Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Quantifying Grassland Biomass and Regenerative Grazing Using Satellite Remote Sensing and Machine Learning

Version 1 : Received: 28 April 2023 / Approved: 28 April 2023 / Online: 28 April 2023 (07:15:03 CEST)

A peer-reviewed article of this Preprint also exists.

Ogungbuyi, M.G.; Guerschman, J.P.; Fischer, A.M.; Crabbe, R.A.; Mohammed, C.; Scarth, P.; Tickle, P.; Whitehead, J.; Harrison, M.T. Enabling Regenerative Agriculture Using Remote Sensing and Machine Learning. Land 2023, 12, 1142. Ogungbuyi, M.G.; Guerschman, J.P.; Fischer, A.M.; Crabbe, R.A.; Mohammed, C.; Scarth, P.; Tickle, P.; Whitehead, J.; Harrison, M.T. Enabling Regenerative Agriculture Using Remote Sensing and Machine Learning. Land 2023, 12, 1142.

Abstract

The emergence of cloud computing, big data analytics, and machine learning has catalysed the use of remote sensing technologies to enable more timely land management of sustainability indicators such as ground cover and grassland biomass, given the uncertainty of future climate and drought conditions. Here, we examine the potential of “regenerative agriculture”, as an adaptive grazing management strategy to minimise bare ground exposure while maximising pasture biomass productivity. High-intensity sheep grazing treatments were conducted in small fields (less than 1 hectare) for short durations (typically less than 1 day). Paddocks were subsequently spelled to allow pasture biomass recovery (treatments comprising 3, 6, 9, 12, and 15 months) with each compared with control treatments with lighter stocking rates for longer periods (2,000 DSE). Pastures were composed of wallaby grass (Austrodanthonia species), kangaroo grass (Themeda triandra), Phalaris (Phalaris aquatica, and cocksfoot (Dactylis glomerata) were destructively sampled to estimate total standing dry matter (TSDM), standing green biomass, standing dry biomass and trampled biomass. We then invoked a machine learning model using Sentinel-2 imagery to quantify TSDM, standing green biomass and standing dry biomass. Faced with La Nina conditions, regenerative grazing did not significantly impact pasture productivity, with all treatments showing similar TSDM and green biomass. However, regenerative treatments significantly impacted litter fall and trampled material, with the high intensity grazing treatments causing more dry matter trampling, increasing litter, enhancing decomposition rates and surface organic matter. Pasture digestibility was greatest for treatments with minimal spelling (3 months), whereas both standing senescent and trampled material were significantly greater for the treatment with 15-month spell periods. Estimates of TSDM using machine learning with Sentinel-2 imagery underestimated TSDM in treatment plots but explained spatiotemporal variability associated within and across treatments. The root mean square error between the measured and modelled TSDM was 903 kg DM/ha, which was less than the variability measured in the field. We conclude that regenerative grazing with short recovery periods (3-6 months) are most conducive to increasing pasture production under high rainfall conditions, and we speculate that high intensity grazing is likely to positively impact on soil organic carbon through increased litterfall and trampling. Our study paves the way forward for using machine learning with satellite imagery to quantify pasture biomass at small scales, enabling management of pastures from afar.

Keywords

remote sensing; machine learning; regenerative grazing; grassland biomass; total standing dry matter; digital agriculture; grazing management; climate change; Cibo Labs; Sentinel-2

Subject

Environmental and Earth Sciences, Remote Sensing

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.