Submitted:
17 May 2023
Posted:
24 May 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Literature review
Data and summary statistics
| Country | Year | P10 | P25 | P50 | Mean | P75 | P90 | Gini | Fgt0 | FW |
| Austria | 2000 | 15453.1 | 21222.0 | 28213.5 | 30736.8 | 36628.5 | 48616.9 | 25.4 | 13.7 | 20.1 |
| 2019 | 17059.0 | 25105.6 | 34097.5 | 37783.3 | 46174.6 | 61489.0 | 27.4 | 15.4 | 21.7 | |
| Belgium | 2000 | 14104.1 | 18805.4 | 27002.7 | 30313.4 | 35868.5 | 47013.6 | 28.8 | 16.2 | 22.0 |
| 2017 | 15335.6 | 21104.6 | 30880.9 | 32847.5 | 40884.2 | 51391.1 | 26.0 | 18.4 | 22.1 | |
| Denmark | 2000 | 15953.2 | 20758.6 | 28254.5 | 29686.8 | 35772.6 | 43914.9 | 22.5 | 13.1 | 18.2 |
| 2016 | 17606.8 | 22771.4 | 31255.8 | 34168.6 | 41277.4 | 52309.4 | 25.5 | 12.8 | 20.5 | |
| Finland | 2000 | 12605.8 | 16324.7 | 22272.2 | 24495.9 | 28995.4 | 36976.2 | 25.3 | 12.7 | 20.0 |
| 2016 | 15827.0 | 20916.9 | 28139.0 | 31381.4 | 37410.7 | 48046.0 | 25.8 | 12.6 | 20.4 | |
| France | 2000 | 12744.5 | 17415.9 | 24065.7 | 27858.2 | 33224.6 | 46376.4 | 29.4 | 14.9 | 23.6 |
| 2018 | 13815.4 | 19275.9 | 26970.8 | 31095.5 | 36605.6 | 50458.9 | 30.2 | 16.0 | 23.0 | |
| Germany | 2000 | 15184.2 | 20825.9 | 27538.6 | 30606.1 | 36915.0 | 48383.3 | 25.9 | 12.5 | 20.7 |
| 2019 | 15291.0 | 22182.4 | 31483.6 | 35222.0 | 42200.6 | 56566.9 | 29.3 | 17.2 | 22.8 | |
| Ireland | 2000 | 9322.0 | 14279.8 | 22236.7 | 25007.8 | 31176.6 | 41731.6 | 31.3 | 22.5 | 26.4 |
| 2019 | 16008.1 | 21494.2 | 30308.7 | 34853.2 | 42441.0 | 55680.9 | 28.7 | 15.5 | 23.8 | |
| Italy | 2000 | 8945.6 | 13425.4 | 20400.7 | 23793.6 | 29665.8 | 40105.7 | 33.4 | 20.1 | 28.2 |
| 2016 | 8206.8 | 12741.7 | 19503.7 | 22359.3 | 28518.8 | 39064.8 | 33.9 | 21.1 | 29.1 | |
| Luxembourg | 2000 | 21288.6 | 27628.0 | 37282.0 | 42403.1 | 51239.9 | 69413.8 | 26.2 | 12.3 | 22.8 |
| 2019 | 21967.5 | 30451.9 | 43198.6 | 49813.8 | 61648.5 | 82427.8 | 29.6 | 16.4 | 25.5 | |
| Netherland | 1999 | 15596.0 | 20104.8 | 26656.0 | 28670.3 | 34764.7 | 43537.3 | 23.1 | 11.1 | 19.0 |
| 2018 | 16802.5 | 22378.2 | 30833.0 | 34284.5 | 41330.4 | 53688.4 | 27.0 | 13.8 | 21.6 | |
| Spain | 2000 | 9857.0 | 14486.5 | 22246.8 | 26265.5 | 32556.0 | 46205.8 | 33.7 | 20.8 | 29.2 |
| 2016 | 8852.7 | 14606.6 | 23047.6 | 26407.8 | 34173.7 | 46516.1 | 34.1 | 22.6 | 29.6 | |
| United Kingdom | 2000 | 10543.7 | 14622.7 | 22152.3 | 27690.4 | 32969.3 | 47166.8 | 35.7 | 20.3 | 29.5 |
| 2020 | 14228.5 | 19148.3 | 27222.5 | 31741.7 | 38876.6 | 54271.9 | 30.5 | 15.5 | 25.8 |
Methodology
Polarization and Relative Distribution
RIF-regression model
Results
Relative distribution results
Rif-regression results
Conclusions
Appendix


References
- S. Alderson, J. Beckfield, and F. Nielsen. 2005. Exactly How Has Income Inequality Changed? Patterns of Distributional Change in Core Societies. International Journal of Comparative Sociology, 46:405-423. [CrossRef]
- Alderson, A. S., & Doran, K. 2011. Global inequality, within-nation inequality, and the changing distribution of income in seven transitional and middle-income societies. Inequality Beyond Globalization: Economic Changes, Social Transformations, and the Dynamics of Inequality, 183-200.
- Borraz, F., González, N., & Rossi, M. 2013. Polarization and the middle class in Uruguay. Latin american journal of economics, 50(2), 289-326.
- Brzezinski, M. 2013. “Income Polarization and Economic Growth.” Working Paper, National Bank of Poland, Poland.
- Castro, J. V. 2003. “Regional Convergence, Polarisation and Mobility in the European Union, 1980–1996.” Journal of European Integration 25 (1):73–86. [CrossRef]
- Clementi, F. and Schettino, F. 2013. Income polarization in Brazil, 2001-2011: a distributional analysis using PNAD data. Economics Bulletin, 33(3). [CrossRef]
- Clementi, F. and Schettino, F. 2015. Declining inequality in Brazil in the 2000s: what is hidden behind?. Journal of International Development, 27(7), 929-952. [CrossRef]
- Clementi, F., Dabalen A. L., Molini, V., and Schettino, F. 2015. When the Centre Cannot Hold: Patterns of Polarization in Nigeria. Review of Income and Wealth. [CrossRef]
- Clementi, F., Fabiani, M. and Molini, V. 2019. The devil is in the detail: growth, inequality and poverty reduction in Africa in the last two decades in Journal Of African Economies; 28.4; Oxford, Oxford University Press; pp. 408 – 434.
- Clementi, F., Fabiani, M. and Molini, V. 2021. How polarized is sub-Saharan Africa? A look at the regional distribution of consumption expenditure in the 2000s in Oxford Economic Papers; 73; Oxford, Oxford University Press; pp. 796 – 819. [CrossRef]
- Clementi, F., Fabiani, M., Molini, V. and Zizzamia, R.. 2022. Are we really painting the devil on the walls? Polarization and its drivers in Sub-Saharan Africa in the past two decades in Journal Of African Economies; 31; Oxford, Oxford University Press; pp. 124 - 146. [CrossRef]
- Clementi, F., Molini, V. and Schettino, F. 2017. All that Glitters is Not Gold: Polarization Amid Poverty Reduction in Ghana. World Development. [CrossRef]
- D’Ambrosio, C. 2001. Household Characteristics and the Distribution of Income in Italy: An Application of Social Distance Measures. Review of Income and Wealth, 47:43-64. [CrossRef]
- de la Vega, M. C. L., & Urrutia, A. M. 2006. An alternative formulation of the Esteban-Gradín-Ray extended measure of polarization. Journal of Income Distribution, 15(3-4), 42-54. [CrossRef]
- Easterly, W. 2001. “The Middle Class Consensus and Economic Development.” Journal of Economic Growth 6:317–35.
- Esteban, J.-M., and D. Ray. 1994. “On the Measurement of Polarization.” Econometrica: Journal of the Econometric Society 62:819–51.
- Esteban, J.-M. and Ray, D. 1999. Conflict and distribution, Journal of Economic Theory, 87, 379–415. [CrossRef]
- Esteban, J.-M. and Ray, D. 2008. Polarization, fractionalization and conflict, Journal of Peace Research, 45, 163–82.
- Esteban, J.-M. and Ray, D. 2011. Linking conflict to inequality and polarization, American Economic Review, 101, 1345–74.
- Esteban, J., Gradín, C., & Ray, D. 2007. An extension of a measure of polarization, with an application to the income distribution of five OECD countries. The Journal of Economic Inequality, 5, 1-19. [CrossRef]
- Ezcurra, R. 2009. “Does Income Polarization Affect Economic Growth? the Case of the European Regions.” Regional Studies 43:267–85. [CrossRef]
- Firpo S, Fortin N and Lemieux T (2018) Decomposing Wage Distributions Using Recentered Inuence Function Regressions. Econometrics 6: 28. [CrossRef]
- Firpo S, Fortin NM and Lemieux T (2009) Unconditional Quantile Regressions. Econometrica 77: 953-973.
- Fortin N, Lemieux T and Firpo S (2011) Decomposition Methods in Economics. In: Ashenfelter O and Card D (eds.) Handbook of Labor Economics, volume 4A. Amsterdam: North-Holland, pp. 1-102.
- Foster J. E.,Wolfson M. C. 1992. Polarization and the Decline of the Middle Class: Canada and the US. OPHIWorking Paper 31, University of Oxford,Oxford, 1992. 8: 247–73.
- Gigliarano, C., & Mosler, K. 2009. Constructing indices of multivariate polarization. The Journal of Economic Inequality, 7, 435-460. [CrossRef]
- Gradín, C. 2000. “Polarization by Sub-Populations in Spain, 1973–91.” Review of Income and Wealth 46:457–74.
- Handcock M. S., Morris M. 1998. ‘Relative Distribution Methods’, Sociological Methodology, 28: 53–97.
- Handcock M. S., Morris M. 1999. Relative Distribution Methods in the Social Sciences. New York, NY: Springer.
- Keefer, P., and S. Knack. 2002. “Polarization, Politics and Property Rights: Links Between Inequality and Growth.” Public Choice 111:127–54.
- Massari, R., Pittau, M. G. and Zelli, R. 2009a. A Dwindling Middle Class? Italian Evidence in the 2000s. Journal of Economic Inequality, 7:333-350. [CrossRef]
- Massari, R., Pittau, M. G. and Zelli, R. 2009b. Caos calmo: l’evoluzione dei redditi familiari in Italia. In L. Cappellari, P. Naticchioni, and S. Staffolani, editors, L’Italia delle disuguaglianze, pages 19-28. Carocci editore, Rome.
- Milanovic, B. 2000. The median-voter hypothesis, income inequality, and income redistribution: an empirical test with the required data. European Journal of Political Economy, 16(3), 367-410. [CrossRef]
- Molini, V., & Paci, P. 2015. Poverty reduction in Ghana—Progress and challenges.
- Montalvo, J., & Reynal-Querol, M. 2002. Why ethnic fractionalization? Polarization, ethnic conflict and growth. Polarization, Ethnic Conflict and Growth (September 2002). UPF Economics and Business Working Paper, (660).
- Motiram, S., and N. Sarma. 2014. “Polarization, Inequality, and Growth: The Indian Experience.” Oxford Development Studies 42:297–318. [CrossRef]
- Nissanov, Z., & Pittau, M. G. 2016. Measuring changes in the Russian middle class between 1992 and 2008: a nonparametric distributional analysis. Empirical Economics, 50, 503-530. [CrossRef]
- Pérez, C. B., and X. Ramos. 2010. “Polarization and Health.” Review of Income and Wealth 56:171–85.
- Petrarca, I., & Ricciuti, R.2016. Relative income distribution in six European countries. In Inequality after the 20th Century: Papers from the Sixth ECINEQ Meeting (Vol. 24, pp. 361-386). Emerald Group Publishing Limited.
- Poggi, A., & Silber, J. 2010. On polarization and mobility: a look at polarization in the wage–career profile in Italy. Review of Income and Wealth, 56(1), 123-140.
- Pressman, S. 2007. “The Decline of the Middle Class: An International Perspective.” Journal of Economic Issues 41:181–200.
- Wolfson, M.C. 1994. When inequalities diverge, The American Economic Review, 84, 353–8.
- Wolfson, M. C. 1997. Divergent inequalities: theory and empirical results. Review of Income and Wealth, 43(4), 401-421. [CrossRef]
- Zhang, X., and R. Kanbur. 2001. “What Difference Do Polarisation Measures Make? An Application to China.” Journal of Development Studies 37:85–98. [CrossRef]
| Country | Indexa | Value | LBb | UBc | p-valued |
|---|---|---|---|---|---|
| Austria | MRP | 0.150 | 0.113 | 0.187 | 0.000 |
| LRP | 0.161 | 0.099 | 0.222 | 0.000 | |
| URP | 0.139 | 0.091 | 0.188 | 0.000 | |
| Belgium | MRP | 0.102 | 0.065 | 0.139 | 0.000 |
| LRP | 0.148 | 0.084 | 0.212 | 0.000 | |
| URP | 0.056 | 0.003 | 0.109 | 0.036 | |
| Denmark | MRP | 0.127 | 0.120 | 0.134 | 0.000 |
| LRP | 0.101 | 0.089 | 0.113 | 0.000 | |
| URP | 0.153 | 0.143 | 0.163 | 0.000 | |
| Finland | MRP | 0.155 | 0.134 | 0.177 | 0.000 |
| LRP | 0.157 | 0.117 | 0.197 | 0.000 | |
| URP | 0.153 | 0.126 | 0.181 | 0.000 | |
| France | MRP | 0.065 | 0.055 | 0.075 | 0.000 |
| LRP | 0.105 | 0.089 | 0.121 | 0.000 | |
| URP | 0.026 | 0.014 | 0.038 | 0.000 | |
| Germany | MRP | 0.148 | 0.127 | 0.168 | 0.000 |
| LRP | 0.213 | 0.178 | 0.247 | 0.000 | |
| URP | 0.082 | 0.054 | 0.111 | 0.000 | |
| Ireland | MRP | 0.120 | 0.070 | 0.170 | 0.000 |
| LRP | 0.090 | 0.001 | 0.180 | 0.047 | |
| URP | 0.150 | 0.088 | 0.211 | 0.000 | |
| Italy | MRP | -0.005 | -0.038 | 0.028 | 0.772 |
| LRP | 0.007 | -0.054 | 0.068 | 0.823 | |
| URP | -0.017 | -0.058 | 0.024 | 0.416 | |
| Luxembourg | MRP | 0.178 | 0.130 | 0.227 | 0.000 |
| LRP | 0.234 | 0.146 | 0.321 | 0.000 | |
| URP | 0.122 | 0.065 | 0.179 | 0.000 | |
| Netherland | MRP | 0.167 | 0.141 | 0.193 | 0.000 |
| LRP | 0.188 | 0.143 | 0.232 | 0.000 | |
| URP | 0.146 | 0.111 | 0.181 | 0.000 | |
| Spain | MRP | 0.045 | 0.016 | 0.075 | 0.002 |
| LRP | 0.081 | 0.030 | 0.132 | 0.002 | |
| URP | 0.010 | -0.025 | 0.046 | 0.569 | |
| United Kingdom | MRP | 0.058 | 0.030 | 0.085 | 0.000 |
| LRP | 0.083 | 0.035 | 0.132 | 0.001 | |
| URP | 0.032 | 0.002 | 0.061 | 0.031 |
| Austria | Belgium | Denmark | Finland | France | Germany | Ireland | Italy | Luxembourg | Netherland | Spain | U.K. | |
| Sector | ||||||||||||
| Not employed | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) |
| Agriculture |
0.090** (0.040) |
0.095** (0.039) |
0.926*** (0.247) |
0.171*** (0.050) |
0.029 (0.173) |
-0.217 (0.214) |
0.047* (0.025) |
0.131*** (0.043) |
0.021 (0.053) |
0.195*** (0.061) |
0.078* (0.041) |
0.088 (0.313) |
| Industry |
0.004 (0.018) |
-0.002 (0.014) |
0.656*** (0.084) |
0.066** (0.029) |
-0.327*** (0.072) |
-0.062 (0.043) |
0.005 (0.013) |
0.000 (0.033) |
0.008 (0.016) |
-0.096*** (0.028) |
-0.034* (0.020) |
0.360*** (0.059) |
| Services |
0.002 (0.012) |
-0.015 (0.010) |
0.672*** (0.050) |
0.033 (0.022) |
-0.306*** (0.057) |
-0.021 (0.029) |
0.008 (0.009) |
-0.010 (0.024) |
0.025** (0.012) |
-0.049*** (0.016) |
-0.021 (0.016) |
0.218*** (0.042) |
| Education | ||||||||||||
| Low | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) |
| Medium |
-0.001 (0.013) |
-0.019* (0.009) |
-0.242*** (0.050) |
-0.057** (0.024) |
0.230*** (0.052) |
-0.150*** (0.035) |
0.039*** (0.010) |
0.098*** (0.019) |
0.015 (0.010) |
-0.020 (0.016) |
0.099*** (0.016) |
0.064 (0.047) |
| High |
0.080*** (0.017) |
0.053*** (0.009) |
1.127*** (0.057) |
0.200*** (0.025) |
2.229*** (0.062) |
0.209*** (0.039) |
0.106*** (0.009) |
0.358*** (0.034) |
0.096*** (0.011) |
0.176*** (0.017) |
0.309*** (0.015) |
0.469*** (0.043) |
| Country of birth | ||||||||||||
| Born in the country | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | ||
| Born outside the country |
-0.014 (0.013) |
0.017*** (0.010) |
0.335*** (0.061) |
0.039 (0.033) |
-0.055*** (0.009) |
-0.173*** (0.040) |
-0.016* (0.009) |
0.074*** (0.023) |
-0.020 (0.020) |
-0.041 (0.0549 |
||
| Area | ||||||||||||
| Cities | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | ||||
| Towns and Suburbs |
-0.008 (0.012) |
-0.021*** (0.008) |
-0.650*** (0.052) |
-0.108*** (0.021) |
-0.461*** (0.076) |
-0.024** (0.010) |
-0.022 (0.013) |
-0.057*** (0.015) |
||||
| Rural areas |
-0.031** (0.012) |
-0.034*** (0.011) |
-0.609*** (0.081) |
-0.117*** (0.022) |
-0.570*** (0.087) |
-0.041*** (0.008) |
-0.017 (0.013) |
-0.102*** (0.013) |
||||
| Age |
0.001*** (0.000) |
-0.000 (0.000) |
0.009*** (0.001) |
0.001 (0.001) |
0.010*** (0.001) |
-0.003*** (0.001) |
0.001*** (0.000) |
0.000 (0.000) |
0.001** (0.000) |
0.000 (0.000) |
0.001* (0.000) |
0.000 (0.001) |
| Sex | ||||||||||||
| Male | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) |
| Female |
0.016 (0.010) |
0.002 (0.007) |
0.219*** (0.048) |
-0.074*** (0.018) |
-0.329*** (0.049) |
-0.066*** (0.025) |
-0.003 (0.007) |
-0.053*** (0.016) |
-0.003 (0.009) |
-0.040*** (0.014) |
-0.034*** (0.012) |
0.155*** (0.036) |
| N° Household members |
-0.001 (0.004) |
-0.000 (0.003) |
-0.125*** (0.020) |
-0.053*** (0.007) |
-0.016 (0.019) |
-0.050*** (0.009) |
-0.003 (0.002) |
0.019** (0.008) |
-0.007** (0.003) |
-0.014*** (0.005) |
0.014*** (0.004) |
-0.067*** (0.016) |
| Austria | Belgium | Denmark | Finland | France | Germany | Ireland | Italy | Luxembourg | Netherland | Spain | U.K. | |
| Sector | ||||||||||||
| Not employed | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) |
| Agriculture |
0.118** (0.059) |
0.123 (0.077) |
1.906*** (0.427) |
0.267*** (0.088) |
-0.633** (0.298) |
-0.477 (0.408) |
0.093** (0.042) |
0.167** (0.076) |
-0.007 (0.095) |
0.236** (0.103) |
0.081 (0.076) |
-0.193 (0.489) |
| Industry |
0.004 (0.030) |
0.022 (0.024) |
2.232*** (0.151) |
0.152*** (0.051) |
-0.634*** (0.122) |
-0.080 (0.075) |
0.026 (0.024) |
0.061 (0.061) |
0.020 (0.032) |
-0.095* (0.051) |
0.019 (0.037) |
0.744*** (0.105) |
| Services |
-0.010 (0.020) |
0.012 (0.018) |
2.139*** (0.090) |
0.046 (0.040) |
-0.853*** (0.096) |
0.008 (0.047) |
0.025 (0.016) |
0.055 (0.046) |
0.056** (0.023) |
-0.068** (0.028) |
-0.011 (0.029) |
0.311*** (0.079) |
| Education | ||||||||||||
| Low | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) |
| Medium |
-0.004 (0.024) |
-0.001 (0.017) |
0.025 (0.096) |
-0.067 (0.045) |
0.479*** (0.097) |
-0.196*** (0.064) |
0.066*** (0.019) |
0.152*** (0.038) |
0.032 (0.020) |
-0.055* (0.029) |
0.166*** (0.031) |
0.103 (0.088) |
| High |
0.063** (0.030) |
0.088*** (0.017) |
2.069*** (0.104) |
0.245*** (0.045) |
2.401*** (0.104) |
0.225*** (0.068) |
0.145*** (0.018) |
0.374*** (0.054) |
0.158*** (0.020) |
0.180*** (0.029) |
0.390*** (0.027) |
0.617*** (0.079) |
| Country of birth | ||||||||||||
| Born in the country | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | ||
| Born outside the country |
-0.019 (0.023) |
-0.025 (0.019) |
0.354*** (0.105) |
0.018 (0.059) |
-0.092*** (0.017) |
-0.344*** (0.075) |
-0.056*** (0.016) |
0.066 (0.040) |
-0.097** (0.039) |
-0.132 (0.098) |
||
| Area | ||||||||||||
| Cities | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | ||||
| Towns and Suburbs |
-0.010 (0.019) |
-0.022 (0.015) |
-0.464*** (0.089) |
-0.083** (0.038) |
-0.638*** (0.141) |
-0.035** (0.017) |
-0.028 (0.023) |
-0.059** (0.028) |
||||
| Rural areas |
-0.057*** (0.019) |
-0.037* (0.020) |
-0.192*** (0.146) |
-0.079** (0.040) |
-0.780*** (0.156) |
-0.047*** (0.015) |
-0.013 (0.024) |
-0.123*** (0.026) |
||||
| Age |
0.000 (0.000) |
-0.001** (0.000) |
0.000 (0.002) |
-0.001 (0.001) |
-0.004* (0.002) |
-0.005*** (0.001) |
0.001** (0.000) |
0.000 (0.001) |
0.001*** (0.001) |
-0.003*** (0.000) |
0.001 (0.001) |
-0.001 (0.002) |
| Sex | ||||||||||||
| Male | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) |
| Female |
0.013 (0.016) |
-0.014 (0.013) |
0.079 (0.088) |
-0.077** (0.032) |
-0.496*** (0.086) |
-0.047 (0.045) |
0.001 (0.013) |
-0.040 (0.031) |
0.004 (0.017) |
-0.089*** (0.025) |
-0.044* (0.022) |
-0.226*** (0.066) |
| N° Household members |
-0.002 (0.006) |
0.006 (0.005) |
0.114*** (0.034) |
-0.079*** (0.012) |
-0.045 (0.034) |
-0.045*** (0.016) |
-0.005 (0.004) |
0.006 (0.014) |
-0.011 (0.007) |
-0.013 (0.009) |
0.029*** (0.008) |
-0.108*** (0.029) |
| Austria | Belgium | Denmark | Finland | France | Germany | Ireland | Italy | Luxembourg | Netherland | Spain | U.K. | |
| Sector | ||||||||||||
| Not employed | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) |
| Agriculture |
0.062 (0.054) |
0.067* (0.040) |
-0.054 (0.353) |
0.075 (0.068) |
0.692*** (0.191) |
0.041 (0.163) |
0.000 (0.033) |
0.094** (0.041) |
0.049 (0.046) |
0.154* (0.084) |
0.075* (0.043) |
0.371 (0.232) |
| Industry |
0.005 (0.026) |
-0.027 (0.019) |
-0.920*** (0.119) |
-0.020 (0.035) |
-0.019 (0.089) |
-0.044 (0.058) |
-0.015 (0.018) |
-0.062 (0.040) |
-0.002 (0.014) |
-0.097** (0.043) |
-0.088*** (0.027) |
-0.023 (0.072) |
| Services |
0.014 (0.015) |
-0.043*** (0.012) |
-0.794*** (0.067) |
0.019 (0.025) |
0.240*** (0.064) |
-0.051 (0.044) |
-0.008 (0.011) |
-0.077*** (0.024) |
-0.004 (0.012) |
-0.030 (0.021) |
-0.031 (0.019) |
0.125*** (0.042) |
| Education | ||||||||||||
| Low | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) |
| Medium |
0.002 (0.015) |
-0.037*** (0.012) |
-0.510*** (0.067) |
-0.048* (0.027) |
-0.019 (0.058) |
-0.104** (0.052) |
0.012 (0.012) |
0.044** (0.022) |
-0.001 (0.010) |
0.015 (0.021) |
0.032 (0.020) |
0.025 (0.052) |
| High |
0.097*** (0.021) |
-0.017 (0.012) |
0.186** (0.078) |
0.155*** (0.029) |
2.057*** (0.073) |
0.193*** (0.058) |
0.066*** (0.011) |
0.342*** (0.036) |
0.034*** (0.012) |
0.171*** (0.023) |
0.229*** (0.019) |
0.322*** (0.048) |
| Country of birth | ||||||||||||
| Born in the country | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | ||
| Born outside the country |
-0.010 (0.016) |
0.061*** (0.012) |
0.317*** (0.067) |
0.060 (0.045) |
-0.017* (0.010) |
-0.001 (0.031) |
0.022* (0.011) |
0.082*** (0.026) |
0.056** (0.023) |
0.050 (0.056) |
||
| Area | ||||||||||||
| Cities | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | ||||
| Towns and Suburbs |
-0.007 (0.017) |
-0.020* (0.011) |
-0.836*** (0.072) |
-0.134*** (0.025) |
-0.284*** (0.085) |
-0.014 (0.012) |
-0.016 (0.015) |
-0.055*** (0.019) |
||||
| Rural areas |
-0.005 (0.016) |
-0.031** (0.015) |
-1.025*** (0.115) |
-0.156*** (0.026) |
-0.360*** (0.107) |
-0.035*** (0.010) |
-0.021 (0.015) |
-0.082*** (0.018) |
||||
| Age |
0.001*** (0.001) |
0.001* (0.001) |
0.019*** (0.001) |
0.002*** (0.001) |
0.025*** (0.001) |
-0.001 (0.001) |
0.001* (0.000) |
0.001** (0.001) |
0.000 (0.000) |
0.002*** (0.001) |
0.001** (0.000) |
0.001 (0.001) |
| Sex | ||||||||||||
| Male | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) | (base) |
| Female |
0.018 (0.012) |
0.019* (0.011) |
0.359*** (0.068) |
-0.071*** (0.021) |
-0.162*** (0.050) |
-0.086** (0.035) |
-0.006 (0.009) |
-0.066*** (0.020) |
-0.010 (0.011) |
0.008 (0.018) |
-0.025 (0.016) |
-0.084** (0.039) |
| N° Household members |
-0.000 (0.005) |
-0.008* (0.004) |
-0.364*** (0.028) |
-0.026*** (0.009) |
0.012 (0.022) |
-0.055*** (0.014) |
-0.001 (0.003) |
0.033*** (0.008) |
-0.003 (0.003) |
-0.016** (0.006) |
-0.001 (0.006) |
-0.027 (0.016) |
| 1 | Luxembourg Income Study (LIS) Database, http://www.lisdatacenter.org (multiple countries; December 2022 – January 2023). Luxembourg: LIS. |
| 2 | Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Luxembourg, Netherland, Spain and United Kingdom. |
| 3 | “Disposable household income” is usually the preferred measure for income distribution analysis, as it is the income available to households to support their consumption expenditure and savings during the reference period (Canberra Group, 2011). According to the LIS documentation (https://www.lisdatacenter.org/data-access/key-figures/methods/disposable/), this measure includes income received from work, wealth, and from direct government benefits, such as retirement or unemployment benefits. The measure then subtracts direct taxes paid, such as income taxes. |
| 4 | Here we limit ourselves to illustrating the basic concepts behind the use of the relative distribution method. Interested readers are referred to Handcock and Morris (1998, 1999) for a more detailed explication. |
| 5 | For a more specific observation of the use of RIF-regression applied to polarization indices, see Jann, 2021; Clementi and Fabiani, 2023 (mimeo). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
