Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Deep Convolutional Neural Network for Plume Rise Measurements in Industrial Environments

Version 1 : Received: 8 April 2023 / Approved: 10 April 2023 / Online: 10 April 2023 (04:11:22 CEST)

A peer-reviewed article of this Preprint also exists.

Koushafar, M.; Sohn, G.; Gordon, M. Deep Convolutional Neural Network for Plume Rise Measurements in Industrial Environments. Remote Sens. 2023, 15, 3083. Koushafar, M.; Sohn, G.; Gordon, M. Deep Convolutional Neural Network for Plume Rise Measurements in Industrial Environments. Remote Sens. 2023, 15, 3083.

Abstract

Estimating plume cloud height is essential for various applications, such as global climate models. Smokestack plume rise is the constant height at which the plume cloud is carried downwind as its momentum dissipates and the plume cloud and the ambient temperatures equalize. Although different parameterizations are used in most air-quality models to predict the plume rise, they have been unable to estimate it properly. This paper proposes a novel framework to monitor smokestack plume clouds and make long-term, real-time measurements of the plume rise. For this purpose, a three-stage framework is developed based on Deep Convolutional Neural Networks (DCNNs). In the first stage, an improved Mask R-CNN, called Deep Plume Rise Network (DPRNet), is applied to recognize the plume cloud. Then, image processing analysis and least squares theory are respectively used to detect the plume cloud’s boundaries and fit an asymptotic model into their centerlines. The y-component coordinate of this model’s critical point is considered the plume rise. In the last stage, a geometric transformation phase converts image measurements into real-life ones. A wide range of images with different atmospheric conditions, including day, night, and cloudy/foggy, have been selected for the DPRNet training algorithm. Obtained results show that the proposed method outperforms widely-used networks in smoke border detection and recognition.

Keywords

plume rise; deep learning; plume cloud recognition

Subject

Environmental and Earth Sciences, Remote Sensing

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.