Submitted:
10 May 2023
Posted:
11 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. What are centers of endemism
3. Endemism in different groups of organisms
4. How are endemics distributed and related to environmental heterogeneity in space?
5. How is endemism related to continuity, change in time and isolation?
6. How important are zoos and botanical gardens for endemics and vice versa?
7. Conclusion and outlook: What are the perspectives for endemics and centers of endemism?
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Candolle, A.B. Essai elementaire de geographie botanique. Dictionnaire des sciences naturelles 1820, 18, 1–64. [Google Scholar]
- Bramwell, D. (Ed.) Plants and Islands; Academic Press: London, UK, 1979; ISBN 0-12-125460-7. [Google Scholar]
- Hendrych, R. Material and notes about the geography of the highly stenochoric to monotopic endemic species of the European flora. Acta Universitatis Carolinae-Biologica 1982, 3, 335–372. [Google Scholar]
- Cardona, M.A.; Contandriopoulos, J. Endemism and evolution in the islands of the Western Mediterranean. In Plants and Islands; Bramwell, D., Ed.; Academic Press: London, UK; New York, NY, USA; Toronto, ON, Canada; 2007; pp. 133–170. [Google Scholar]
- Clark, V.R.; Barker, N.P.; Mucina, L. The Sneeuberg: A new centre of floristic endemism on the Great Escarpment. South Africa. S. Afr. J. Bot. 2008, 75, 196–238. [Google Scholar] [CrossRef]
- Bruchmann, I. Plant endemism in Europe: Spatial distribution and habitat affinities of endemic vascular plants. Doctoral Dissertation, University of Flensburg, Germany, 2011. [Google Scholar]
- Anádon-Irizarry, V.; Wege, D.C.; Upgren, A.; Young, R.; Boom, B.; Le´on, Y.M.; Arias, Y.; Koenig, K.; Morales, A.L.; Burke, W.; Perez-Leroux, A.; Levy, S.; Koenig, S.; Gape, L. Sites for priority biodiversity conservation in the Caribbean Islands Biodiversity Hotspot. J. Threatened Taxa 2012, 4, 2806–2844. [Google Scholar] [CrossRef]
- Irl, S.D.H.; Harter, D.E.V. , Steinbauer, M.J.; Puyol, D.G.; Fernandez-Palacios, J.M., Jentsch, A. & Carl Beierkuhlein. Climate vs. topography - spatial patterns of plant species diversity and endemism on a high-elevation island. J. Ecol. 2015, 103, 1621–1633. [Google Scholar] [CrossRef]
- Myers, N. The biodiversity challenge: Expended hotspots analysis. Environmentalist 1990, 10, 243–256. [Google Scholar] [CrossRef]
- Wyk, A.E. Van; Smith, G., F. Regions of floristic endemism in southern Africa: A review with emphasis on succulents; Umdaus Press: Pretoria, South Africa, 2001; ISBN 1919766197. [Google Scholar]
- Melendo, M.; Gimenez, E.; Cano, E.; Gomez-Mercado, F.; Valle, F. The endemic flora in the south of the Iberian Peninsula: Taxonomic composition, biological spectrum, pollination, reproductive mode and dispersal. Flora 2003, 198, 260–276. [Google Scholar] [CrossRef]
- Barthlott, W.; Mutke, J.; Rafiqpoor, D.; Kier, G. , Kreft, H. Global centers of vascular plant diversity. Nova Acta Leopoldina 2005, 92, 61–83. [Google Scholar]
- IUCN, *!!! REPLACE !!!* (Ed.) The IUCN Red List of Threatened Species. Version 2022-2, 2022. Available online: https://www.iucnredlist.org (accessed on 26 January 2023).
- Hobohm, C.; Tucker, C. The increasing importance of endemism, responsibility, the media and education. In Endemism in vascular plants; Hobohm, C., Ed.; Springer: Dordrecht, The Netherlands, 2014; Volume 9, pp. 3–9. [Google Scholar]
- Burgess, N.D.; Clarke, G.P.; Rodgers, W.A. Coastal forests of eastern Africa: Status, endemism patterns and their potential causes. Biol. J. Linn. Soc. 1998, 64, 337–367. [Google Scholar] [CrossRef]
- Chambers, T.C.; Drinnan, A.N.; McLoughlin, S. Some morphological features of Wollemi Pine (Wollemia nobilis: Araucariaceae) and their comparison to cretaceous plant fossils. Int. J. Plant. Sci. 1998, 159, 160–171. [Google Scholar] [CrossRef]
- Ackerman, J.D.; Trejo-Torres, J.C.; Crespo-Chuy, Y. Orchids of the West-Indies: Predictability of diversity and endemism. J. Biogeography 2007, 34, 779–786. [Google Scholar] [CrossRef]
- Clark, V.R.; Bentley, J.; Dold, A.P.; Zikishe, V.; Barker, N.P. The rediscovery of the Great Winterberg endemic Lotononis harveyi B.–E.van Wyk after 147 years, and notes on the poorly known Amathole endemic Macowania revoluta Oliv. (southern Great Escarpment, South Africa). PhytoKeys 2016, 62, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Lesica, P.; Yurkewycz, R.; Crone, E.E. Rare plants are common where you find them. American journal of Botany 2006, 93, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Bevill, R.L.; Louda, S.M. Comparisons of related rare and common species in the study of plant rarity. Conservation Biology 1999, 13, 493–498. [Google Scholar] [CrossRef]
- Lavergne, S.; Thompson, J.D.; Garnier, E.; Debussche, M. The biology and ecology of narrow endemic and widespread plants: A comparative study of trait variation in 20 congeneric pairs. Oikos 2004, 107, 505–518. [Google Scholar] [CrossRef]
- Casazza, C.; Barberis, G.; Minuto, L. Ecological characteristics and rarity of endemic plants of the Italian Maritime Alps. Biol. Conserv. 2005, 123, 361–371. [Google Scholar] [CrossRef]
- Hartley, S.; Kunin, W.E. Scale dependency of rarity, extinction risk, and conservation priority. Conservation biology 2003, 17, 1559–1570. [Google Scholar] [CrossRef]
- Rabinowitz, D. Seven forms of rarity. In The Biological aspects of rare plant conservation; Synge, H., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1981; pp. 205–217. [Google Scholar]
- Rabinowitz, D.; Cairns, S.; Dillon, T. Seven forms of rarity and their frequency in the flora of British Isles. In Conservation Biology: Science of Scarcity and Diversity; Soulé, M.E., Ed.; Sinauer Associates: Sunderland, Mass, 1986; pp. 182–204. [Google Scholar]
- Barker, N.P.; Fish, L. Rare and infrequent southern African grasses: Assessing their conservation status and understanding their biology. Biodiversity and Conservation 2007, 16, 4051–4079. [Google Scholar] [CrossRef]
- Caiafa, A.N.; Martins, F.R. Forms of rarity of tree species in the southern Brazilian Atlantic rainforest. Biodiversity and conservation 2010, 19, 2597–2618. [Google Scholar] [CrossRef]
- Choe, H.; Thorne, J.H.; Hijmans, R.; Seo, C. Integrating the Rabinowitz rarity framework with a national plant inventory in South Korea. Ecology and evolution 2019, 9, 1353–1363. [Google Scholar] [CrossRef]
- Toledo, L.F.; Becker, C.G.; Haddad, C.F.; Zamudio, K.R. Rarity as an indicator of endangerment in neotropical frogs. Biological Conservation 2014, 179, 54–62. [Google Scholar] [CrossRef]
- McClain, C.R. The commonness of rarity in a deep-sea taxon. Oikos 2021, 130, 863–878. [Google Scholar] [CrossRef]
- Jetz, W.; Rahbek, C.; Colwell, R.K. The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecology Letters 2004, 7, 1180–1191. [Google Scholar] [CrossRef]
- Kruckeberg, A.R.; Rabinowitz, D. Biological aspects of endemism in higher plants. Annual review of ecology and systematics 1985, 16, 447–479. [Google Scholar] [CrossRef]
- Riemann, H.; Ezcurra, E. Endemic regions of the vascular flora of the peninsula of Baja California, Mexico. J. Veg. Sci. 2007, 18, 327–336. [Google Scholar] [CrossRef]
- Nowak, A.; Nobis, M. Tentative list of endemic vascular plants of the Zeravshan Mts in Tajikistan: Distribution, habitat preferences and conservation status of species. Biodivers. Res. Conserv. 2010, 19, 65–80. [Google Scholar] [CrossRef]
- Brochmann, C.; Rustan, O.H.; Lobin, W.; Kilian, N. The endemic vascular plants of the Cape Verde Islands, W. Africa. Sommerfeltia 1997, 24, 1–356. [Google Scholar] [CrossRef]
- Izquierdo, I.; Martín, J.L.; Zurita, N.; Arechavaleta, M. (Eds). Lista de especies silvestres de Canarias (hongos, plantas, y animales terrestres); Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de Canarias: La Laguna, Spain, 2004; ISBN 84-89729-23-9. [Google Scholar]
- Latheef, S.A.; Prasad, B.; Bavaji, M.; Subramanyam, G. A database on endemic plants at Tirumala hills in India. Bioinformation 2008, 2, 260–262. [Google Scholar] [CrossRef]
- Clark, V.R.; Timberlake, J.R.; Hyde, M.A.; Mapaura, A.; Palgrave, M.C.; Wursten, B.T.; Ballings, P.; Burrows, J.E.; Linder, H.P.; McGregor, G.K.; Chapano, C.; Plowes, D.C.H.; Childes, S.L.; Dondeyne, S.; Müller, T.; Barker, N.P. ; Barker, N.P. A first comprehensive account of floristic diversity and endemism on the Nyanga Massif, Manica Highlands (zimbabwe-Mozambique). Kirkia 2017, 19, 1–53. [Google Scholar]
- Lowry, P.P. Diversity, endemism, and extinction in the flora of New Caledonia: A review. In Rare, threatened, and endangered floras of Asia and the Pacific Rim; Peng, C.I.; Lowry, P.P., Eds.; Academia Sinica Monograph Series; 1998; Volume 16, pp. 181–206.
- Cowling, R.M.; Lombard, A.T. Heterogeneity, speciation/extinction history and climate: Explaining regional plant diversity patterns in the Cape Floristic Region. Divers. Distrib. 2002, 8, 163–179. [Google Scholar] [CrossRef]
- Giménez, E.; Melendo, M.; Valle, F.; Gomez-Mercado, F.; Cano, E. Endemic flora biodiversity in the south of the Iberian peninsula: Altitudinal distribution, life forms and dispersal modes. Biodivers. Conserv. 2004, 13, 2641–2660. [Google Scholar] [CrossRef]
- Helme, N.A.; Trinder-Smith, T.H. The endemic flora of the Cape Peninsula, South Africa. South Afr. J. Bot. 2006, 72, 205–210. [Google Scholar] [CrossRef]
- Kier, G.; Kreft, H.; Lee, T.M.; Jetz, W.; Ibisch, P.L.; Nowicki, C.; Mutke, J.; Barthlott, W. A global assessment of endemism and species richness across island and mainland regions. PNAS 2009, 106, 9322–9327. [Google Scholar] [CrossRef] [PubMed]
- Fenu, G.; Mattana, E.; Congiu, A.; Bacchetta, G. The endemic vascular flora of Supramontes (Sardinia), a high priority plant conservation area. Candollea 2010, 65, 347–358. [Google Scholar] [CrossRef]
- Huang, J.-H.; Chen, B.; Liu, C.; Lai, J.; Zhang, J.; Ma, K. Identifying hotspots of endemic woody seed plant diversity in China. Divers. Distrib. 2011, 18, 673–688. [Google Scholar] [CrossRef]
- Anguinano, M.; Dean, E.; Starbuck, T. Rodriguez, A.; Munguía-Lino, G. Diversity, species richness distribution and centers of endemism of Lycianthes (Capsiceae, Solanaceae) in Mexicao. Phytotaxa 2021, 514, 39–60. [Google Scholar] [CrossRef]
- Svenning, J.-C.; Normand, S.; Skov, F. Plio-Pleistocene climate change and geographic heterogeneity in plant-diversity relationships. Ecography 2009, 32, 13–21. [Google Scholar] [CrossRef]
- Schuldt, A.; Assmann, T. Environmental and historical effects on richness and endemism patterns of carabid beetles in the western Palearctic. Ecography 2009, 32, 705–714. [Google Scholar] [CrossRef]
- Fritz, S.A.; Rahbek, C. Global patterns of amphibian phylogenetic diversity. J. Biogeogr. 2012, 39, 1373–1382. [Google Scholar] [CrossRef]
- Voskamp, A.; Baker, D.J.; Stephens, P.A.; Valdes, P.J.; Willis, S.G. Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds. J. Biogeogr. 2017, 44, 709–721. [Google Scholar] [CrossRef]
- Taylor, P.J.; Kearney, T.; Dalton, D.L.; Chakona, C.; Kelly, C.M.R.; Barker, N.P. Biomes, geology and past climate drive speciation of laminate-toothed rats on South African mountains (Murinae: Otomys). Zoological Journal of the Linnean Society 2019, 20, 1–21. [Google Scholar] [CrossRef]
- Hobohm, C.; Beierkuhnlein, C.; Börtitz, C.; Clark, V.R.; El Balti, N.; Fichtner, A.; Franklin, S.; Gaens, T.; Härdtle, W.; Hansen, A.S.; Janišová, M.; Jansen, J.; Lindner, M.; Moro-Richter, M.; Müller-Benedict, V.; Ott, K.; Reinmuth, K.C.; van Rooijen, N.; Sandberg, M.; Schamineé, J.H.J.; Tang, C.Q.; Vahle, H.-C.; Vanderplank, S.E. Land Use Change and the Future of Biodiversity. In Environmental Challenges and Solutions; Springer: Cham, 2021; pp. 451–483. [Google Scholar]
- Fjeldsa, J.; Lovett, J.C. Geographical patterns of old and young species in African forest biota: The significance of specific montane areas as evolutionary centres. Biodiv. Cons. 1997, 6, 325–346. [Google Scholar] [CrossRef]
- Goldie, X.; Gillman, L.; Crisp, M.; Wright, S. Evolutionary speed limited by water in arid Australia. Proc. Biol. Sci. 2010, 277, 2645–2653. [Google Scholar] [CrossRef] [PubMed]
- Bruchmann, I.; Hobohm, C. Factors that create and increase endemism. - In, Hobohm, C., Ed. Endemism in vascular plants. Plant and Vegetation 2014, 9, 51–68. [Google Scholar]
- Alagador, D.; Cerdeira, J.O.; Araujo, M.B. Climate change, species range shifts and dispersal corridors: An evaluation of spatial conservation models. Methods in Ecology and Evolution 2016, 7, 853–866. [Google Scholar] [CrossRef]
- Zobel, M. The species pool concept as a framework for studying patterns of plant diversity. J. Veg. Sci. 2016, 27, 8–18. [Google Scholar] [CrossRef]
- Zizka, G.; Klemmer, K. Pflanzen- und Tierwelt der Galapagos-Inseln - Entstehung, Erforschung, Gefährdung und Schutz. Kleine Senckenbergreihe 1994, 20, 1–151. [Google Scholar]
- Wilmé, L.; Ravokatra, M.; Dolch, R.; Schuurman, D.; Mathieu, E.; Schuetz, H.; Waeber, P.O. Toponyms for centers of endemism in Madagascar. Madagascar Conservation & Development 2012, 7, 30–40. [Google Scholar]
- Cordier, J.M.; Lescano, J.N.; Ríos, N.E.; Leynaud, G.C.; Nori, J. Climate change threatens micro-endemic amphibians of an important South American high-altitude center of endemism. Amphibia-Reptilia 2019, 41, 233–243. [Google Scholar] [CrossRef]
- Olefeld, J.L.; Bock, C.; Jensen, M.; Vogt, J.C.; Sieber, G.; Albach, D.; Boenigk, J. ; Boenigk, J. Centers of endemism of freshwater protists deviate from pattern of taxon richness on a continental scale. Scientific Reports 2020, 10, 14431. [Google Scholar] [CrossRef]
- Suissa, J.S.; Sundue, M.A. Diversity Patterns of Neotropical Ferns: Revisiting Tryon’s Centers of Richness and Endemism. American Fern Journal 2020, 110, 211–232. [Google Scholar] [CrossRef]
- Robuchon, M.; Pavoine, S.; Véron, S.; Delli, G.; Faith, D.P.; Mandrici, A.; Pellens, R.; Dubois, G.; Leroy, B. Revisiting species and areas of interest for conserving global mammalian phylogenetic diversity. Nat. Comm. 2021, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.D.; Heywood, V.H.; Hamilton, A.C. (Eds.) Centres of plant diversity: Vol 1, Europe, Africa, South West Asia and the Middle East; IUCN Publications: Cambridge, UK, 1994; ISBN 2-8317-0197-X. [Google Scholar]
- Davis, S.D.; Heywood, V.H. , Hamilton, A.C. (Eds.) Centres of plant diversity: Vol 2, Asia, Australasia and the Pacific; IUCN Publications: Cambridge, UK, 1995; ISBN 2-8317-0198-8. [Google Scholar]
- Davis, S.D.; Heywood, V.H.; Herrera-MacBryde, O.; Villa-Lobos, J.; Hamilton, A.C. (Eds.) Centres of plant diversity: Vol 3, the Americas; IUCN Publications: Cambridge, UK, 1997; ISBN 2-8317-0199-6. [Google Scholar]
- Olefeld, J.L.; Bock, Jensen, M. ; Vogt, J.C.; Sieber, G.; Albach, D.; Boenigk, J. Centers of endemism of freshwater protists deviate from pattern of taxon richness on a continental scale. Scientific Reports 2020, 10, 14431. [Google Scholar] [CrossRef] [PubMed]
- Waeber, P. , Wilmé, L.; Mercier, J.L.; Rakotozafy, L.M.A.; Garcia, C.; Sorg, J.P. The role of lakes in the context of the centers of endemism. Akon’ny Ala 2015, 32, 34–47. [Google Scholar]
- Clark, V.R.; Barker; N. P.; Mucina, L. The Sneeuberg: A new centre of floristic endemism on the Great Escarpment, South Africa. S. Afr. J. Bot. 2009, 75, 196–238. [Google Scholar] [CrossRef]
- Clark, V.R.; Dold, A.P.; McMaster, C.; McGregor, G.; Bredenkamp, C.; Barker, N. Rich sister, poor cousin: Plant diversity and endemism in the Great Winterberg-Amatholes (Great Escarpment, Eastern Cape, South Africa). South African Journal of Botany 2014, 92, 159–174. [Google Scholar] [CrossRef]
- Clayton, W.D. Chorology of the genera of Gramineae. Kew Bulletin 1975, 30, 111–132. [Google Scholar] [CrossRef]
- Fattorini, S. A history of chorological categories. History and Philosophy of the Life Sciences 2016, 38, 1–21. [Google Scholar] [CrossRef]
- Linder, H.P. , J., Mutke, J.M., Barthlott, W., Jürgens, N., Rebelo, T.; Küper, W. A numerical re-evaluation of the sub-Saharan phytochoria of mainland Africa. In Plant diversity and complexity patterns: Local, regional and global dimensions. Proceedings of an International Symposium held at the Royal Danish Academy of Sciences and Letters in Copenhagen, Denmark, 25-28 May, 2003.; Küper, W. A numerical re-evaluation of the sub-Saharan phytochoria of mainland Africa. In Plant diversity and complexity patterns: Local, regional and global dimensions. Proceedings of an International Symposium held at the Royal Danish Academy of Sciences and Letters in Copenhagen, Denmark, 25-28 May, 2003; pp. 2005229–252. [Google Scholar]
- Bradshaw, P.L.; Colville, J.F.; Linder, H.P. Optimising regionalisation techniques: Identifying centres of endemism in the extraordinarily endemic-rich Cape Floristic Region. PLoS ONE 2015, 10, e0132538. [Google Scholar] [CrossRef]
- Hobohm, C.; Tucker, C. How to quantify endemism. Plant and Vegetation 2014, 9, 11–48. [Google Scholar]
- Rosauer, D.; Laffan, S.W.; Crisp, M.D.; Donnellan, S.C.; Cool, L.G. Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. Mol. Ecol. 2009, 18, 4061–4072. [Google Scholar] [CrossRef] [PubMed]
- Chiarucci, A.; Beierkuhnlein, C.; Essl, F.; Fernández-Palacios, J.M.; Jentsch, A.; Hobohm, C.; Kreft, H.; Krestov, P.V.; Löbel, S.; Steinbauer, M.J.; Storch, D.; Triantis, K.; Weigelt, P.; Dengler, J. Global patterns of vascular plant species richness and endemicity, a new approach to identify hotspots. In Biodiversity & Vegetation: Patterns, Processes, Conservation; Mucina, L., Price, J.N., Kalwij, J.M., Eds.; Kwongan Foundation: Perth, AU, USA, 2014; p. 78. [Google Scholar]
- Herrera, J.P. Prioritizing protected areas in Madagascar for lemur diversity using a multidimensional perspective. Biol. Cons. 2017, 207, 1–8. [Google Scholar] [CrossRef]
- Cowling, R.M.; Samways, M.J. Predicting global patterns of endemic plant species richness. Biodiversity Letters 1995, 2, 127–131. [Google Scholar] [CrossRef]
- Hobohm, C.; Janišová, M.; Steinbauer, M.; Landi, S.; Field, R.; Vanderplank, S.; Beierkuhnlein, C.; Grytnes, J.-A.; Vetaas, O.R.; Fildelis, A.; De Nascimento. L.; Clark, V.R.; Fernández-Palacios, J.M.; Franklin, S.; Guarino, R.; Huang, J.; Krestov, P.; Ma, K.; Onipchenko, V.; Palmer, M.W.; Fragomeni, S.M.; Stolz, C.; Chiarucci, A. Global endemics-area relationships of vascular plants. Perspectives Ecol. Cons. 2019, 17, 41–49. [Google Scholar]
- Daru, B.H.; Farooq, H.; Antonelli, A.; Faurby, S. Endemism patterns are scale dependent, Nature Communications 2020, 11, 1–11. 11. [CrossRef]
- Shipley, B.; McGuire, J.L. Interpreting and integrating multiple endemism metrics to identify hotspots for conservation priorities. Biol. Cons. 2021, 265, 109403. [Google Scholar] [CrossRef]
- Jacobs, J.G.; Lashley, M.A.; Cove, M.V. Fawn counts and adult female site use are mismatched indicators of habitat quality in an endangered deer. Diversity 2021, 13, 92. [Google Scholar] [CrossRef]
- Pinzari, C.; Peck, R.; Zinn, T.; Gross, D.; Montoya-Aiona, K.; Brinck, K.; Gorresen, M.; Bonaccorso, F. Hawaiian Hoary Bat (Lasiurus cinereus semotus): Activity, diet and prey availability at the Waihou Mitigation Area, Maui. Technical Report 2019 HCSU-090, 1-60.
- Romo, H. , García-Barros, E.; Lobo, J.M. Identifying recorder-induced geographic bias in an Iberian butterfly database. Ecography 2006, 29, 873–885. [Google Scholar] [CrossRef]
- Grant, P.B.C.; Samways, M.J. Micro-hotspot determination and buffer zone value for Odonata in a globally significant biosphere reserve. Biol. Conserv. 2011, 144, 772–781. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species. Version 2022-2. 2023. Available online: https://www.iucnredlist.org (accessed on 17 January 2023).
- Bailey, R.G. Ecoregions: The geography of oceans and continents; Springer; New York, NY, USA, 1998; ISBN 0-387-98311-2.
- Wiens, J.J. Faster diversification on land than sea helps explain global biodiversity patterns among habitats and animal phyla. Ecology Letters 2015, 18, 1234–1241. [Google Scholar] [CrossRef]
- Thode, V.A.; Inacio, C.D.; Eggers, L.; Reginato, M.; Souza-Chies, T.T. Spatial-temporal evolution and diversification in Sisyrinchium (Iridaceae) with emphasis on abiotic drivers. Bot. J. Linnean Soc. 2021, 199, 93–108. [Google Scholar] [CrossRef]
- Teske, P.R.; Sandoval-Castillo, J.; Waters, J.; Beheregaray, L.B. An overview of Australia's temperate marine phylogeography, with new evidence from high-dispersal gastropods. Journal of Biogeography 2017, 44, 217–229. [Google Scholar] [CrossRef]
- Murali, G.; Gumbs, R.; Meiri, S.; Roll, U. Global determinants and conservation of evolutionary and geographic rarity in land vertebrates. Science Advances 2021, 7. [Google Scholar] [CrossRef] [PubMed]
- Govaerts, R. How many species of seed plants are there? Taxon 2001, 50, 1085–1090. [Google Scholar] [CrossRef]
- Lydeard, C.; Cowie, R.H.; Ponder, W.F.; Bogan, A.E.; Bouchet, P.; Clark, S.A.; Cummings, K.S.; Frest, T.J.; Gargominy, O.; Herbert, D.G.; Hershler, R.; Perez, K.E.; Roth, B.; Seddon, M.; Strong, E.E.; Thompson, A.G. The global decline of nonmarine mollusks. BioScience 2004, 54, 321–330. [Google Scholar] [CrossRef]
- Paton, A.J.; Brummit, N.; Govaerts, R.; Harman, K.; Hinchcliffe, S.; Allkin, B.; Lughadha, N. . Towards target 1 of the global strategy for plant conservation: A working list of all known plant species – progress and prospects. Taxon 2008, 57, 602–611. [Google Scholar]
- Chapman, A.D. Numbers of Living Species in Australia and the World, 2nd. ed.; Canberra, Australia, 2009. ISBN 978-0-642-56860-1.
- Barrowclough, G.F.; Cracraft, J.; Klicka, J.; Zink, R.M. How many kinds of birds are there and why does it matter? PLoS ONE 2016, 11, e0166307. [Google Scholar] [CrossRef]
- Groombridge, B.; Jenkins, D. World atlas of biodiversity; University of California Press: Berkeley, 2002; ISBN 0-520-23668-8. [Google Scholar]
- Whittaker, R.J.; Fernández-Palacios, J. Island biogeography: Ecology, evolution, and conservation, 2nd ed.; Oxford University Press: Oxford, UK, 2007; ISBN 9780198566120. [Google Scholar]
- Rabitsch, W.; Essl, F. (Eds.) Endemiten – Kostbarkeiten in ¨Osterreichs Pflanzen- und Tierwelt; Umweltbundesamt: Vienna, Austria, 2009; ISBN 978-3-85328-049-2. [Google Scholar]
- Hobohm, C.; Janišová, M.; Jansen, J.; Bruchmann, I.; Deppe, U. 2014. Biogeography of endemic vascular plants - overview. In: Hobohm C (Ed). Endemism in vascular plants. Plant and Vegetation 2014, 9, 85–163. [Google Scholar]
- Walter, K.S. ; H. J.; Gillett, H.J. (Eds.) IUCN Red List of Threatened Plants, Ed.; The World Conservation Union: Gland, Switzerland; Cambridge, UK, 1998; ISBN 2-8317-0328-X. [Google Scholar]
- Vanderplank, S.E.; Moreira-Muñoz, A.; Hobohm, C.; Pils, G.; Noroozi, J.; Clark, V.R.; Barker, N.P.; Yang, W.; Huang, J.; Ma, K.; Tang, C.Q.; Werger, M.J.A.; Ohsawa, M.; Yang, Y. ,. Endemism in mainland regions: Case studies. Plant and Vegetation 2014, 9, 205–308. [Google Scholar]
- Zhang, Z.; Yan, Y.; Tian, Y.; He, J.-S.; Tang, Z. Distribution and conservation of orchid species richness in China. Biol. Cons. 2015, 181, 64–72. [Google Scholar] [CrossRef]
- Forman, R.T. Land mosaics: The ecology of landscapes and regions; Cambridge Univ. Press: Cambridge, UK, 1995; ISBN 978-1-59726-646-8. [Google Scholar]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends in Ecology & Evolution.
- Olofsson, J. , de Mazancourt, C.; Crawley, M.J. Spatial heterogeneity and plant species richness at different spatial scales under rabbit grazing. Oecologia 2008, 156, 825–834. [Google Scholar] [CrossRef]
- Megías, A.G.; Gómez, J.M.; Sánchez-Pinero, F. Spatio-temporal change in the relationship between habitat heterogeneity and species diversity. Acta Oecologica 2011, 37, 179–186. [Google Scholar] [CrossRef]
- Chen, J.; Shiyomi, M.; Wei, Z. 2015; 61. [CrossRef]
- Huston, M.A. Biological diversity: The coexistence of species on changing landscapes; Cambridge University Press: Cambridge, UK, 1994; ISBN 0-521-36093-5. [Google Scholar]
- Fortin, M.-J.; Dale, M.R.T. Spatial analysis: A guide for ecologists; Cambridge Univ. Press: Cambridge, UK, 2005; ISBN 0521143500. [Google Scholar]
- Pugh, P.J.A.; Convey, P. Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J. Biogeogr. 2008, 35, 2176–2186. [Google Scholar] [CrossRef]
- Huang, J.-H.; Chen, B.; Ying, J.-S.; Ma, K. Features and distribution patterns of Chinese endemic seed plant species. J. Syst. Evol. 2011, 49, 81–94. [Google Scholar] [CrossRef]
- Loiseau, N.; Mouquet, N.; Casajus, N.; Grenié, M.; Guéguen, M.; Maitner, B.; Mouillot, D.; Ostling, A.; Renaud, J.; Tucker, C.; Velez, L.; Thuiller, W.; Violle, C. ; Violle, C. Global distribution and conservation status of ecologically rare mammal and bird species, Nature Communications 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Pawlowski, B. Der Endemismus in der Flora der Alpen, der Karpaten und der Balkanischen Gebirge im Verhältnis zu den Pflanzengesellschaften. Mitteilungen der ostalpin-dinarischen pflanzensoziologischen Arbeitsgemeinschaft 1969, 9, 167–178. [Google Scholar]
- Talbot, S.S.; Yurtsev, B.A.; Murray, D.F.; Argus, G.W.; Bay, C.; Elvebakk, A. Atlas of rare endemic vascular plants in the Arctic. Conservation of Arctic flora and fauna (CAFF). Technical Report 1999, 3, 1–73. [Google Scholar]
- Beard, J.S.; Chapman, A.R.; Gioia, P. Species richness and endemism in the Western Australian flora. J. Biogeogr. 2000, 27, 1257–1268. [Google Scholar] [CrossRef]
- Jonsell, B.; Karlsson, T. Endemic vascular plants in Norden. In Flora Nordica. General volume; Jonsell, B., Ed.; Bergius Foundation: Stockholm, Sweden, 2004; pp. 139–159. [Google Scholar]
- Wollenberg, K.C.; Vieites, D.R.; van der Meijden, A.; Glaw, F.; Cannatella, D.C.; Vences, M. Patterns of endemism and species richness in Malagasy cophyline frogs support a key role of mountainous areas for speciation. Evolution 2008, 62, 1890–1907. [Google Scholar] [CrossRef]
- Colwell, R.K.; Lees, D.C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends in Ecology & Evolution 2000, 15, 70–76. [Google Scholar]
- McCain, C.M. The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. Journal of Biogeography 2004, 31, 19–31. [Google Scholar] [CrossRef]
- McCain, C.M. Elevational gradients in diversity of small mammals. Ecology 2005, 86, 366–372. [Google Scholar] [CrossRef]
- McCain, C.M.; Grytnes, J.-A. . Elevational Gradients in Species Richness. In Encyclopedia of Life Sciences (ELS); 2010. [CrossRef]
- Storch, D.; Keil, P.; Jetz, W. Universal species-area and endemics-area relationships at continental scales. Nature 2012, 488, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Varzinczak, L.H.; Zanata, T.B.; Moura, M.O.; Passos, F.C. Geographical patterns and current and short-term historical correlates of phylogenetic diversity and endemism for New World primates. J. Biogeography 2019, 47, 890–902. [Google Scholar] [CrossRef]
- Orme, C.; Davies, R.; Burgess, M.; Eigenbrod, F.; Pickup, N.; Olson, V.A.; Webster, A.J.; Ding, T.-S.; Rasmussen, P.C.; Ridgely, R.S.; Stattersfield, A.J.; Bennett, P.M. , Blackburn, T.M.; Gaston, K.J.; Owens, I.P.F. Global hotspots of species richness are not congruent with endemism or threat. Nature 2005, 436, 1016–1019. [Google Scholar] [CrossRef] [PubMed]
- Wikelski, M.; Wilcove, D.S. Endemic species in the narrowest niches. In The atlas of global conservation; Molnar, J.L., Ed.; University of California Press: Berkeley, 2010; ISBN 978-0-520-26256-0. [Google Scholar]
- Cronk, Q.C.; Percy, D.M. Endemism. In Encyclopedia of islands; Gillespie, R.G., Clague, D.A., Eds.; University of California Press: Berkeley, USA, 2009. [Google Scholar]
- Hobohm, C. Plant species diversity and endemism on islands and archipelagos - with special reference to the Macaronesian Islands. Flora 2000, 195, 9–24. [Google Scholar] [CrossRef]
- Hobohm, C.; Janišová, M.; Jansen, J.; Bruchmann, I.; Deppe, U. Biogeography of endemic vascular plants - overview. Plant and Vegetation 2014, 9, 85–163. [Google Scholar]
- Hobohm, C.; Müller-Benedict, V. Vergleich der Biodiversität insularer und kontinentaler Regionen unter besonderer Berücksichtigung der Endemitenvielfalt. Ber. RTG 2018, 30, 57–71. [Google Scholar]
- Stuessy, T.F.; Grau, J.; Zizka, G. Diversidad de plantas en las Islas Robinson Crusoe. In: Grau, J.; Zizka, G. Eds. Flora silvestre de Chile. Palmengarten Sonderheft 1992, 19, 54–66. [Google Scholar]
- Tryon, R. Biogeography of the Antillean fern flora. In Plants and islands; Bramwell, D., Ed.; 1979; pp. 55–68.
- Balslev, H.; Valencia, R.; Paz y Min ̃o, G.; Christensen, H.; Nielsen, I. Species count of vascular plants in one hectare of humid lowland forest in Amazonian Ecuador. In Forest biodiversity in North, Central and South America, and the Caribbean: Research and Monitoring; Dallmeier, F., Comiskey, J.A., Eds.; UNESCO: Paris, France, 1998; pp. 585–594. [Google Scholar]
- Rolecek, J.; Drevojan, P.; Hajkova, P.; Goia, I.; Hajek, M. Update on maxima of fine-scale vascular plant species richness in a Transsylvanian steppe meadow. Tuexenia 2021, 41, 459–466. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The structure, distribution, and biomass of the world’s forests. Ann. Rev. Ecol. Evol. Syst. 2013, 593–622. [Google Scholar] [CrossRef]
- Keith, H.; Mackey, B.G.; Lindenmayer, D.B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl. Acad. Sci. 2009, 106, 11635–40. [Google Scholar] [CrossRef] [PubMed]
- Morison, J.I.L.; Piedade, M.T.F.; Müller, E.; Long, S.P.; Junk, W.J.; Jones, M.B. Very high productivity of the C4 aquatic grass Echinochloa polystachya in the Amazon floodplain confirmed by net ecosystem CO2 flux measurements. Oecologia 2000, 125, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Piedade, M.T.F.; Long, S.P.; Junk, W.J. Leaf and canopy photosysthesis CO2 uptake of a stand of Echinochloa polystachya on the Amazon floodplain. Funct. Ecol. 1994, 11, 60–65. [Google Scholar] [CrossRef]
- Stuessy, T.F.; Ono, M. (Eds.) Evolution and speciation of island plants; Cambridge University Press: Cambridge, UK, 1998; ISBN 0-521-49653-5. [Google Scholar]
- Roberts, B.A.; Proctor, J. (Eds.) The ecology of areas with serpentinized rocks: A world view; Kluwer Academic Publishers: Dordrecht, Netherlands, 1992; ISBN 978-94-011-3722-5. [Google Scholar]
- Stevanovic, V.; Tan, K.; Iatrou, G. Distribution of the endemic Balkan flora on serpentine I: Obligate serpentine endemics. Plant. Syst. Evol. 2003, 242, 149–170. [Google Scholar] [CrossRef]
- Hobohm, C. , Moro-Richter, M.; Beierkuhnlein, C. Distribution and Habitat Affinity of Endemic and Threatened Species - Global Assessment. In Environmental Challenges and Solutions; 2021; pp. 233–277.
- MacArthur, R.; Wilson, E.O. Island Biogeography; Princeton University Press: Princeton, UK, 1967; ISBN 0-691-08836-5. [Google Scholar]
- Humphries, C.J. Endemism and evolution in Macaronesia. In Plants and islands; Bramwell, D., Ed.; Academic Press: London, UK, 1979. [Google Scholar]
- Givnish, T.J. Adaptive radiation, dispersal, and diversification of the Hawaiian Lobeliads. In The biology of biodiversity; Kato, M., Ed.; Springer: Tokyo, Japan, 2000; pp. 67–90. [Google Scholar]
- Mucina, L.; Wardell-Johnson, G. Landscape age and soil fertility, climatic stability, and fire regime predictability: Beyond the OCBIL framework. Plant Soil 2011, 341, 1–23. [Google Scholar] [CrossRef]
- Rosauer, D.; Jetz, W. Phylogenetic endemism in terrestrial mammals. Global Ecol. Biogeogr. 2014, 24, 168–179. [Google Scholar] [CrossRef]
- Médail, F.; Verlaque, R. Ecological characteristics and rarity of endemic vascular plants from Southeastern France and Corsica: Implications for biodiversity conservation. Biol. Cons. 1997, 80, 269–281. [Google Scholar] [CrossRef]
- Pärtel, M. Local plant diversity patterns and evolutionary history at local scale. Ecology 2002, 83, 2361–2366. [Google Scholar] [CrossRef]
- Price, M.R.; Hadfield, M.G. Population genetics and the effects of a severe bottleneck in an ex situ population of critically endangered hawaiian tree snails. PLoS ONE 2014, 9, e114377. [Google Scholar] [CrossRef]
- Moreira-Muñoz, A.; Elórtegui Francioli, S.; Hobohm, C. , Sequeira, M. de 2014. Endemism on islands: Case Studies. Plant and Vegetation 2014, 9, 165–204. [Google Scholar]
- Linder, H.P.; Barker, N.P. Does polyploidy facilitate long-distance dispersal? Annals of Botany 2014, 113, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Meudt, H.M.; Albach, D.C.; Tanentzap, A.J.; Igea, J.; Newmarch, S.C.; Brandt, A.J.; Lee, W.G.; Tate, J.A. Polyploidy on islands: Its emergence and importance for diversification. Frontiers in plant science 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Reiss, M.J. Optimization theory in behavioural ecology. J. Biol. Educ. 1987, 21, 241–247. [Google Scholar] [CrossRef]
- Parker, G.A.; Maynard Smith, J. Optimality theory in evolutionary biology. Nature 1990, 348, 27–33. [Google Scholar] [CrossRef]
- Richardson, R. C Optimization in evolutionary ecology. In Proceedings of the Biennial Meeting of the Philosophy of Science Foundation; Cambridge University Press, 1994; Volume 1, pp. 13–21. [Google Scholar]
- Fukami, T.; Morin, P.J. Productivity-species diversity relationships depend on the history of community assembly. Nature 2003, 424, 423–426. [Google Scholar] [CrossRef]
- Goh, C.K.; Tan, K.C. Evolutionary multi-objective optimization. In uncertain environments: Issues and algorithms; Springer: Berlin, Germany, 2009; ISBN 978-3-540-95975-5. [Google Scholar]
- Reluga, T.C.; Shaw, A.K. Resource distribution drives the adaption of migratory, partially migratory, or residential strategies. Theor. Ecol. 2015, 8, 437–447. [Google Scholar] [CrossRef]
- McGlone, M.S.; Duncan, R.P.; Heenan, P.B. Endemism, species selection and the origin and distribution of the vascular plant flora of New Zealand. J. Biogeogr. 2001, 28, 199–216. [Google Scholar] [CrossRef]
- López-Aguirre, C.; Hand, S.J.; Laffan, S.W.; Archer, M. ; Archer, M. Zoogeographical regions and geospatial patterns of phylogenetic diversity and endemism of New World bats. Ecography 2019, 6, 1188–1199. [Google Scholar] [CrossRef]
- Hobohm, C.; Vanderplank, S.E. Resources for Humans, Plants and Animals: Who is the Ruler of the Driver? And: Can Resource Use Explain Everything? In Environmental Challenges and Solutions; 2021; pp. 79–106.
- Beierkuhnlein, C.; Walentowitz, A.; Welss, W. FloCan—A Revised Checklist for the Flora of the Canary Islands. Diversity 2021, 13, 480. [Google Scholar] [CrossRef]
- Dynesius, M.; Jansson, R. Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences 2000, 97, 9115–9120. [Google Scholar] [CrossRef]
- Jansson, R.; Dynesius, M. The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annual review of ecology and systematics 2002, 33, 741–777. [Google Scholar] [CrossRef]
- Magellan, K.; Weyl, O.L.F.; Booth, A.J. Preference for artificial refugia over natural refugia in an endangered fish. Diversity 2021, 13, 635. [Google Scholar] [CrossRef]
- Jansson, R. Global patterns in endemism explained by past climatic change. Proc. R. Soc. Lond. B 2003, 270, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Magoulick, D.D.; Kobza, R.M. The role of refugia for fishes during drought: A review and synthesis. Freshw. Biol. 2003, 48, 1186–1198. [Google Scholar] [CrossRef]
- Médail, F.; Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 2009, 36, 1333–1345. [Google Scholar] [CrossRef]
- Tang, C.Q.; Matsui, T.; Ohashi, H.; Dong, Y.-F.; Momohara, A.; Herrando-Moraira, S.; Qian, S.; Yang, Y.; Ohsawa, M.; Luu, H.T.; Grote, P.J.; Krestov, P.V.; LePage, B.; Werger, M.; Robertson, K.; Hobohm, C.; Wang, C.-Y.; Peng, M.-C. , Chen, X.; Wang, H.-C.; Su, W.-H.; Zhou, R.; Li, S.; He, L.-Y.; Yan, K.; Zhu, M.-Y.; Hu, J.; Yang, R.-H.; Li, W.-J.; Tomita, M.; Wu, Z.-L.; Yan, H.-Z.; Zhang; G.-F.; He, H.; Yi. S.-R.; Gong, H.; Song, K.; Song, D.; Li, X.-S.; Zhang, Z.-Y.; Han, P.-B.; Shen, L.-Q.; Huang, D.-S.; Luo, K.; López-Pujol, J. Identifying long-term stable refugia for relict plant species in East Asia. Nature Communications 2018, 9, 4488. [Google Scholar] [CrossRef] [PubMed]
- Casazza, G.; Zappa, E.; Mariotti, M.G.; Medail, F.; Minuto, L. Ecological and historical factors affecting distribution pattern and richness of endemic plant species: The case of the maritime and Ligurian Alps hotspot. Divers. Distrib. 2008, 14, 47–58. [Google Scholar] [CrossRef]
- López-Aguirre, C.; Hand, S.J.; Laffan, S.W.; Archer, M. ; Archer, M. Phylogenetic diversity, types of endemism and the evolutionary history of New World bats. Ecography 2018, 41, 1955–1966. [Google Scholar] [CrossRef]
- Sampaio, M.B.; Schiel, N.; da Silva Souto, A. , 2020. From exploitation to conservation: A historical analysis of zoos and their functions in human societies. Ethnobiology and Conservation 2020, 9. [Google Scholar] [CrossRef]
- Marešová, J.; Frynta, D. Noah's Ark is full of common species attractive to humans: The case of boid snakes in zoos. Ecological Economics 2008, 64, 554–558. [Google Scholar] [CrossRef]
- Bowkett, A.E. Recent captive-breeding proposals and the return of the ark concept to global species conservation. Conservation Biology 2009, 23, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, T.; Gardner, R.; Kraaijeveld, A.R.; Riordan, P. Contributions of zoos and aquariums to reintroductions: Historical reintroduction efforts in the context of changing conservation perspectives. International Zoo Yearbook 2017, 51, 15–31. [Google Scholar] [CrossRef]
- Fraser, J.; Wharton, D. , 2007. The future of zoos: A new model for cultural institutions. Curator: The Museum Journal 2007, 50, 41–54. [Google Scholar] [CrossRef]
- Palmer, C.; Kasperbauer, T.J.; Sandøe, P. Bears or butterflies? How should zoos make value-driven decisions about their collections. In The Ark and Beyond: The Evolution of Zoo and Aquarium Conservation; Minteer, B.A., Maienschein, J., Collins, J.P., Eds.; University of Chicago Press: Chicago, London, 2018; ISBN 978-0-226-538446-4. [Google Scholar]
- Brereton, J.; Brereton, S. Sixty years of collection planning: What species do zoos and aquariums keep? International Zoo Yearbook. 2020, 54, 131–145. [Google Scholar] [CrossRef]
- Martin, T.E.; Lurbiecki, H.; Joy, J.B.; Mooers, A.O. Mammal and bird species held in zoos are less endemic and less threatened than their close relatives not held in zoos. Animal Conservation 2014, 17, 89–96. [Google Scholar] [CrossRef]
- Fattorini, S.; Mantoni, C.; Dapporto, L.; Davini, G.; Di Biase, L. Using Botanical Gardens as Butterfly Gardens: Insights from a Pilot Project in the Gran Sasso and Monti Della Laga National Park (Italy). Conservation 2023, 3, 109–126. [Google Scholar] [CrossRef]
- Swanson, W.F.; Johnson, W.E.; Cambre, R.C.; Citino, S.B.; Quigley, K.B.; Brousset, D.M.; Morais, R.N.; Moreira, N.; O'Brien, S.J.; Wildt, D.E. Reproductive status of endemic felid species in Latin American zoos and implications for ex situ conservation. Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association 2003, 22, 421–441. [Google Scholar] [CrossRef]
- Barthlott, W.; Rauer, G.; Ibisch, P.L.; von den Driesch, M.; Lobin, W. Biodiversität und Botanische Gärten. In: Bundesamt für Naturschutz (Ed.): Botanische Gärten und Biodiversität. Erhaltung Biologischer Vielfalt durch Botanische Gärten und die Rolle des Übereinkommens über die Biologische Vielfalt (Rio de Janeiro, 1992). Landwirtschaftsverlag, Münster, Germany, 1999, pp. 1–24. ISBN 978-3-89624-615-8.
- Price, M.R.S.; Maunder, M.; Soorae, P.S.; Guerrant, E.O.; Havens, K. Ex situ support to the conservation of wild populations and habitats: Lessons from zoos and opportunities for botanic gardens. Ex situ plant conservation: Supporting species survival in the wild 2004, 3, 84. [Google Scholar]
- Conde, D.; Colchero, F.; Gusset, M.; Pearce-Kelly, P.; Byers, O.; Flesness, N.; Browne, R.; Jones, O. Zoos through the lens of the IUCN Red List: A global metapopulation approach to support conservation breeding programs. PLoS ONE 2013, 8, e80311. [Google Scholar] [CrossRef]
- Lammers, R.; Scholten, C.; Marcordes, B.; Pagel, T.; Rödder, D.; Ziegler, T. Malagasy birds in zoological gardens–an analysis of zoo databases as basis for improved ex situ conservation measures. Madagassische Vögel in Zoologischen Gärten - Zoodatenbankanalysen als Grundlage für verbesserten ex- situ-Artenschutz. Der Zoologische Garten 2022, 90, 121–150. [Google Scholar] [CrossRef]
- Carr, N. Star attractions and damp squibs at the zoo: A study of visitor attention and animal attractiveness. Tourism Recreation Research 2016, 41, 1–13. [Google Scholar] [CrossRef]
- Biega, A.; Lamont, M.; Mooers, A.; Bowkett, A.; Martin, T. Guiding the prioritization of the most endangered and evolutionary distinct birds for new zoo conservation programs. Zoo Biology 2019, 38. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Hilton-Taylor, C.; Angulo, A.; Böhm, M.; Brooks, T.M.; Butchart, S.H.; Carpenter, K.E.; Chanson, J.; Collen, B.; Cox, N.A.; Darwall, W.R. The impact of conservation on the status of the world’s vertebrates. Science 2010, 330, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Browne, R.K. , Wolfram, K., García, G., Bagaturov, M.F. and Pereboom, Z.J.J.M., 2011. Zoo-based amphibian research and conservation breeding programs. Amphibian and Reptile Conservation 2011, 5, 1–14. [Google Scholar]
- Biega, A.; Martin, T.E. Do amphibian conservation breeding programmes target species of immediate and future conservation concern? Oryx 2018, 52, 723–729. [Google Scholar] [CrossRef]
- Biega, A. , Greenberg, D.A., Mooers, A.O., Jones, O.R.; Martin, T.E. Global representation of threatened amphibians ex situ is bolstered by non-traditional institutions, but gaps remain. Animal Conservation 2017, 20, 113–119. [Google Scholar] [CrossRef]
- Ziegler, T.; Kamphausen, J.; Glaw, F.; Crottini, A.; Garcia, G.; Rödder, D.; Rauhaus, A.; Stenger, L.; Wahle, A. Threatened Malagasy amphibians and reptiles in zoos–a call for enhanced implementation of the IUCN’s One Plan Approach. Der Zoologische Garten 2022, 90, 21–69. [Google Scholar]
- Jenkins, R.K.; Tognelli, M.F.; Bowles, P.; Cox, N.; Brown, J.L.; Chan, L.; Andreone, F.; Andriamazava, A.; Andriantsimanarilafy, R.R.; Anjeriniaina, M.; Bora, P. Extinction risks and the conservation of Madagascar's reptiles. PLoS ONE, 1001; 9. [Google Scholar]
- Van Wilgen, N.J.; Wilson, J.R.U.; Elith, J.; Wintle, B.A.; Richardson, D.M. Alien invaders and reptile traders: What drives the live animal trade in South Africa? Animal Conservation 2010, 13, 24–32. [Google Scholar] [CrossRef]
- Marešová, J.; Frynta, D. Noah's Ark is full of common species attractive to humans: The case of bold snakes in zoos. Ecological Economics 2008, 64, 554–558. [Google Scholar] [CrossRef]
- Brereton, J.; Brereton, S. Short Communication: Examining taxa representation in Asian zoos and aquaria using historic records. Biodiversitas Journal of Biological Diversity 2021, 22, 2870–2875. [Google Scholar] [CrossRef]
- Carrizo, S.F. , Smith, K.G.; Darwall, W.R.T. Progress towards a global assessment of the status of freshwater fishes (Pisces) for the IUCN Red List: Application to conservation programmes in zoos and aquariums. International Zoo Yearbook 2013, 47, 46–64. [Google Scholar] [CrossRef]
- Valdez, J.W.; Mandrekar, K. Assessing the species in the CARES preservation program and the role of aquarium hobbyists in freshwater fish conservation. Fishes 2019, 4, 49. [Google Scholar] [CrossRef]
- Raghavan, R.; Dahanukar, N.; Tlusty, M.F.; Rhyne, A.L.; Kumar, K.K.; Molur, S.; Rosser, A.M. . Uncovering an obscure trade: Threatened freshwater fishes and the aquarium pet markets. Biological Conservation 2013, 164, 158–169. [Google Scholar] [CrossRef]
- Leiss, L. , Rauhaus, A., Rakotoarison, A., Fusari, C., Vences, M.; Ziegler, T. Review of threatened Malagasy freshwater fishes in zoos and aquaria: The necessity of an ex situ conservation network—A call for action. Zoo Biology 2022, 41, 244–262. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.E.; Brereton, J.E.; Rowden, L.J.; de Figueiredo, R.L.; Riley, L.M. What’s new from the zoo? An analysis of ten years of zoo-themed research output. Palgrave Communications 2019, 5. [Google Scholar] [CrossRef]
- Hughes, D.G.; Bennett, P.M. Captive breeding and the conservation of invertebrates. International zoo yearbook 1991, 30, 45–51. [Google Scholar] [CrossRef]
- Pearce-Kelly, P. Invertebrate propagation and re-establishment programmes: The conservation and education potential for zoos and related institutions. Creative Conservation: Interactive management of wild and captive animals.
- Pearce-Kelly, P.; Jones, R.; Clarke, D.; Walker, C.; Atkin, P.; Cunningham, A.A. , 1998. The captive rearing of threatened Orthoptera: A comparison of the conservation potential and practical considerations of two species' breeding programmes at the Zoological Society of London. Journal of Insect Conservation 1998, 2, 201–210. [Google Scholar] [CrossRef]
- Saul-Gershenz, L. Insect Zoos. In Encyclopedia of insects; Academic Press: Cambridge, MA, USA, 2009; pp. 516–523. [Google Scholar]
- Boppré, M.; Vane-Wright, R.I. The butterfly house industry: Conservation risks and education opportunities. Conservation and Society 2012, 10, 285–303. [Google Scholar] [CrossRef]
- Hobhouse, H. Seeds of change: Six plants that transformed mankind; Papermac, an imprint of Macmillan Publishers Ltd.: New York, USA, 1999; ISBN 9780333736289. [Google Scholar]
- Fara, P. Sex, botany and empire: The story of Carl Linnaeus and Joseph Banks; Icon Books: London, UK, 2004; ISBN 9780231134262. [Google Scholar]
- Westwood, M.; Cavender, N.; Meyer, A.; Smith, P. , 2021. Botanic garden solutions to the plant extinction crisis. Plants, People, Planet.
- Oldfield, S.F. Botanic gardens and the conservation of tree species. Trends in Plant Science 2009, 14, 581–583. [Google Scholar] [CrossRef]
- Donaldson, J.S. Botanic gardens science for conservation and global change. Trends in Plant Science 2009, 14, 608–613. [Google Scholar] [CrossRef]
- Miller, A.J.; Novy, A.; Glover, J.; Kellogg, E.A.; Maul, J.E.; Raven, P.; Jackson, P.W. , 2015. Expanding the role of botanical gardens in the future of food. Nature Plants 2015, 1, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Moreau, T.; Kuehny, J.; Novy, A.; Greene, S.L.; Khoury, C.K. Resetting the table for people and plants: Botanic gardens and research organizations collaborate to address food and agricultural plant blindness. Plants, People, Planet 2019, 1, 157–163. [Google Scholar] [CrossRef]
- Cheek, D.; Procheş, S. The value of arboreta in South Africa. South African Journal of Science 2022, 118, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Sharrock, S. Botanic gardens and food security–the results of BGCI's survey. BGJournal 2013, 10, 3–7. [Google Scholar]
- Maunder, M. Botanic gardens: Future challenges and responsibilities. Biodiversity & Conservation 1994, 3, 97–103. [Google Scholar]
- Smith, P. Building a global system for the conservation of all plant diversity: A vision for botanic gardens and Botanic Gardens Conservation International. Sibbaldia: The International Journal of Botanic Garden Horticulture 2016, 14, 5–13. [Google Scholar] [CrossRef]
- Smith, P. The challenge for botanic garden science. Plants, People, Planet 2019, 1, 38–43. [Google Scholar] [CrossRef]
- Maunder, M.; Higgens, S.; Culham, A. The effectiveness of botanic garden collections in supporting plant conservation: A European case study. Biodiversity & Conservation 2001, 10, 383–401. [Google Scholar]
- Mounce, R.; Smith, P.; Brockington, S. Ex situ conservation of plant diversity in the world’s botanic gardens. Nature Plants 2017, 3, 795–802. [Google Scholar] [CrossRef]
- Volis, S. Complementarities of two existing intermediate conservation approaches. Plant Diversity 2017, 39, 379–382. [Google Scholar] [CrossRef]
- O'Donnell, K.; Sharrock, S. The contribution of botanic gardens to ex situ conservation through seed banking. Plant Diversity 2017, 39, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Sun, W. The role of botanical gardens in scientific research, conservation, and citizen science. Plant diversity 2018, 40, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Asase, A.; Mzumara-Gawa, T.I.; Owino, J.O.; Peterson, A.T.; Saupe, E. Replacing “parachute science” with “global science” in ecology and conservation biology. Conservation Science and Practice 2022, 4, e517. [Google Scholar] [CrossRef]
- Van der Werff, H.; Consiglio, T. Distribution and conservation significance of endemic species of flowering plants in Peru. Biodiv. Cons. 2004, 13, 1699–1713. [Google Scholar] [CrossRef]
- Mackay, R. The atlas of endangered species: Threatened plants and animals of the world; Earthscan: London, UK, 2002; ISBN 1853838748. [Google Scholar]
- Harding, J. Historic deforestation and the fate of endemic invertebrate species in streams. New Zealand J. Marine Freshwater Research 2003, 37. [Google Scholar] [CrossRef]
- Pearson, R. Climate change, biodiversity and extinction risk. Sterling, New York, USA, 2011.
- Hobohm, C.; Vanderplank, S.E. . Change: Risks and Predictability. Environmental Challenges and Solutions 2021, 181–193. [Google Scholar] [CrossRef]
- Fordham, D.A.; Akçakaya, H.R.; Araújo, M.B.; Keith, D.A.; Brook, B.W. Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography 2001, 36, 1–9. [Google Scholar] [CrossRef]
- Gerlach, J. Climate change, species extinctions and ecosystem collaps. Phelsuma 2010, 17, 13–31. [Google Scholar]
- Crisp, M.D.; Laffan, S.; Linder, H.P.; Monro, A. Endemism in the Australian flora. J Biogeogr 2001, 28, 183–198. [Google Scholar] [CrossRef]
- Platts, P.J.; Gereau, R.E.; Burgess, N.D.; Marchant, R. Spatial heterogeneity of climate change in an Afromontane centre of endemism. Ecography 2013, 36, 518–530. [Google Scholar] [CrossRef]
- Li, T.; Luo, P.; Xiong, Q.; Yang, H.; Gu, X.; Qiu, Y.; Lin, B.; Liu, Y.; La, C. . Spatial heterogeneity of tree diversity response to climate warming in montane forests. Ecol. Evol. 2021, 11, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, J.M.; Molnar, J.L.; Jennings, M.; Revenga, C.; Spalding, M.D.; Boucher, T.M.; Robertson, J.C.; Heibel, T.J. The atlas of gobal conservation; University of California Press: Berkeley, 2010; ISBN 9780520262560. [Google Scholar]
- Hobohm, C. (Ed.) 2021. Perspectives for Biodiversity and Ecosystems. Environmental Challenges and Solutions 2021, 1–483. [Google Scholar]
- Hobohm, C.; Vanderplank, S.E. Change: Risks and Predictability. Environmental Challenges and Solutions 2021, 181–193. [Google Scholar]
- Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 2014, 44, 581–9. [Google Scholar] [CrossRef] [PubMed]
- McCallum, H.I. Lose biodiversity, gain disease. Proc. Natl. Acad. Sci. USA. 2015, 112, 8523–8524. [Google Scholar] [CrossRef] [PubMed]
- Aerts, R.; Honnay, O.; Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 2018, 127, 5–22. [Google Scholar] [CrossRef]
- Tribot, A.-S.; Deter, J.; Mouquet, N. Integrating the aesthetic value of landscapes and biological diversity. Proc. R. Soc. B. 2018, 285. [Google Scholar] [CrossRef]
- Giacinto, J.J.; Fricker, G.A. , Ritter, M.; Yost, J.; Doremus, J. Urban forest biodiversity and cardiovascular disease: Potential health benefits from California's street trees. PLoS ONE. 2021, 16, e0254973. [Google Scholar] [CrossRef]
- Chen, G.; Sun, W. The role of botanical gardens in scientific research, conservation, and citizen science. Plant diversity 2018, 40, 181–188. [Google Scholar] [CrossRef]
- Asase, A.; Mzumara Gawa, T.I.; Owino, J.O.; Peterson, A.T.; Saupe, E. Replacing "parachute science" with "global science" in ecology and conservation biology. Conservation Science and Practice.




| Maxima | Mode of calculation | Country/region | Ecosystem (dominant) | Climate (dominant) | |
|---|---|---|---|---|---|
| Endemism in mammals, birds plus reptiles [127] | > 70 | numbers of endemics by terrestrial ecoregion | Eastern Madagascar | Rainforest | Wet tropical and subtropical |
| Endemism in birds [128] | 92 | E/S as percentage value | Hawaiian Islands | div. | Humid tropical and subtropical oceanic |
| Endemism in freshwater animals (vertebrates and invertebrates) [128] | 54 | E/S as percentage value | Lake Baikal, Russia | Freshwater lake | Temperate continental |
| Endemism in fish, freshwater turtles, crocodiles plus amphibians [127] | >150 | numbers of endemics by freshwater ecoregion | High Andes, western India, East African Rift Valley lakes | Wetlands and freshwater ecosystems | Tropical and subtropical |
| Endemism in cichlid fishes [128] | up to 99 | E/S as percentage value | Tectonic Lakes Tanganyika, Malawi, Victoria, Africa | Freshwater lake | Tropical |
| Endemism in land snails [129] | c. 100 | E/S as percentage value (rounded) | Hawaiian Islands | div. | Humid tropical and subtropical oceanic |
| Endemism in vascular plants [129,130] | > 80 | E/S as percentage value | New Caledonia, Hawaiian Islands, Madagascar, St. Helena, New Zealand | div. | Subtropical and tropical oceanic |
| Endemism in vascular plants [131,132] | 4.7-5.1 and 4-4.4 | Relative distance of residual to regression (Res. E) | Mas a Tierra, Chile, and St. Helena | Forest | Subtropical oceanic |
| Endemism in pteridophytes [133] | 37/31.7 | Percentage of endemism/index of insularity | Easter Island | Reeds and grasslands replace the original tropical forest | Tropical oceanic/subtropical humid |
| Species richness in vascular plants [134] | 942 | No. of species per 10,000 m2 | Ecuador | Lowland rainforest | Humid tropical |
| Species richness in vascular plants [135] | 115 | No. of species per 10 m2 | Romania | Steppe meadow (currently grazed) | Temperate |
| Biomass [136,137] | 1,819 or 2,844 | tC ha-1 (above-ground biomass) or tC ha-1 (total biomass) | SE Australia | Eucalyptus regnans forest | Warm temperate |
| Productivity [138,139] | 8.93-9.93 | kg m-2 year-1 (dry matter) | Amazon | Swamps dominated by C4 grass Echinochloa polystachya | Wet tropical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
