Submitted:
25 April 2023
Posted:
26 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. EnMAP
- Visible-near infrared (VNIR)–operating in the range 418 nm to 993 nm;
- Short-wave infrared (SWIR)–operating in the range 902 nm to 2445 nm.
- L1B: top-of-atmosphere (TOA) radiance; Level 1B Processor converts digital numbers into calibrated at-sensor radiances, applying dark signal, non-linearity, gain matching, response non-uniformity and straylight corrections as well as radiometric calibration.
- L1C: orthorectified L1B data; The Level 1C Processor carries out a direct georeferencing of the L1B product, which accounts for sensor-, satellite motion-, and terrain-related geometric distortions. The L1C product is an orthorectified single data cube, resampled and transformed to a map projection system (e.g. UTM Universal Transverse Mercator projection with WGS84 datum).
- L2A: bottom of atmosphere (BOA) reflectance (atmospherically corrected L1C data) and in case of water surfaces optionally normalized water leaving reflectance or underwater reflectance. It also includes the correction for thin cirrus, haze, terrain, and adjacency effects. The land product is fully compliant with the CEOS CARD4L guidelines [23].
3. Theory
3.1. Retrieval of Snow Properties
3.2. Retrieval of Precipitable Water Vapor and Total Ozone Column
4. Application of the Retrieval Algorithm to L1B Top-of-Atmosphere EnMAP Radiance Data



5. The Comparison with Ground Measurements
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rees, G.W. Remote Sensing of Snow and Ice; CRC Press: 2005.
- Tedesco, M., Ed. Remote Sensing of the Cryosphere; Wiley Blackwell: 2015.
- Kokhanovsky, A.A. Snow Optics; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Guanter, L.; Kaufmann, H.; Segl, K.; et al. The EnMAP spaceborne imaging spectroscopy mission for Earth Observation. Remote Sensing 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Kokhanovsky, A.; Lamare, M.; Di Mauro, B.; et al. On the reflectance spectroscopy of snow. The Cryosphere 2018, 12, 2371–2382. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Lamare, M.; Danne, O.; et al. Retrieval of snow properties from the Sentinel-3 Ocean and Land Colour Instrument. Remote Sens. 2019, 11, 2280. [Google Scholar] [CrossRef]
- Kokhanovsky, A.; Box, J.E.; Vandecrux, B.; Mankoff, K.D.; Lamare, M.; Smirnov, A.; Kern, M. The determination of snow albedo from satellite measurements using fast atmospheric correction technique. Remote Sens. 2020, 12, 234. [Google Scholar] [CrossRef]
- Kokhanovsky, A.; Vandecrux, B.; Wehrlé, A.; Danne, O.; Brockmann, C.; Box, J.E. An improved retrieval of snow and ice properties using spaceborne OLCI/S-3 spectral reflectance measurements: updated atmospheric correction and snow impurity load estimation. Remote Sensing. 2023, 15, 77. [Google Scholar] [CrossRef]
- Dozier, J. Snow reflectance from Lansat 4 Thematic Mapper. IEEE Trans. Geosci. Remote Sens. 1984, 17, 1213–1221. [Google Scholar]
- Boudelles, B.; Fily, M. Snow grain—size determination from Landsat imagery over Terre Adelie, Antarctica. Annals Glaciology 1993, 17, 86–92. [Google Scholar] [CrossRef]
- Nolin, A.W.; Dozier, J. Estimating snow grain size using AVIRIS data. Remote Sensing Environ. 1993, 44, 231–238. [Google Scholar] [CrossRef]
- Green, R.O.; Dozier, J.; Roberts, D.; Painter, T. Spectral snow-reflectance models for grain size and liquid water fraction in melting snow for the solar-reflected spectrum. Annals of Glaciology 2002, 34, 71–73. [Google Scholar] [CrossRef]
- Zege, E.P.; Katsev, I.L.; Malinka, A.V.; Prikhach, A.S.; Heygster, G.; Wiebe, H. Algorithm for retrieval of the effective snow grain size and pollution amount from satellite measurements. Rem. Sens. Env. 2011, 115, 2674–2685. [Google Scholar] [CrossRef]
- Bohn, N.; Painter, T.; Thompson, D.R.; et al. Optimal estimation of snow and ice surface parameters from imaging spectroscopy measurements. Rem. Sens. 2021, 264, 112613. [Google Scholar] [CrossRef]
- Kokhanovsky, A.; Vandecrux, B.; Wehrlé, A.; Danne, O.; Brockmann, C.; Box, J.E. An improved retrieval of snow and ice properties using spaceborne OLCI/S-3 spectral reflectance measurements: updated atmospheric correction and snow impurity load estimation. Remote Sensing 2023, 15, 77. [Google Scholar] [CrossRef]
- Vandecrux, B.; Box, J.E.; Wehrlé, A.; Kokhanovsky, A.A.; Picard, G.; Niwano, M.; Hörhold, M.; Faber, A.-K.; Steen-Larsen, H.C. The determination of the snow optical grain diameter and snowmelt area on the Greenland Ice Sheet using spaceborne optical observations. Remote Sens. 2022, 14, 932. [Google Scholar] [CrossRef]
- Arioli, S.; Picard, G.; Arnaud, L.; Favier, V. Dynamics of the snow grain size in a windy coastal area of Antarctica from continuous in-situ spectral albedo measurements. The Cryosphere Discuss in press.. 2022. [Google Scholar] [CrossRef]
- Vandecrux, B.; Kokhanovsky, A.; Picard, G.; Box, J. pySICE: A python package for the retrieval of snow surface properties from Sentinel 3 OLCI reflectances (v2.1). Zenodo 2022. [CrossRef]
- Platt, U.; Stutz, J. Differential optical absorption spectroscopy: principles and applications; Springer: Weinheim, 2008; 597p. [Google Scholar]
- Tomasi, C.; Petkov, B.; Benedetti, E.; Valenziano, L.; Vitale, V. Analysis of a 4 year radiosonde data set at Dome C for characterizing temperature and moisture conditions of the Antarctic atmosphere. J. Geophys. Res. 2011, 116, D15304. [Google Scholar] [CrossRef]
- Ricaud, P.; Griogioni, P.; Zbuinden, R. Review of tropospheric temperature, absolute humidity and integrated water vapour from the HAMSTRAD radiometer installed at Dome C, Antartctica, 2009-2014. Antarctic Science 2015, 6, 598–616. [Google Scholar] [CrossRef]
- Negusini, M.; Petkov, B.H.; Tornatore, V.; Barindelli, S.; Martelli, L.; Sarti, P.; Tomasi, C. Water vapour assessment using GNSS and radiosondes over polar regions and estimation of climatological trends from long-term time series analysis. Remote Sens. 2021, 13, 4871. [Google Scholar] [CrossRef]
- Bachmann, M.; Alonso, K.; Carmona, E.; et al. The CEOS CARD4L Conform EnMAP L2A 'Land' Product. In Proceedings of the 12th EARSeL Workshop on Imaging Spectroscopy, Potsdam, Germany; 2022. [Google Scholar]
- Fontenla, J.N.; Harder, J.; Livingston, W.; Snow, M.; Woods, T. High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. Journal of Geophysical Research: Atmospheres 2011, Bd. 116, Nr. D20. [CrossRef]
- Zege, E.P.; Ivanov, A.P.; Katsev, I.L. Image Transfer through Light Scattering Media; Springer: Berlin, Germany, 1991. [Google Scholar]
- Warren, S.G.; Brandt, R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res. Atmos. 2008, 113, D14220. [Google Scholar] [CrossRef]
- Picard, G.; Libois, Q.; Arnaud, L. Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow. The Cryosphere 2016, 10, 2655–2672. [Google Scholar] [CrossRef]
- Qu, Y.; Liang, S.; Liu, Q.; He, T.; Liu, S.; Li, X. Mapping surface broadband albedo from satellite observations: A review of literatures on algorithms and products. Remote Sens. 2015, 7, 990–1020. [Google Scholar] [CrossRef]
- He, C.; Takano, Y.; Liou, K.-N.; Yang, P.; Li, Q.; Chen, F. Impact of snow grain shape and black carbon-snow internal mixing on snow optical properties: Parameterizations for climate models. Journal of Climate 2017, 30, 10,019– 10,036. [CrossRef]
- Kokhanovsky, A.A. Scaling constant and its determination from simultaneous measurements of light reflection and methane adsorption by snow samples. Opt. Lett. 2006, 31, 3282–3284. [Google Scholar] [CrossRef] [PubMed]
- Kokhanovsky, A.A.; Iodice, F.; Lelli, L.; et al. Retrieval of total ozone column using high spatial resolution top-of-atmosphere measurements by OLCI/S-3 in the ozone Chappuis absorption band over bright underlying surfaces. Journal of Quantitative Spectroscopy and Radiative Transfer 2021, 276, 107903. [Google Scholar] [CrossRef]
- Libois, Q.; Picard, G.; Dumont, M.; Arnaud, L.; Sergent, C.; Pougatch, E.; Sudul, M.; Vial, D. Experimental determination of the absorption enhancement parameter of snow. J. Glaciol. 2014, 60, 714–724. [Google Scholar] [CrossRef]
- Carlsen, T.; Birnbaum, G.; Ehrlich, A.; et al. Comparison of different methods to retrieve optical-equivalent snow grain size in central Antarctica. The Cryosphere 2017, 11, 2727–2741. [Google Scholar] [CrossRef]
- Kerbrat, M.; Pinzer, B.; Huthwelker, T.; Gäggeler, H.W.; Ammann, M.; Schneebeli, M. Measuring the specific surface area of snow with X-ray tomography and gas adsorption: comparison and implications for surface smoothness. Atmos. Chem. Phys. 2008, 8, 1261–1275. [Google Scholar] [CrossRef]
- Cauchy, A. Memeoire sur la rectification des courbes et la quadrature des surfaces, 1832.
- Kokhanovsky, A.A. Broadband albedo of snow. Front. Environ. Sci. Inform. Remote Sens. 2021, 9, 757575. [Google Scholar] [CrossRef]
- Six, D.; Fily, M.; Blarel, L.; Goloub, P. First aerosol optical thickness measurements at Dome C (East Antarctica), summer season 2003–2004. Atmos. Environ. 2005, 39, 5041–5050. [Google Scholar] [CrossRef]
- Grenfell, T.C.; Warren, S.G.; Mullen, P.C. Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res. Earth Surf. 1994, 99, 18669–18684. [Google Scholar] [CrossRef]
- Gallet, J.-C.; Domine, F.; Zender, C.; Picard, G. Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm, The Cryosphere 2009, 3, 167–182. [CrossRef]
- Carmagnola, C.M.; Domine, F.; Dumont, M.; et al. Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack, The Cryosphere 2013, 7, 1139–1160, 2013. [CrossRef]
- Green, A.E.; Wagner, J.C.; Mann, A. Analytic spectral functions for atmospheric transmittance calculations. Appl Opt. 1988, 27, 2266–227. [Google Scholar] [CrossRef]
- Pierluissi, J.H.; Maragoudakis, C.E.; Tehrani-Mohaved, F. New LOWTRAN band model for water vapor, Appl. Optics 1989, 18, 3792–3795. [Google Scholar]
- Cachorro, V.E.; Antuña-Sanchez, J.C.; de Frutos, A.M. SSolar-GOA v1.0: A simple, fast, and accurate Spectral solar radiative transfer for clear skies. Geosci. Model Dev. 2022, 15, 1689–1712.
- Walden, V. P.; W. L. Roth; R. S. Stone; B. Halter. Radiometric validation of the Atmospheric Infrared Sounder over the Antarctic Plateu, J. Geophys. Res. 2006, 111, D09S03.
- Kokhanovsky, A.A.; Iodice, F.; Lelli, L.; et al. Retrieval of total ozone column using high spatial resolution top-of-atmosphere measurements by OLCI/S-3 in the ozone Chappuis absorption band over bright underlying surfaces, Journal of Quantitative Spectroscopy and Radiative Transfer 2021, 276,107903. [CrossRef]
- Kokhanovsky, A.A.; Lamare, M.; Rozanov, V. Retrieval of the total ozone over Antarctica using Sentinel-3 ocean and land colour instrument, J. Quant. Spectrosc. Radiat. Transf. 2020, 251, 107045. [Google Scholar] [CrossRef]
- Serdyuchenko, A.; Gorshelev, V.; Weber, M.; Chehade, W.; Burrows, J.P. High spectral resolution ozone absorption cross-sections—Part 2: Temperature dependence, Atmos. Meas. Tech. 2014, 7, 625–636. [Google Scholar] [CrossRef]
- Picard, G.; Dumont, M.; Lamare, M.; Tuzet, F.; Larue, F.; Pirazzini, R.; Arnaud, L. Spectral albedo measurements over snow-covered tilted terrain: theory and slope effect corrections. The Cryosphere 2020, 14, 1497–1517. [Google Scholar] [CrossRef]
- Lanconelli, C.; et al. 2014: https://www.isac.cnr.it/~radiclim/bsrn2014/userfiles/downloads/TALKS/Lanconelli_TueA.pdf.
- Tomasi, C.; Petkov, B.H. Spectral calculations of Rayleigh-scattering optical depth at Arctic and Antarctic sites using a two-term algorithm, J. Geophys. Res. Atmos. 2015, 120, 9514–9538. [Google Scholar] [CrossRef]
- Fiorucci, L.; Muscari, G.; Bianchi, C.; et al. Measurements of low amounts of precipitable water vapor by mm-wave spectroscopy: an intercomparison with radiosonde, Raman Lidar and FTIR data, Journal of Geophysical Research 2008, 113, D14314. [CrossRef]
- Bianchini, G.; Palchetti, L.; Muscari, G.; et al. Water vapor sounding with the far infrared Refir-Pad spectroradiometer from a high-altitude ground-based station during the Ecowar campaign. Journal of Geophysical Research 2011, 116, D02310. [Google Scholar] [CrossRef]
- Bianchini, G.; Castagnoli, F.; Di Natale, G.; Palchetti, L. A Fourier transform spectroradiometer for ground-based remote sensing of the atmospheric downwelling long-wave radiance. Atmospheric Measurement Techniques 2019, 12, 619–635. [Google Scholar] [CrossRef]
- Broeke, M.V.D.; Reijmer, C.; Van De Wal, R. Surface radiation balance in Antarctica as measured with automatic weather stations. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar]
- Pirazzini, R. Surface albedo measurements over Antarctic sites in summer. J. Geophys. Res. Earth Surf. 2004, 109. [Google Scholar] [CrossRef]
- Kuipers Munneke, P.; Reijmer, C.H.; van den Broeke, M.R.; König-Langlo, G.; Stammes, P.; Knap, W.H. Analysis of clear-sky Antarctic snow albedo using observations and radiative transfer modeling. J. Geophys. Res. Earth Surf. 2008. [Google Scholar] [CrossRef]
- Kuipers Munnike, P. Snow, Ice and Solar Radiation. Ph.D. Thesis, Institute for Marine and Atmospheric Research, Utrecht, Holland, The Netherlands, 2009. [Google Scholar]
- Yamanouchi, T. Variations of incident solar flux and snow albedo on the solar zenith angle and cloud cover, at Mizuno Station, Antarctica. J. Meteorol. Soc. Japan 1983, 61, 879–893. [Google Scholar] [CrossRef]
- Picard, G.; Libois, Q.; Arnaud, L.; Vérin, G.; Dumont, M. Development and calibration of an automatic spectral albedometer to estimate near-surface snow SSA time series. The Cryosphere 2016, 10, 1297–1316. [Google Scholar] [CrossRef]
- Gallet, J.C.; Domine, F.; Arnaud, L.; Picard, G.; Savarino, J. Vertical profiles of the specific surface area of the snow at Dome C, Antarctica. The Cryosphere 2011, 4, 631–649. [Google Scholar] [CrossRef]
- Gay, M.; Fily, M.; Genthon, C.; Frezzotti, M.; Oerter, H.; Winther, J.-G. Snow grain size measurements in Antarctica. J. Glaciol. 2002, 48, 527–535. [Google Scholar] [CrossRef]
- Picard, G.; Dumont, M.; Lamare, M.; Tuzet, F.; Larue, F.; Pirazzini, R.; Arnaud, L. Spectral albedo measurements over snow-covered tilted terrain: theory and slope effect corrections. The Cryosphere 2020, 14, 1497–1517. [Google Scholar] [CrossRef]
- Petkov, B.; Vitale, V.; Tomasi, C.; Bonafè, U.; Scaglione, S.; Flori, D.; Santaguida, R.; Gausa, M.; Hansen, G.; Colombo, T. Narrow-band filter radiometer for ground-based measurements of global UV solar irradiance and total ozone. Appl Opt 2006, 45, 4383–439. [Google Scholar] [CrossRef] [PubMed]
- Stamnes, K.; Slusser, J.; Bowen, M. Derivation of total ozone abundance and cloud effects from spectral irradiance measurements. Appl. Opt. 1991, 30, 4418–4426. [Google Scholar] [CrossRef] [PubMed]
- Madronich, S. UV radiation in the natural and perturbed atmosphere, in Environmental Effects of UV (Ultraviolet) Radiation; Tevini, M., Ed.; Lewis: Boca Raton, 1993; pp. 17–69. [Google Scholar]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P. D. Atmospheric radiative transfer modeling: a summary of the AER codes, Short communication. J. Quant. Spectrosc. Rad. Transfer 2005, 91, 233–244. [Google Scholar] [CrossRef]
- WMO: Scientific assessment of ozone depletion: Global Ozone Research and Monitoring Project, Report No. 58, 2018.






| Satellite Snow Product | Abbreviation | Equation | Comments |
|---|---|---|---|
| Effective absorption length | EAL, mm | L | |
| Effective grain diameter | EGD, mm | d=L/κ | κ=16 |
| Specific surface area | SSA, |
σ = 6κ/ρL | ρ=0.917 g is the density of bulk ice |
| Broadband albedoPlane BBA: Spherical BBA: | BBA pBBA sBBA |
The values of a, b, p depend on the spectral ranges used to compute BBA (see Table 2) | |
| Spherical albedo | SA | is the bulk ice absorption coefficient | |
| Plane albedo | PA |
is givenby Eq. (4) |
|
| BOA reflectance | BOAR | is given by Equation (3) |
| BBA | a | b | |
|---|---|---|---|
| spectral range: 0.3–0.7 μm | 0 | 1 | |
| spectral range: 0.7–2.5 μm | 0.2335 | 0.6600 | |
| spectral range: 0.3–2.5 μm | 0.5721 | 0.3612 |
| Parameter | Average Value | Standard Deviation | CV [%] |
|---|---|---|---|
| Effective grain diameter, mm | 0.1429 | 0.0078 | 5.5 |
| pBBA (0.3–2.5 μm) | 0.8291 | 0.0015 | 0.2 |
| SSA, /kg | 45.93 | 2.51 | 5.5 |
| TOC, DU | 193.67 | 13.98 | 7.2 |
| PWV, mm | 0.172 | 0.0058 | 3.4 |
| Instrument | Target | Spectral Range | Reference |
|---|---|---|---|
| VNIR spectrometer | Spectral albedo, specific surface area | 0.4–1.1 μm | [27] |
| Pyranometer | Broadband albedo | 0.35–2.5 μm | [49] |
| UV radiometer | Total ozone | 0.300, 0.306, 0.310, 0.314, 0.325, 0.338 and 0.364 μm | [50] |
| FTIR spectrometer | Precipitable water vapor | 7.1–100 μm | [51,52,53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
