Submitted:
16 May 2023
Posted:
17 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. What is TACE?
3. Changes in TACE indications
4. B-TACE concepts
| Ref. | Number of patients | Clinical background | Therapeutic effect |
|---|---|---|---|
| Kim et al. [25] | 60 | Child–Pugh score A: 51, B: 8, C: 1 | CR 75.0%, PR 25.0%, RR 100.0% |
| BCLC stage A: 31, B: 19, C: 10 | median TTP was 5.3 months, median time to local recurrence was increased to 9.5 months |
||
| Tumor number single 28, Multiple 32 | progression-free survival rates were 56.8% and 9.2% at 6 and 12 months | ||
| Chu et al. {26} | 32 | ECOG PS 0: 31, PS1, 1 | CR 93.8%, PR 6.2%, RR 100.0% |
| Child–Pugh class A: 28, B: 4 | CT HU of lipiodol accumulation (mean ± SD) 507.8 ±84.8 Data |
||
| Tumor size (cm, mean ± SD) 3.4 ± 1.2 |
5. Analyses of the hemodynamic usefulness of B-TACE
6. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data availability statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Taura, K.; Ikai, I.; Hatano, E.; Fujii, H.; Uyama, N.; Shimahara, Y. Implication of frequent local ablation therapy for irltrahepatic recurrence in prolonged survival of patients with hepatocellular carcinoma undergoing hepatic resection:an analysis of 610 patients over 16 years old. Ann Surg 2006, 244, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Imamura, H.; Matsuyama, Y.; Tanaka, E.; Ohkubo, T.; Hasegawa, K.; Miyagawa, S.; Sugawara, Y.; Minagawa, M.; Takayama, T.; Kawasaki, S.; Makuuchi, M. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol 2003, 38, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Shiina, S.; Tateishi, R.; Arano, T.; Uchino, K.; Enooku, K.; Nakagawa, H.; Asaoka, Y.; Sato, T.; Masuzaki, R.; Kondo, Y.; Goto, T.; Yoshida, H.; Omata, M.; Koike, K. Radiofrequency ablation for hepatocellular carcinoma: 10-year outcome and prognostic factors. Am J Gastroenterol 2012, 107, 569–77. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Michitaka, I.; Kamimura, H.; Higuchi, K.; Kubota, T.; Seki, K.; Ohta, H.; Yoshida, T.; Kamimura, T. Oral branched-chain amino acids administration improves impaired liver dysfunction after radiofrequency ablation therapy for hepatocellular carcinoma. Hepatogastroenterology 2009, 56, 1491–1495. [Google Scholar] [PubMed]
- Togo, S.; Tanaka, K.; Masui, H.; Matsuo, K.; Morioka, D.; Kurosawa, H.; Miura, Y.; Endo, I.; Sekido, H.; Shimada, H. Usefulness of prophylactic transcatheter arterial infusion of anticancer agents with lipiodol to prevent recurrence of hepatocellular carcinoma after hepatic resection. Int Surg 2005, 90, 103–108. [Google Scholar]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, Kelley RK, Galle PR, Mazzaferro V, Salem R, Sangro B, Singal AG, Vogel A, Fuster J, Ayuso C, Bruix J. BCLC strategy for prognosis prediction and treatment recommendation:The 2022 update. J Hepatol 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Irie, T.; Kuramochi, M.; Takahashi, N. Dense accumulation of lipiodol emulsion in hepatocellular carcinoma nodule during selective balloon-occluded transarterial chemoembolization: measurement of balloon-occluded arterial stump pressure. Cardiovasc Intervent Radiol 2013, 36, 706–13. [Google Scholar] [CrossRef]
- Hatanaka, T.; Arai, H.; Kakizaki, S. Balloon-occluded transcatheter arterial chemoembolization for hepatocellular carcinoma. World J Hepatol 2018, 10, 485–495. [Google Scholar] [CrossRef]
- Ishikawa, T.; Abe, S.; Watanabe, T.; Nozawa, Y.; Sano, T.; Iwanaga, A.; Seki, K.; Honma, T.; Yoshida, T. Improved survival with double platinum therapy transcatheter arterial infusion using cisplatin and transcatheter arterial chemoembolization using miriplatin for BCLC-B hepatocellular carcinoma. Mol Clin Oncol 2016, 5, 511–516. [Google Scholar] [CrossRef]
- Ishikawa, T.; Abe, S.; Inoue, R.; Sugano, T.; Watanabe, Y.; Iwanaga, A.; Seki, K.; Honma, T.; Nemoto, T.; Takeda, K.; Yoshida, T. Predictive factor of local recurrence after balloon-occluded TACE with miriplatin (MPT) in hepatocellular carcinoma. PLoS One 2014, 9, e103009. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, T.; Arai, H.; Shibasaki, M.; Tojima, H.; Takizawa, D.; Toyoda, M.; Takayama, H.; Abe, T.; Sato, K.; Kakizaki, S.; Yamada, M. Factors predicting overall response and overall survival in hepatocellular carcinoma patients undergoing balloon-occluded transcatheter arterial chemoembolization: A retrospective cohort study. Hepatol Res 2018, 48, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Minami, Y.; Minami, T.; Chishina, H.; Arizumi, T.; Takita, M.; Kitai, S.; Yada, N.; Hagiwara, S.; Tsurusaki, M.; Yagyu, Y.; Ueshima, K.; Nishida, N.; Murakami, T.; Kudo, M. Balloon-occluded transcatheter arterial chemoembolization for hepatocellular carcinoma: a single-center experience. Oncology 2015, 89, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, Y.; Ikeda, K.; Fujiyama, S.; Hosaka, T.; Kobayashi, M.; Saitoh, S.; Sezaki, H.; Akuta, N.; Suzuki, F.; Suzuki, Y.; Arase, Y.; Kumada, H. Usefulness and limitations of balloon-occluded transcatheter arterial chemoembolization using miriplatin for patients with four or fewer hepatocellular carcinoma nodules. Hepatol Res 2017, 47, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Asayama, Y.; Nishie, A.; Ishigami, K.; Ushijima, Y.; Takayama, Y.; Okamoto, D.; Fujita, N.; Morita, K.; Honda, H. Hemodynamic changes under balloon occlusion of hepatic artery: predictor of the short-term therapeutic effect of balloon-occluded transcatheter arterial chemolipiodolization using miriplatin for hepatocellular carcinoma. Springerplus 2016, 5, 157. [Google Scholar] [CrossRef]
- Ogawa, M.; Takayasu, K.; Hirayama, M.; Miura, T.; Shiozawa, K.; Abe, M.; Matsumoto, N.; Nakagawara, H.; Ohshiro, S.; Yamamoto, T.; Tanaka, N.; Moriyama, M.; Mutou, H.; Yamamoto, Y.; Irie, T. Efficacy of a microballoon catheter in transarterial chemoembolization of hepatocellular carcinoma using miriplatin, a lipophilic anticancer drug: Short-term results. Hepatol Res 2016, 46, E60–E69. [Google Scholar] [CrossRef] [PubMed]
- Arai, H.; Abe, T.; Takayama, H.; Toyoda, M.; Ueno, T.; Kakizaki, S.; Sato, K. Safety and efficacy of balloon-occluded transcatheter arterial chemoembolization using miriplatin for hepatocellular carcinoma. Hepatol Res 2015, 45, 663–666. [Google Scholar] [CrossRef]
- Shirono, T.; Iwamoto, H.; Niizeki, T.; Shimose, S.; Nakano, M.; Satani, M.; Okamura, S.; Noda, Y.; Kamachi, N.; Kuromatsu, R.; Sakai, M.; Nomiyama, M.; Kuwano, T.; Tanaka, M.; Koga, H.; Torimura, T. Epirubicin is more effective than miriplatin in balloon-occluded transcatheter arterial chemoembolization for hepatocellular carcinoma. Oncology 2019, 96, 79–86. [Google Scholar] [CrossRef]
- Lucatelli, P.; Ginnani Corradini, L.; De Rubeis, G.; Rocco, B.; Basilico, F.; Cannavale, A.; Nardis, P.G.; Corona, M.; Saba, L.; Catalano, C.; Bezzi, M. Balloon-occluded transcatheter arterial chemoembolization (b-TACE) for hepatocellular carcinoma performed with polyethylene-glycol epirubicin-loaded drug-eluting embolics: safety and preliminary results. Cardiovasc Intervent Radiol 2019, 42, 853–862. [Google Scholar] [CrossRef]
- Lucatelli, P.; De Rubeis, G.; Rocco, B.; Basilico, F.; Cannavale, A.; Abbatecola, A.; Nardis, P.G.; Corona, M.; Brozzetti, S.; Catalano, C.; Bezzi, M. Correction to: Balloon occluded TACE (B-TACE) vs DEM-TACE for HCC: a single center retrospective case control study. BMC Gastroenterol 2021, 21, 282. [Google Scholar] [CrossRef]
- Golfieri, R.; Bezzi, M.; Verset, G.; Fucilli, F.; Mosconi, C.; Cappelli, A.; Paccapelo, A.; Lucatelli, P.; Magand, N.; Rode, A.; De Baere, T. Balloon-occluded transarterial chemoembolization: in which size range does it perform best? a comparison of its efficacy versus conventional transarterial chemoembolization, using propensity score matching. Liver Cancer 2021, 10, 522–534. [Google Scholar] [CrossRef] [PubMed]
- Iezzi, R.; Posa, A.; Tanzilli, A.; Carchesio, F.; Pompili, M.; Manfredi, R. Balloon-occluded MWA (b-MWA) followed by balloon-occluded TACE (b-TACE): technical note on a new combined single-step therapy for single large HCC. Cardiovasc Intervent Radiol 2020, 43, 1702–1707. [Google Scholar] [CrossRef] [PubMed]
- Shirono, T.; Iwamoto, H.; Niizeki, T.; Shimose, S.; Kajiwara, A.; Suzuki, H.; Kamachi, N.; Noda, Y.; Okamura, S.; Nakano, M.; Kuromatsu, R.; Murotani, K.; Koga, H.; Torimura, T. Durable complete response is achieved by balloon-occluded transcatheter arterial chemoembolization for hepatocellular carcinoma. Hepatol Commun 2022, 6, 2594–2604. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, M.; Yoshizako, T.; Nakamura, T.; Nakamura, M.; Yoshida, R.; Kitagaki, H. Initial experience with balloon-occluded trans-catheter arterial chemoembolization (B-TACE) for hepatocellular carcinoma. Cardiovasc Intervent Radiol 2016, 39, 359–66. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.H.; Gwon, D.I.; Kim, J.W.; Chu, H.H.; Kim, J.H. The safety and efficacy of balloon-occluded transcatheter arterial chemoembolization for hepatocellular carcinoma refractory to conventional transcatheter arterial chemoembolization. Eur Radiol 2020, 30, 5650–5662. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.H.; Gwon, D.I.; Kim, G.H.; Kim, J.H.; Ko, G.Y.; Shin, J.H.; Ko, H.K.; Yoon, H.K. Balloon-occluded transarterial chemoembolization versus conventional transarterial chemoembolization for the treatment of single hepatocellular carcinoma: a propensity score matching analysis. Eur Radiol 2023, 33, 2655–2664. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, K.; Saguchi, T.; Saito, K.; Imai, Y.; Moriyasu, F. Hemodynamic changes during balloon-occluded transarterial chemoembolization (B-TACE) of hepatocellular carcinoma observed by contrast-enhanced ultrasound. J Med Ultrason 2014, 41, 209–15. [Google Scholar] [CrossRef]
- Kakuta, A; Shibutani, K. ; Ono, S.; Miura, H.; Tsushima, F.; Kakehata, S.; Basaki, K.; Fujita, H.; Seino, H.; Fujita, T.; Takai, Y. Temporal variations in stump pressure and assessment of images obtained from cone-beam computed tomography during balloon-occluded transarterial chemoembolization. Hepatol Res 2016, 46, 468–76. [Google Scholar]
- Ishikawa, T.; Abe, S.; Hoshii, A.; Yamada, Y.; Iiduka, A.; Nemoto, T.; Takeda, K.; Yoshida, T. Cone-Beam Computed Tomography Correlates with Conventional Helical Computed Tomography in Evaluation of Lipiodol Accumulation in HCC after Chemoembolization. PloS One 2016, 11, e0145546. [Google Scholar] [CrossRef]
- Ishikawa, T.; Imai, M.; Owaki, T.; Sato, H.; Nozawa, Y.; Sano, T.; Iwanaga, A.; Seki, K.; Honma, T.; Yoshida, T.; Kudo, M. Hemodynamic changes on cone-beam computed tomography during balloon-occluded transcatheter arterial chemoembolization using miriplatin for hepatocellular carcinoma: a preliminary study. Dig Dis 2017, 35, 598–601. [Google Scholar] [CrossRef]
- Yoshimatsu, R.; Yamagami, T.; Ishikawa, M.; Kajiwara, K.; Aikata, H.; Chayama, K.; Awai, K. Change in Imaging Findings on Angiography-Assisted CT During Balloon-Occluded Transcatheter Arterial Chemoembolization for Hepatocellular Carcinoma. Cardiovasc Intervent Radiol 2016, 39, 865–74. [Google Scholar] [CrossRef] [PubMed]
| Ref. | Number of Patients | Clinical Background | Therapeutic Effect |
|---|---|---|---|
| Ishikawa et al. [11] | 51 | Mean laboratory values were as follows: AFP 233.66 ± 583.46 ng/mL, DCP 181.55 ± 335.09 mAU/mL, T-Bil 0.65 ± 0.27 mg/dL, albumin 3.64 ± 0.44 g/dL, prothrombin activity 91.12% ± 13.57% | The local recurrence rates at 6 and 12 months were 11.1% and 26.2%, respectively. |
| The mean Child-Pugh score was 6.37 ± 1.34. | The median recurrence time was 9 months. | ||
| Hatanaka et al. [12] | 66 | Child-Pugh Class A: 42, B :24, and C: 0 | CR 53.0%, PR 10.6%, SD 19.7%, PD 16.7%, RR, 63.6% |
| Number of tumors: one: 34, two: 10, three: 6, and four or more: 16 | |||
| Maximum tumor diameter: 25.5 (range, 18–37) mm | |||
| BCLC stage: Early stage 41/ Intermediate stage 25 | |||
| Minami et al. [13] | 27 | Countable HCC: 17; Uncountable HCC 10 |
Countable: TE4 43.8%, TE3 12.5%, TE2 37.5%, TE1 6.3%, RR, 56.3% |
| Countable HCC: Child-Pugh class A: 11, B: 6, and C: 0 Tumor size, (mean ± SD) 2.0 ± 0.9 (range, 1.0–4.6) cm |
Uncountable: CR 0%, PR 0%, SD 10%, PD 90% |
||
| Uncountable HCC: Tumor size, (mean ± SD) approx. 1–2 cm | |||
| Kawamura et al. [14] | 30 | Child-Pugh Class A: 12, B: 18, and C: 0 | TE4 51.0%, TE3 8.5%, TE2 19.1%, TE1 21.3%, RR, 59.6% |
| Tumor diameter, 20 (range, 6–55) mm | |||
| Tumor number per patient: one: 1, two: 9, three: 6, four: 4, and five or more: 5 1 | |||
| Asayama et al. [15] | 29 | Child–Pugh Class A: 25, B: 4, and C: 0 | TE4 8.6%, TE3 48.6%, TE2 17.1%, TE1 25.7%, RR, 57.1% |
| Ogawa et al. [16] | 33 | Number of tumors: one: 13, two: 9, three: 5, four: 1, and five or more: 5 0 | TE4 49.2% |
| Stage I: 1, II: 10, III: 20, and Iva: 0 | |||
| Child-Pugh Class A: 24, B: 7, and C: 2 | |||
| Tumor size (initial treatment): 22 (range, 7-90) mm | |||
| Arai et al. [17] | 49 | Child-Pugh class A: 36, B: 13, and C: 0 | TE4: 27, TE3: 19, TE2: 2, TE1: 1, RR: 93.9% |
| Stage I, 16, II: 33, and III: 0 | |||
| Tumor size: 29 (range, 8–73) mm | |||
| Portal vein invasion: none |
| Ref. | Number of patients | Clinical background | Therapeutic effect |
|---|---|---|---|
| Shirono et al. [18] | 30 | PS 0: 24, PS 1: 6 | The median LRF period obtained with B-TACE was 1180 days. |
| Child–Pugh class A: 21, B: 9 | The median LRF period after C-TACE was 389 days. | ||
| Tumor size (mm): 21.0 (range, 11.3–65) mm |
The median LRF period after DEB-TACE was 272 days. | ||
| ALBI Grade 1: 9, 2: 21, 3: 0 | There were significant differences among TACE procedures. | ||
| BCLC stage 0: 1, A: 15, B: 7, C: 7 | |||
| Number of tumor localized segments: >2 n = 11, ≤2 n = 19 | |||
| Number of tumor nodules: ≥4 n = 6, <3 n = 24 | |||
| Lucattelli et al. [19] | 23 | Type of malignancy: HCC 18, mCRC: 1, iCC: 2, sarcoma metastasis: 1, breast metastasis: 1 |
At 1 month HCC: CR 88.9%, PR 11.1%, RR 100.0% ICC: CR 100.0%, RR 100.0% Metastasis: CR 100.0%, RR 100.0% |
| Mean maximum diameter: 4.4 cm (±1) | At 6 months HCC: CR 87.5%, PR 6.2%, PD 6.2%, RR 93.8% ICC: CR 100.0%, RR 100.0% Metastasis: CR 66.7.0%, PR 33.3%, RR 100.0% |
||
| Mean lesion volume: 31.4 cm3 (±14.4) | |||
| Lucattelli et al. [20] | 27 | BCLC stage A: 10, B: 17 | Contrast, signal-to-noise ratio, and contrast-to-noise ratio were all significantly higher in the b-DEB-TACE subgroup compared with the DEB-TACE subgroup (182.33 HU [95% CI 160.3-273.5] vs. 124 HU [95% CI 80.6-163.6]; 8.3 [95% CI 5.7-10.1] vs. 4.5 [95% CI 3.7-6.0]; 6.9 [95% CI 4.3-7.8] vs. 3.1 [95% CI 2.2-5.0] p < 0.05). Data |
| Median nodule diameter (mm): 27 mm (95% CI 23.0–35.1) | |||
| Median number of nodules treated per patient: 1 (95% CI 1–2) | |||
| Golfieri et al. [21] | 91 | BCLC stage A: 50, B: 38, C: 3 | CR 59.3%, PR 30.8%, SD 5.5%, PD 4.4%, RR, 90.1% |
| Child-Pugh class at first TACE: A: 67, B: 24, C: 0 | |||
| Iezzi et al. [22] | 5 | Child–Pugh class A5: 3, A6: 2 | CR 80.0%, PR 20.0%, RR 100.0% |
| HCC diameter: 5.7 ± 0.6 (range, 5.1–6.5) cm | |||
| Location (hepatic segment): V-VI: 1, VIII-V: 1, VI: 1 II-III 2 | |||
| Shirono et al. [23] | 35 | Child-Pugh Class A, 23; Class B, 12; Class C, 0 | Epirubicin (15.1 months) was significantly better than miriplatin (3.2 months) in prolonging the local TTP after B-TACE (p = 0.0293). Epirubicin showed a positive tendency in TE4 (100% tumor necrosis) rate when compared with miriplatin (p = 0.058). |
| BCLC A, 15; BCLC B, 11; BCLC C, 9 | |||
| Tumor size, 21 (range, 12.25–65) mm | |||
| Number of tumor localized segments <2, n = 18; ≥3, n = 17 | |||
| Number of tumor nodules ≤3, n = 21; <4, n = 14 | |||
| Maruyama et al. [24] | 50 | Child–Pugh class A: 43, B: 7 | No statistically significant difference was observed between the B-TACE and C-TACE groups |
| Diameter of main target tumor: 3.2 ± 2.8 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).