Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Interpretable Machine Learning for Assessing the Cumulative Damage of a Reinforced Concrete Frame Induced by Seismic Sequences

Version 1 : Received: 8 May 2023 / Approved: 10 May 2023 / Online: 10 May 2023 (10:35:55 CEST)

A peer-reviewed article of this Preprint also exists.

Lazaridis, P.C.; Kavvadias, I.E.; Demertzis, K.; Iliadis, L.; Vasiliadis, L.K. Interpretable Machine Learning for Assessing the Cumulative Damage of a Reinforced Concrete Frame Induced by Seismic Sequences. Sustainability 2023, 15, 12768. Lazaridis, P.C.; Kavvadias, I.E.; Demertzis, K.; Iliadis, L.; Vasiliadis, L.K. Interpretable Machine Learning for Assessing the Cumulative Damage of a Reinforced Concrete Frame Induced by Seismic Sequences. Sustainability 2023, 15, 12768.

Abstract

This study investigates the interpretability of machine learning (ML) models applied to cumulative damage prediction during a sequence of earthquakes, emphasizing the use of techniques such as SHapley Additive exPlanations (SHAP), Partial Dependence Plots (PDPs), Local Interpretable Model-agnostic Explanations (LIME), Accumulated Local Effects (ALE), Permutation and Impurity-based technique. The research explores the cumulative damage during seismic sequences, aiming to identify critical predictors and assess their influence on the cumulative damage. Moreover, the predictors contribution in respect with the range of final damage is evaluated. Nonlinear time history analyses are applied to extract the seismic response of an eight-story Reinforced Concrete (RC) frame. The regression problem’s input variables are divided into two distinct physical classes: pre-existing damage from the initial seismic event and seismic parameters representing the intensity of the subsequent earthquake, expressed by Park and Ang damage index (DIPA) and Intensity Measures (IMs), respectively. The study offers a comprehensive review of cutting-edge ML methods, hyperparameter tuning, and ML method comparisons. A LightGBM model emerges as the most efficient, among 15 different ML methods examined, with critical predictors for final damage being the initial damage caused by the first shock and the IMs of the subsequent shock: IFVF and SIH. The importance of these predictors is supported by feature importance analysis and local/global explanation methods, enhancing the interpretability and practical utility of the developed model.

Keywords

seismic sequence; interpretable machine learning; successive earthquakes; seismic dama-ge prediction; seismic damage accumulation; machine learning; explainable machine learning

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.