Submitted:
04 November 2024
Posted:
05 November 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Discussion
Conclusions
References
- Davis, B. M., Rall, G. F., & Schnell, M. J. (2015). Everything You Always Wanted to Know About Rabies Virus (But Were Afraid to Ask). Annual review of virology, 2(1), 451–471. [CrossRef]
- Fooks, A. R., Cliquet, F., Finke, S., Freuling, C., Hemachudha, T., Mani, R. S., Müller, T., Nadin-Davis, S., Picard-Meyer, E., Wilde, H., & Banyard, A. C. (2017). Rabies. Nature reviews. Disease primers, 3, 17091. [CrossRef]
- Ribadeau-Dumas, F., Dacheux, L., & Bourhy, H. (2013). La rage [Rabies]. Medecine sciences : M/S, 29(1), 47–55. [CrossRef]
- Johnson, N., Vos, A., Freuling, C., Tordo, N., Fooks, A. R., & Müller, T. (2010). Human rabies due to lyssavirus infection of bat origin. Veterinary microbiology, 142(3-4), 151–159. [CrossRef]
- Banyard, A. C., Hayman, D., Johnson, N., McElhinney, L., & Fooks, A. R. (2011). Bats and lyssaviruses. Advances in virus research, 79, 239–289. [CrossRef]
- van der Poel, W. H., Lina, P. H., & Kramps, J. A. (2006). Public health awareness of emerging zoonotic viruses of bats: a European perspective. Vector borne and zoonotic diseases (Larchmont, N.Y.), 6(4), 315–324. [CrossRef]
- Schatz, J., Fooks, A. R., McElhinney, L., Horton, D., Echevarria, J., Vázquez-Moron, S., Kooi, E. A., Rasmussen, T. B., Müller, T., & Freuling, C. M. (2013). Bat rabies surveillance in Europe. Zoonoses and public health, 60(1), 22–34. [CrossRef]
- East, M. L., Hofer, H., Cox, J. H., Wulle, U., Wiik, H., & Pitra, C. (2001). Regular exposure to rabies virus and lack of symptomatic disease in Serengeti spotted hyenas. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 15026–15031. [CrossRef]
- Gold, S., Donnelly, C. A., Nouvellet, P., & Woodroffe, R. (2020). Rabies virus-neutralising antibodies in healthy, unvaccinated individuals: What do they mean for rabies epidemiology?. PLoS neglected tropical diseases, 14(2), e0007933. [CrossRef]
- Mancy, R., Rajeev, M., Lugelo, A., Brunker, K., Cleaveland, S., Ferguson, E. A., Hotopp, K., Kazwala, R., Magoto, M., Rysava, K., Haydon, D. T., & Hampson, K. (2022). Rabies shows how scale of transmission can enable acute infections to persist at low prevalence. Science (New York, N.Y.), 376(6592), 512–516. [CrossRef]
- Hampson, K., Dushoff, J., Cleaveland, S., Haydon, D. T., Kaare, M., Packer, C., & Dobson, A. (2009). Transmission dynamics and prospects for the elimination of canine rabies. PLoS biology, 7(3), e53. [CrossRef]
- Velasco-Villa, A., Escobar, L. E., Sanchez, A., Shi, M., Streicker, D. G., Gallardo-Romero, N. F., Vargas-Pino, F., Gutierrez-Cedillo, V., Damon, I., & Emerson, G. (2017). Successful strategies implemented towards the elimination of canine rabies in the Western Hemisphere. Antiviral research, 143, 1–12. [CrossRef]
- Fekadu M. (1993). Canine rabies. The Onderstepoort journal of veterinary research, 60(4), 421–427.
- Zhu, J. Y., Pan, J., & Lu, Y. Q. (2015). A case report on indirect transmission of human rabies. Journal of Zhejiang University. Science. B, 16(11), 969–970. [CrossRef]
- Páez, A., Rey, G., Agudelo, C., Dulce, A., Parra, E., Díaz-Granados, H., Heredia, D., & Polo, L. (2009). Brote de rabia urbana transmitida por perros en el distrito de Santa Marta, Colombia, 2006-2008 [Outbreak of urban rabies transmitted by dogs in Santa Marta, northern Colombia]. Biomedica : revista del Instituto Nacional de Salud, 29(3), 424–436.
- Scott, T. P., & Nel, L. H. (2016). Subversion of the Immune Response by Rabies Virus. Viruses, 8(8), 231. [CrossRef]
- Feige, L., Zaeck, L. M., Sehl-Ewert, J., Finke, S., & Bourhy, H. (2021). Innate Immune Signaling and Role of Glial Cells in Herpes Simplex Virus- and Rabies Virus-Induced Encephalitis. Viruses, 13(12), 2364. [CrossRef]
- Denizot, M., Neal, J. W., & Gasque, P. (2012). Encephalitis due to emerging viruses: CNS innate immunity and potential therapeutic targets. The Journal of infection, 65(1), 1–16. [CrossRef]
- Appolinario, C. M., & Jackson, A. C. (2015). Antiviral therapy for human rabies. Antiviral therapy, 20(1), 1–10. [CrossRef]
- Lafon M. (2008). Immune evasion, a critical strategy for rabies virus. Developments in biologicals, 131, 413–419.
- Rieder, M., & Conzelmann, K. K. (2011). Interferon in rabies virus infection. Advances in virus research, 79, 91–114. [CrossRef]
- Zhao, P., Jiang, T., Zhong, Z., Zhao, L., Yang, S., & Xia, X. (2017). Inhibition of rabies virus replication by interferon-stimulated gene 15 and its activating enzyme UBA7. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 56, 44–53. [CrossRef]
- Morales, D. J., & Lenschow, D. J. (2013). The antiviral activities of ISG15. Journal of molecular biology, 425(24), 4995–5008. [CrossRef]
- Rieder, M., & Conzelmann, K. K. (2009). Rhabdovirus evasion of the interferon system. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research, 29(9), 499–509. [CrossRef]
- Zhang, G., Wang, H., Mahmood, F., & Fu, Z. F. (2013). Rabies virus glycoprotein is an important determinant for the induction of innate immune responses and the pathogenic mechanisms. Veterinary microbiology, 162(2-4), 601–613. [CrossRef]
- Tuffereau, C., Schmidt, K., Langevin, C., Lafay, F., Dechant, G., & Koltzenburg, M. (2007). The rabies virus glycoprotein receptor p75NTR is not essential for rabies virus infection. Journal of virology, 81(24), 13622-13630.
- Yang, F., Lin, S., Ye, F., Yang, J., Qi, J., Chen, Z., Lin, X., Wang, J., Yue, D., Cheng, Y., Chen, Z., Chen, H., You, Y., Zhang, Z., Yang, Y., Yang, M., Sun, H., Li, Y., Cao, Y., Yang, S., … Lu, G. (2020). Structural Analysis of Rabies Virus Glycoprotein Reveals pH-Dependent Conformational Changes and Interactions with a Neutralizing Antibody. Cell host & microbe, 27(3), 441–453.e7. [CrossRef]
- Callaway, H. M., Zyla, D., Larrous, F., de Melo, G. D., Hastie, K. M., Avalos, R. D., Agarwal, A., Corti, D., Bourhy, H., & Saphire, E. O. (2022). Structure of the rabies virus glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science advances, 8(24), eabp9151. [CrossRef]
- Ng, W. M., Fedosyuk, S., English, S., Augusto, G., Berg, A., Thorley, L., Haselon, A. S., Segireddy, R. R., Bowden, T. A., & Douglas, A. D. (2022). Structure of trimeric pre-fusion rabies virus glycoprotein in complex with two protective antibodies. Cell host & microbe, 30(9), 1219–1230.e7. [CrossRef]
- Yang, F., Lin, S., Ye, F., Yang, J., Qi, J., Chen, Z., Lin, X., Wang, J., Yue, D., Cheng, Y., Chen, Z., Chen, H., You, Y., Zhang, Z., Yang, Y., Yang, M., Sun, H., Li, Y., Cao, Y., Yang, S., … Lu, G. (2020). Structural Analysis of Rabies Virus Glycoprotein Reveals pH-Dependent Conformational Changes and Interactions with a Neutralizing Antibody. Cell host & microbe, 27(3), 441–453.e7. [CrossRef]
- Warner, C., Fekadu, M., Whitfield, S., & Shaddock, J. (1999). Use of anti-glycoprotein monoclonal antibodies to characterize rabies virus in formalin-fixed tissues. Journal of virological methods, 77(1), 69–74. [CrossRef]
- Gu, T. J., Wei, W., Duan, Y., Jiang, C. L., Chen, Y., Yu, X. H., Wu, J. X., Wu, Y. G., & Kong, W. (2011). Identification of binding epitope for anti-rabies virus glycoprotein single-chain Fv fragment FV57. Protein and peptide letters, 18(11), 1099–1106. [CrossRef]
- Ross B, A., Favi C, M., & Vásquez V, A. (2008). Glicoproteína del virus rábico: Estructura, inmunogenicidad y rol en la patogenia [Rabies virus glycoprotein: structure, immunogenicity and pathogenic role]. Revista chilena de infectologia : organo oficial de la Sociedad Chilena de Infectologia, 25(2), S14–S18.
- Pattabhi, S., Wilkins, C. R., Dong, R., Knoll, M. L., Posakony, J., Kaiser, S., Mire, C. E., Wang, M. L., Ireton, R. C., Geisbert, T. W., Bedard, K. M., Iadonato, S. P., Loo, Y. M., & Gale, M., Jr (2015). Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway. Journal of virology, 90(5), 2372–2387. [CrossRef]
- Chopy, D., Detje, C. N., Lafage, M., Kalinke, U., & Lafon, M. (2011). The type I interferon response bridles rabies virus infection and reduces pathogenicity. Journal of neurovirology, 17(4), 353–367. [CrossRef]
- Faul, E. J., Wanjalla, C. N., Suthar, M. S., Gale, M., Wirblich, C., & Schnell, M. J. (2010). Rabies virus infection induces type I interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling. PLoS pathogens, 6(7), e1001016. [CrossRef]
- Yamaoka, S., Ito, N., Ohka, S., Kaneda, S., Nakamura, H., Agari, T., Masatani, T., Nakagawa, K., Okada, K., Okadera, K., Mitake, H., Fujii, T., & Sugiyama, M. (2013). Involvement of the rabies virus phosphoprotein gene in neuroinvasiveness. Journal of virology, 87(22), 12327–12338. [CrossRef]
- Kovesdi, I., & Bakacs, T. (2020). Therapeutic Exploitation of Viral Interference. Infectious disorders drug targets, 20(4), 423–432. [CrossRef]
- Yamada, K., Noguchi, K., Komeno, T., Furuta, Y., & Nishizono, A. (2016). Efficacy of Favipiravir (T-705) in Rabies Postexposure Prophylaxis. The Journal of infectious diseases, 213(8), 1253–1261. [CrossRef]
- Rostami, A., & Ciric, B. (2013). Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. Journal of the neurological sciences, 333(1-2), 76–87. [CrossRef]
- Du Pont, V., Plemper, R. K., & Schnell, M. J. (2019). Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Current opinion in virology, 35, 1–13. [CrossRef]
- Chai, Q., He, W. Q., Zhou, M., Lu, H., & Fu, Z. F. (2014). Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. Journal of virology, 88(9), 4698–4710. [CrossRef]
- Fang, A., Yuan, Y., Huang, F., Wang, C., Tian, D., Zhou, R., Zhou, M., Chen, H., Fu, Z. F., & Zhao, L. (2022). Lab-Attenuated Rabies Virus Facilitates Opening of the Blood-Brain Barrier by Inducing Matrix Metallopeptidase 8. Journal of virology, 96(17), e0105022. [CrossRef]
- Kuang, Y., Lackay, S. N., Zhao, L., & Fu, Z. F. (2009). Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus research, 144(1-2), 18–26. [CrossRef]
- Li, Y., Zhao, L., Luo, Z., Zhang, Y., Lv, L., Zhao, J., Sui, B., Huang, F., Cui, M., Fu, Z. F., & Zhou, M. (2020). Interferon-λ Attenuates Rabies Virus Infection by Inducing Interferon-Stimulated Genes and Alleviating Neurological Inflammation. Viruses, 12(4), 405. [CrossRef]
- Manivasagam, S., Williams, J. L., Vollmer, L. L., Bollman, B., Bartleson, J. M., Ai, S., Wu, G. F., & Klein, R. S. (2022). Targeting IFN-λ Signaling Promotes Recovery from Central Nervous System Autoimmunity. Journal of immunology (Baltimore, Md. : 1950), 208(6), 1341–1351. [CrossRef]
- Yunna, C., Mengru, H., Lei, W., & Weidong, C. (2020). Macrophage M1/M2 polarization. European journal of pharmacology, 877, 173090. [CrossRef]
- Ye, Y., Xu, Y., Lai, Y., He, W., Li, Y., Wang, R., Luo, X., Chen, R., & Chen, T. (2018). Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization. Journal of cellular biochemistry, 119(3), 2951–2963. [CrossRef]
- Xie, C., Guo, B., Liu, C., Lin, Y., Wu, B., Wang, Q., Li, Z., & Tu, Z. (2016). Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology, 32(7), 865–869.
- Xie, C., Liu, C., Wu, B., Lin, Y., Ma, T., Xiong, H., Wang, Q., Li, Z., Ma, C., & Tu, Z. (2016). Effects of IRF1 and IFN-β interaction on the M1 polarization of macrophages and its antitumor function. International journal of molecular medicine, 38(1), 148–160. [CrossRef]
- Embregts, C. W. E., Wentzel, A. S., den Dekker, A. T., van IJcken, W. F. J., Stadhouders, R., & GeurtsvanKessel, C. H. (2023). Rabies virus uniquely reprograms the transcriptome of human monocyte-derived macrophages. Frontiers in cellular and infection microbiology, 13, 1013842. [CrossRef]
- Lafon M. (2005). Modulation of the immune response in the nervous system by rabies virus. Current topics in microbiology and immunology, 289, 239–258. [CrossRef]
- Embregts, C. W. E., Begeman, L., Voesenek, C. J., Martina, B. E. E., Koopmans, M. P. G., Kuiken, T., & GeurtsvanKessel, C. H. (2021). Street RABV Induces the Cholinergic Anti-inflammatory Pathway in Human Monocyte-Derived Macrophages by Binding to nAChr α7. Frontiers in immunology, 12, 622516. [CrossRef]
- Liu, S. Q., Xie, Y., Gao, X., Wang, Q., & Zhu, W. Y. (2020). Inflammatory response and MAPK and NF-κB pathway activation induced by natural street rabies virus infection in the brain tissues of dogs and humans. Virology journal, 17(1), 157. [CrossRef]
- Kali, S., Jallet, C., Azebi, S., Cokelaer, T., Da Fonseca, J. P., Wu, Y., Barbier, J., Cintrat, J. C., Gillet, D., & Tordo, N. (2021). Broad spectrum compounds targeting early stages of rabies virus (RABV) infection. Antiviral research, 188, 105016. [CrossRef]
- Blaising, J., Polyak, S. J., & Pécheur, E. I. (2014). Arbidol as a broad-spectrum antiviral: an update. Antiviral research, 107, 84–94. [CrossRef]
- Turner G. S. (1972). Rabies vaccines and interferon. The Journal of hygiene, 70(3), 445–453. [CrossRef]
- Boriskin, Y. S., Leneva, I. A., Pécheur, E. I., & Polyak, S. J. (2008). Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Current medicinal chemistry, 15(10), 997–1005. [CrossRef]
- Teissier, E., Zandomeneghi, G., Loquet, A., Lavillette, D., Lavergne, J. P., Montserret, R., Cosset, F. L., Böckmann, A., Meier, B. H., Penin, F., & Pécheur, E. I. (2011). Mechanism of inhibition of enveloped virus membrane fusion by the antiviral drug arbidol. PloS one, 6(1), e15874. [CrossRef]
- Shiraki, K., & Daikoku, T. (2020). Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacology & therapeutics, 209, 107512. [CrossRef]
- Jochmans, D., & Neyts, J. (2019). The path towards effective antivirals against rabies. Vaccine, 37(33), 4660–4662. [CrossRef]
- Smreczak, M., Orłowska, A., Marzec, A., Trębas, P., Kycko, A., Reichert, M., Koraka, P., Osterhaus, A. D. M. E., & Żmudziński, J. F. (2019). The effect of combined drugs therapy on the course of clinical rabies infection in a murine model. Vaccine, 37(33), 4701–4709. [CrossRef]
- Smreczak, M., Marzec, A., Orłowska, A., Trębas, P., Reichert, M., Kycko, A., Koraka, P., Osterhaus, A., & Żmudziński, J. F. (2019). The effect of selected molecules influencing the detrimental host immune response on a course of rabies virus infection in a murine model. Vaccine, 37(33), 4715–4723. [CrossRef]
- Marosi, A., Dufkova, L., Forró, B., Felde, O., Erdélyi, K., Širmarová, J., Palus, M., Hönig, V., Salát, J., Tikos, R., Gyuranecz, M., Růžek, D., Martina, B., Koraka, P., Osterhaus, A. D. M. E., & Bakonyi, T. (2019). Combination therapy of rabies-infected mice with inhibitors of pro-inflammatory host response, antiviral compounds and human rabies immunoglobulin. Vaccine, 37(33), 4724–4735. [CrossRef]
- Niu, X., Wang, H., & Fu, Z. F. (2011). Role of chemokines in rabies pathogenesis and protection. Advances in virus research, 79, 73–89. [CrossRef]
- Ojosnegros, S., Beerenwinkel, N. Models of RNA virus evolution and their roles in vaccine design. Immunome Res 6 (Suppl 2), S5 (2010). [CrossRef]
- Yoneda, A., Tuchiya, K., Takashima, Y., Arakawa, T., Tsuji, N., Hayashi, Y., & Matsumoto, Y. (2008). Protection of mice from rabies by intranasal immunization with inactivated rabies virus. Experimental animals, 57(1), 1–9. [CrossRef]
- Ou, B., Yang, Y., Lv, H., Lin, X., & Zhang, M. (2023). Current Progress and Challenges in the Study of Adjuvants for Oral Vaccines. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy, 37(2), 143–180. [CrossRef]
- Sunden, Y., Yano, S., Ishida, S., Ochiai, K., & Umemura, T. (2010). Intracerebral vaccination suppresses the spread of rabies virus in the mouse brain. Microbes and infection, 12(14-15), 1163–1169. [CrossRef]
- Shin, J. H., Sakoda, Y., Yano, S., Ochiai, K., Kida, H., & Umemura, T. (2009). Effective prevention against rabies by intracerebral immunization in mice. The Journal of veterinary medical science, 71(10), 1331–1336. [CrossRef]
- Lafay, F., Bénéjean, J., Tuffereau, C., Flamand, A., & Coulon, P. (1994). Vaccination against rabies: construction and characterization of SAG2, a double avirulent derivative of SADBern. Vaccine, 12(4), 317–320. [CrossRef]
- Yao, S., Li, Y., Zhang, Q., Zhang, H., Zhou, L., Liao, H., Zhang, C., & Xu, M. (2018). Staphylococcal enterotoxin C2 as an adjuvant for rabies vaccine induces specific immune responses in mice. Pathogens and disease, 76(5). [CrossRef]
- Dietzschold, B., Wang, H. H., Rupprecht, C. E., Celis, E., Tollis, M., Ertl, H., Heber-Katz, E., & Koprowski, H. (1987). Induction of protective immunity against rabies by immunization with rabies virus ribonucleoprotein. Proceedings of the National Academy of Sciences of the United States of America, 84(24), 9165–9169. [CrossRef]
- Ramya, R., Verma, P. C., Chaturvedi, V. K., Gupta, P. K., Pandey, K. D., Madhanmohan, M., Kannaki, T. R., Sridevi, R., & Anukumar, B. (2009). Poly(lactide-co-glycolide) microspheres: a potent oral delivery system to elicit systemic immune response against inactivated rabies virus. Vaccine, 27(15), 2138–2143. [CrossRef]
- Modelska, A., Dietzschold, B., Sleysh, N., Fu, Z. F., Steplewski, K., Hooper, D. C., Koprowski, H., & Yusibov, V. (1998). Immunization against rabies with plant-derived antigen. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2481–2485. [CrossRef]
- 76. ALSUntangled Group. (2014). ALSUntangled no. 23: the Rife machine and retroviruses. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 15(1-2), 157-159.
- Carp, T. N. (2024). Potential Innovations in Modern-Day Human and Animal Vaccine Development. Preprints. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
