciences; Rowinski, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Koutalakis, P.; Tzoraki, O.; Zaimes, G.N. UAVs To Enhance Watershed Management. Examples From North Greece. In Proceedings of the 7th International Conference on Civil Protection & New Technologies "SAFE GREECE 2020" (Online), Athens, Greece, 14–16 October 2020. Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Association of Greek Regions, 2020.. [Google Scholar]
- Liu, W.-C.; Lu, C.-H.; Huang, W.-C. Large-Scale Particle Image Velocimetry to Measure Streamflow from Videos Recorded from Unmanned Aerial Vehicle and Fixed Imaging System. Remote. Sens. 2021, 13, 2661. [Google Scholar] [CrossRef]
- Ran, Q.; Li, W.; Liao, Q.; Tang, H.; Wang, M. Application of an automated LSPIV system in a mountainous stream for continuous flood flow measurements. Hydrol. Process. 2016, 30, 3014–3029. [Google Scholar] [CrossRef]
- Fovet, O.; Belemtougri, A.; Boithias, L.; Braud, I.; Charlier, J.; Cottet, M.; Daudin, K.; Dramais, G.; Ducharne, A.; Folton, N.; et al. Intermittent rivers and ephemeral streams: Perspectives for critical zone science and research on socio-ecosystems. WIREs Water 2021, 8, e1523. [Google Scholar] [CrossRef]
- Le Boursicaud, R.; Pénard, L.; Hauet, A.; Thollet, F.; Le Coz, J. Gauging extreme floods on YouTube: Application of LSPIV to home movies for the post-event determination of stream discharges. Hydrol. Process. 2016, 30, 90–105. [Google Scholar] [CrossRef]
- Theule, J.I.; Crema, S.; Marchi, L.; Cavalli, M.; Comiti, F. Exploiting LSPIV to assess debris-flow velocities in the field. Nat. Hazards Earth Syst. Sci. 2018, 18, 1–13. [Google Scholar] [CrossRef]
- Thumser, P.; Haas, C.; Tuhtan, J.A.; Fuentes-Pérez, J.F.; Toming, G. RAPTOR-UAV: Real-time particle tracking in rivers using an unmanned aerial vehicle. Earth Surface Processes and Landforms 2017, 42, 2439–2446. [Google Scholar] [CrossRef]
- Lewis, Q.W.; Lindroth, E.M.; Rhoads, B.L. Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging. J. Hydrol. 2018, 560, 230–246. [Google Scholar] [CrossRef]
- Mizerakis, V.; Strachinis, I. New record of Tarentola mauritanica (squamata: Phyllodactylidae) from Lesvos Island, Greece. Herpetology Notes 2017, 10, 157–159. [Google Scholar]
- Hellenic Statistical Authority. 2011 Population Housing-Census. Available online: https://www.statistics.gr/en/2011-census-pop-hous (accessed on 1 September 2022).
- Tsartas, P.; Kyriakaki, A.; Stavrinoudis, T.; Despotaki, G.; Doumi, M.; Sarantakou, E.; Tsilimpokos, K. Refugees and tourism: a case study from the islands of Chios and Lesvos, Greece. Curr. Issues Tour. 2019, 23, 1311–1327. [Google Scholar] [CrossRef]
- Verentzioti, A.; Stranjalis, G.; Kalamatianos, T.; Siatouni, A.; Sakas, D.E.; Gatzonis, S. Epidemiology of First Epileptic Seizures in the Northern Aegean Island of Lesvos, Greece. Clin. Pr. 2017, 7, 942–942. [Google Scholar] [CrossRef] [PubMed]
- Zouros, N.; Mc Keever, P. The European geoparks network. Episodes 2004, 27, 165–171. [Google Scholar] [CrossRef]
- Zouros, N.C. Geomorphosite assessment and management in protected areas of Greece Case study of the Lesvos Island–coastal geomorphosites. Geogr. Helv. 2007, 62, 169–180. [Google Scholar] [CrossRef]
- Dimitrakopoulos, P.G.; Jones, N.; Iosifides, T.; Florokapi, I.; Lasda, O.; Paliouras, F.; Evangelinos, K.I. Local attitudes on protected areas: Evidence from three Natura 2000 wetland sites in Greece. J. Environ. Manag. 2010, 91, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Velegrakis, A.F.; Vousdoukas, M.I.; Andreadis, O.; Adamakis, G.; Pasakalidou, E.; Meligonitis, R.; Kokolatos, G. Influence of Dams on Downstream Beaches: Eressos, Lesbos, Eastern Mediterranean. Mar. Georesources Geotechnol. 2008, 26, 350–371. [Google Scholar] [CrossRef]
- Kosmas, C.; Danalatos, N.; Gerontidis, S. The effect of land parameters on vegetation performance and degree of erosion under Mediterranean conditions. CATENA 2000, 40, 3–17. [Google Scholar] [CrossRef]
- Margaroni, S.G.; Tzoraki, O.; Velegrakis, A. Soil erosion risk of Lesvos Island. In Proceedings of the 11th Panhellenic Symposium on Oceanography and Fisheries, Mytilene, Lesvos, Greece, 13-17 May 2015; Panhellenic Union of HCMR Employees and the Union of HCMR Researchers, in collaboration with the Department of Marine Sciences, University of the Aegean (www.mar.aegean.gr), under the auspices of the Hellenic Centre for Marine Research; 2016, pp. 1125–1129.
- Papadopoulou, A.; Dikou, A.; Papapanagiotou, V. A contribution to Cumulative Effects Assessment for regional sustainable development-the case of Panagiouda-Pamfilla bay, Lesvos Island, Greece. Transitional Waters Bull. 2014, 8, 53–72. [Google Scholar]
- Karavitis, C.A.; Kerkides, P. Estimation of the Water Resources Potential in the Island System of the Aegean Archipelago, Greece. Water Int. 2002, 27, 243–254. [Google Scholar] [CrossRef]
- Simha, P.; Mutiara, Z.Z.; Gaganis, P. Vulnerability assessment of water resources and adaptive management approach for Lesvos Island, Greece. Sustain. Water Resour. Manag. 2017, 3, 283–295. [Google Scholar] [CrossRef]
- The DJI Mavic 2 Pro specifications. Available online: https://www.dji.com (accessed on 15 November 2021).
- Thielicke, W.; Stamhuis, E.J. PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. J. Open Res. Softw. 2014, 2, e30. [Google Scholar] [CrossRef]
- Thielicke, W. The flapping flight of birds: Analysis and application. Doctoral Dissertation, University of Groningen, Groningen, Netherlands, 2014. [Google Scholar]
- Kinzel, P.J.; Legleiter, C.J. sUAS-based remote sensing of river discharge using thermal particle image velocimetry and bathymetric lidar. Remote Sens. 2019, 11, 2317. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Kinzel, P.J.; Nelson, J.M. Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information. J. Hydrol. 2017, 554, 490–506. [Google Scholar] [CrossRef]
- Sasso, S.F.D.; Pizarro, A.; Manfreda, S. Metrics for the Quantification of Seeding Characteristics to Enhance Image Velocimetry Performance in Rivers. Remote Sens. 2020, 12, 1789. [Google Scholar] [CrossRef]
- Kinzel, P.J.; Legleiter, C.J. sUAS-based remote sensing of river discharge using thermal particle image velocimetry and bathymetric lidar. Remote Sens. 2019, 11, 2317. [Google Scholar] [CrossRef]
- Tauro, F.; Piscopia, R.; Grimaldi, S. Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry? Water Resour. Res. 2017, 53, 10374–10394. [Google Scholar] [CrossRef]
- Lewis, Q.W.; Rhoads, B.L. Resolving two-dimensional flow structure in rivers using large-scale particle image velocimetry: An example from a stream confluence. Water Resour. Res. 2015, 51, 7977–7994. [Google Scholar] [CrossRef]
- Pumo, D.; Noto, L.V.; Viola, F. Ecohydrological modelling of flow duration curve in Mediterranean river basins. Adv. Water Resour. 2013, 52, 314–327. [Google Scholar] [CrossRef]
- Gena, A.W.; Voelker, C.; Settles, G.S. Qualitative and quantitative schlieren optical measurement of the human thermal plume. Indoor Air 2020, 30, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Thielicke, W.; Sonntag, R. Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. J. Open Res. Softw. 2021, 9, 12. [Google Scholar] [CrossRef]
- Tauro, F.; Pagano, C.; Phamduy, P.; Grimaldi, S.; Porfiri, M. Large-Scale Particle Image Velocimetry From an Unmanned Aerial Vehicle. IEEE/ASME Trans. Mechatronics 2015, 20, 3269–3275. [Google Scholar] [CrossRef]
- Saumier, L.-P.; Khouider, B.; Agueh, M. Optimal Transport for Particle Image Velocimetry: Real Data and Postprocessing Algorithms. SIAM J. Appl. Math. 2015, 75, 2495–2514. [Google Scholar] [CrossRef]
- Sarno, L.; Carravetta, A.; Tai, Y.C.; Martino, R.; Papa, M.N.; Kuo, C.Y. Measuring the velocity fields of granular flows–Employment of a multi-pass two-dimensional particle image velocimetry (2D-PIV) approach. Adv. Powder Technol. 2018, 29, 3107–3123. [Google Scholar] [CrossRef]
- Pumo, D.; Alongi, F.; Ciraolo, G.; Noto, L.V. Optical Methods for River Monitoring: A Simulation-Based Approach to Explore Optimal Experimental Setup for LSPIV. Water 2021, 13, 247. [Google Scholar] [CrossRef]
- Garcia, D. Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 2009, 54, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Somerville, D.E. Stream Assessment and Mitigation Protocols: A Review of Commonalities and Differences, May 4, 2010, Prepared for the US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds (Contract No. GS-00F-0032M). Washington, DC Document No. EPA 843-S-12-003. 4 May.
- Gkiatas, G.; Kasapidis, I.; Koutalakis, P.; Iakovoglou, V.; Savvopoulou, A.; Germantzidis, I.; Zaimes, G.N. Enhancing urban and sub-urban riparian areas through ecosystem services and ecotourism activities. Water Supply 2021, 21, 2974–2988. [Google Scholar] [CrossRef]
- Latsiou, A.; Kouvarda, T.; Stefanidis, K.; Papaioannou, G.; Gritzalis, K.; Dimitriou, E. Pressures and Status of the Riparian Vegetation in Greek Rivers: Overview and Preliminary Assessment. Hydrology 2021, 8, 55. [Google Scholar] [CrossRef]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flow regimes at the global scale. J. Hydrol. 2013, 486, 351–364. [Google Scholar] [CrossRef]
- Schneider, C.; Laizé, C.L.R.; Acreman, M.C.; Flörke, M. How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci. 2013, 17, 325–339. [Google Scholar] [CrossRef]
- Fernández, D.; Barquín, J.; Raven, P.J. A review of river habitat characterisation methods: indices vs. characterisation protocols. Limnetica 2011, 30, 217–234. [Google Scholar] [CrossRef]
- Belletti, B.; Rinaldi, M.; Buijse, A.D.; Gurnell, A.M.; Mosselman, E. A review of assessment methods for river hydromorphology. Environ. Earth Sci. 2015, 73, 2079–2100. [Google Scholar] [CrossRef]
- Minnesota Pollution Control Agency. MPCA Stream Habitat Assessment (MSHA) Protocol for Stream Monitoring Sites, 2014.
- Woodget, A.S.; Austrums, R.; Maddock, I.P.; Habit, E. Drones and digital photogrammetry: from classifications to continuums for monitoring river habitat and hydromorphology. Wiley Interdiscip. Rev. Water 2017, 4, e1222. [Google Scholar] [CrossRef]
- Monteiro, J.G.; Jiménez, J.L.; Gizzi, F.; Přikryl, P.; Lefcheck, J.S.; Santos, R.S.; Canning-Clode, J. Novel approach to enhance coastal habitat and biotope mapping with drone aerial imagery analysis. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Casado, M.R.; Gonzalez, R.B.; Wright, R.; Bellamy, P. Quantifying the Effect of Aerial Imagery Resolution in Automated Hydromorphological River Characterisation. Remote. Sens. 2016, 8, 650. [Google Scholar] [CrossRef]
- Hentz, M.K.; Kinder, P.J.; Hubbart, J.A.; Kellner, E. Accuracy and Optimal Altitude for Physical Habitat Assessment (PHA) of Stream Environments Using Unmanned Aerial Vehicles (UAV). Drones 2018, 2, 20. [Google Scholar] [CrossRef]
- Boitsidis, A.J.; Gurnell, A.M.; Scott, M.; Petts, G.E.; Armitage, P.D. A decision support system for identifying the habitat quality and rehabilitation potential of urban rivers. Water Environ. J. 2006, 20, 130–140. [Google Scholar] [CrossRef]
- Munné, A.; Prat, N.; Solà, C.; Bonada, N.; Rieradevall, M. A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquat. Conserv. Mar. Freshw. Ecosyst. 2002, 13, 147–163. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A Method for Assessing Hydrologic Alteration within Ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef]
- Palau, A.; Alcázar, J. The basic flow method for incorporating flow variability in environmental flows. River Res. Appl. 2010, 28, 93–102. [Google Scholar] [CrossRef]
- Clarke, R.T.; Lorenz, A.; Sandin, L.; Schmidt-Kloiber, A.; Strackbein, J.; Kneebone, N.T.; Haase, P. Effects of sampling and sub-sampling variation using the STAR-AQEM sampling protocol on the precision of macroinvertebrate metrics. Hydrobiologia 2006, 566, 441–459. [Google Scholar] [CrossRef]
- Healey, M.; Raine, A.; Parsons, L.; Cook, N. River condition index in New South Wales: method development and application; NSW Office of Water: Sydney, NSW, 2012. [Google Scholar]
- Stamataki, M.D.; Koutalakis, P.; Papadopoulos, D.; Tzoraki, O. Protocols for the environmental monitoring of the coastal and transitional river ecosystems. In Proceedings of the 4th International Congress on Applied Ichthyology & Aquatic Environment – HydroMedit (Virtual), Mytilene, Greece, 4–6 November 2021. Department of Ichthyology and Aquatic Environment (DIAE), University of Thessaly, Department of Marine Sciences (DMS), University of the Aegean, Department of Animal Production, Fisheries and Aquaculture Department (DAPFA), University of Patras, Panhellenic Society of Technologists Ichthyologists (PASTI), 2021.. [Google Scholar]
- Koutalakis, P.; Tzoraki, O.; Gkiatas, G.; Zaimes, G.N. Using UAV to Capture and Record Torrent Bed and Banks, Flood Debris, and Riparian Areas. Drones 2020, 4, 77. [Google Scholar] [CrossRef]
- Tabacchi, E.; Lambs, L.; Guilloy, H.; Planty-Tabacchi, A.M.; Muller, E.; Decamps, H. Impacts of riparian vegetation on hydrological processes. Hydrol Process. 2000, 14, 2959–2976. [Google Scholar] [CrossRef]
- Dosskey, M.G.; Vidon, P.; Gurwick, N.P.; Allan, C.J.; Duval, T.P.; Lowrance, R. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in StreamsJAWRA J. Am. Water Resour. Assoc. 2010, 46, 261–277. [Google Scholar] [CrossRef]
- Rajib, A.; Kim, I.; Golden, H.; Lane, C.; Kumar, S.; Yu, Z.; Jeyalakshmi, S. Watershed Modeling with Remotely Sensed Big Data: MODIS Leaf Area Index Improves Hydrology and Water Quality Predictions. Remote. Sens. 2020, 12, 2148–2148. [Google Scholar] [CrossRef] [PubMed]
- Zaimes, G.N.; Gounaridis, D.; Fotakis, D. Assessing riparian land-uses/vegetation cover along the Nestos river in Greece. Fresenius Environ. Bull. 2011, 20, 3217–3225. [Google Scholar]
- Simmons, T.; Armstrong, T.; Hawkins, C.P. Using aquatic invertebrates to measure the health of stream ecosystems: New bioassessment tools for Alaska’s parklands. Alaska Park Science 2021, 20, 96–103. [Google Scholar]
- Stefanidis, K.; Papastergiadou, E. Linkages between Macrophyte Functional Traits and Water Quality: Insights from a Study in Freshwater Lakes of Greece. Water 2019, 11, 1047. [Google Scholar] [CrossRef]
- Nihei, Y.; Kimizu, A. A new monitoring system for river discharge with horizontal acoustic Doppler current profiler measurements and river flow simulation. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Reichl, F.; Hack, J. Derivation of Flow Duration Curves to Estimate Hydropower Generation Potential in Data-Scarce Regions. Water 2017, 9, 572. [Google Scholar] [CrossRef]
- Blasch, K.W.; Ferré, T.P.; Christensen, A.H.; Hoffmann, J.P. New field method to determine streamflow timing using electrical resistance sensors. Vadose Zone J. 2002, 1, 289–299. [Google Scholar] [CrossRef]
- NOAA. What is the difference between land cover and land use? Available online: https://oceanservice.noaa.gov/facts/lclu.html (accessed on 20 January 2023).
- Poikane, S.; Herrero, F.S.; Kelly, M.G.; Borja, A.; Birk, S.; van de Bund, W. European aquatic ecological assessment methods: A critical review of their sensitivity to key pressures. Sci. Total. Environ. 2020, 740, 140075. [Google Scholar] [CrossRef] [PubMed]














| Location (cross-section) | Date | X | Y | Z | UAV height | Water Conditions |
|---|---|---|---|---|---|---|
| Agia Anna – Polichnitos | 12-5-2021 | 39°03'28.8"N | 26°11'34.8"E | 28.0 |
20 |
good visibility – flowing water – shallow depth |
| Kalloni | 13-5-2021 | 39°12'16.9"N | 26°10'39.4"E | 8.40 |
10 |
good visibility – flowing water – shallow depth |
| Evergetoulas – Kerameia | 15-5-2021 | 39°07'43.7"N | 26°25'35.1"E | 44.30 |
10 |
good visibility – flowing water – shallow depth |
| Pterounta – Vathilimno | 16-5-2021 | 39°12'41.6"N | 26°03'06.5"E | 238.01 |
5 |
good visibility – flowing water – shallow depth |
| Eresos | 17-5-2021 | 39°08'38.3"N | 25°59'14.0"E | 74.39 |
7 |
good visibility – flowing water – shallow depth |
| Agra | 18-5-2021 | 39°09'02.5"N | 26°04'15.3"E | 185.86 |
10 |
good visibility – flowing water – shallow depth |
| Kremasti Bridge – Agia Paraskevi | 19-5-2021 | 39°16'13.3"N | 26°15'10.5"E | 70.34 |
15 |
good visibility – flowing water – shallow depth |
| West of Kremasti Bridge | 19-5-2021 | 39°16'29.0"N | 26°14'38.4"E | 66.21 |
20 |
good visibility – flowing water – shallow depth |
| Prinis Bridge – Agia Paraskevi | 19-5-2021 | 39°15'10.1"N | 26°15'05.0"E | 44.03 |
30 |
low visibility – flowing water – significant depth |
| Drone Specifications | Camera Specifications |
|---|---|
| Takeoff weight: 907 g | Sensor: 1” CMOS |
| Dimensions (length × width × height): 322×242×84 mm | Effective pixels: 20 million |
| Max flight time: 29-31’ | Shooting range: 1 m to ∞ |
| Battery capacity: 3850 mAh Battery Voltage: 15.4 V |
ISO range Photo: 100–3200 (auto) |
| Max speed (sport): 72 km/h | Image size: 5472×3648 |
| Satellite positioning: GPS/GLONASS | Format: JPEG / PEG / DNG (RAW) |
| Hover accuracy range: Vertical ±0.1 m Horizontal ±0.3 m |
Gimbal Stabilization: 3-axis (tilt, roll, pan) |
| Max transmission: 6000 m | Lens FOV: about 77° 35 mm Format Equivalent: 28 mm |
| Location (Date) | Channel Width (m) | Water Depth (m) | Surface Velocity Range (m/s) |
Maximum Water Discharge (m3/s) |
|---|---|---|---|---|
| Agia Anna – Polichnitos (12-5-2021) | 1.50 | 0.05 | 0 to 2.0 | ≤0.15 |
| Kalloni (13-5-2021) | 4.00 | 0.02 | 0 to 0.8 | 0.07 |
| Evergetoulas – Kerameia (15-5-2021) | 3.70 | 0.04 | 0 to 1.6 | 0.25 |
| Pterounta – Vathilimno (16-5-2021) | 1.25 | 0.04 | 0 to 0.8 | 0.04 |
| Eresos (17-5-2021) | 2.50 | 0.09 | 0 to 0.4 | 0.09 |
| Agra (18-5-2021) | 1.30 | 0.03 | 0 to 1.8 | 0.05 |
| Kremasti Bridge – Agia Paraskevi (19-5-2021) | 0.60 | 0.28 | 0 to 2.0 | 0.34 |
| West of Kremasti Bridge (19-5-2021) | 1.50 | 0.035 | 0 to 1.6 | 0.08 |
| Prinis Bridge – Agia Paraskevi (19-5-2021) | 3.65 | 0.03 | 0 to 5.5 | 0.60 |
| Environmental Protocol [Reference] |
[117] | [118] | [119] | [120] | [121] | [122] | [123] | [124] | [125] | [126] | [127] |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Salinity/ Chemical Analysis |
X | X | X | X | X | X | X | ⋁ | X | ⋁ | X |
| Substrate | ⋁ | ⋁ | ⋁ | ⋁ | X | ⋁ | ⋁ | ⋁ | X | ⋁ | X |
| Vegetation | ⋁ | ⋁ | ⋁ | ⋁ | ⋁ | ⋁ | ⋁ | X | X | ⋁ | ⋁ |
| Land cover/use | ⋁ | X | ⋁ | X | ⋁ | X | ⋁ | X | X | ⋁ | ⋁ |
| Slope | X | V | X | X | X | X | ⋁ | ⋁ | X | ⋁ | ⋁ |
| Morphology | ⋁ | ⋁ | X | X | ⋁ | ⋁ | ⋁ | X | ⋁ | ⋁ | ⋁ |
| Flow type | ⋁ | ⋁ | X | X | X | ⋁ | X | ⋁ | ⋁ | ⋁ | ⋁ |
| Aquatic State | X | ⋁ | X | X | X | ⋁ | X | X | X | X | X |
| Bathymetry | ⋁ | ⋁ | ⋁ | ⋁ | ⋁ | X | X | X | X | X | X |
| Water Velocity | ⋁ | ⋁ | X | ⋁ | X | ⋁ | ⋁ | X | ⋁ | ⋁ | ⋁ |
| Tools | Field | Field/UAV/satellite | UAV | Field/ UAV |
Field/ UAV |
Field | Field | Field | Field | Field | Field |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
