Submitted:
13 October 2023
Posted:
17 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Short summary of the method
2. Lagrangian density for the system
3. Hamiltonian density and energy transmission
- may play a role of the density of Hamilton’s principal function,
- Hamilton’s principal function may be expressed based on the electromagnetic field only, so in the absence of the electromagnetic field it disappears.
4. Point-like particles and Quantum picture
5. Conclusions and Discussion
- Both Lagrangianand and Hamiltonian density for the systems appear to be equal to invariant of the field tensor
- Alena Tensor may be simplified to familiar form:
- acts as canonical four-momentum for the point-like particle
- The vanishing four-divergence of turns out to be the consequence of Poynting theorem
- Some gauge of electromagnetic four-potential may be expressed as
6. Statements
References
- T. Padmanabhan, Gravity and quantum theory: Domains of conflict and contact, International Journal of Modern Physics D, 29, 2030001 (2020). [CrossRef]
- A. Ashtekar and E. Bianchi, A short review of loop quantum gravity, Reports on Progress in Physics 84, 042001 (2021). [CrossRef]
- R. Gambini, J. Olmedo, and J. Pullin, Spherically symmetric loop quantum gravity: analysis of improved dynamics, Classical and Quantum Gravity 37, 205012 (2020). [CrossRef]
- J. Lewandowski and I. Mäkinen, Scalar curvature operator for models of loop quantum gravity on a cubical graph, Physical Review D 106, 046013 (2022). [CrossRef]
- E. Manoukian and E. Manoukian, String theory, 100 Years of Fundamental Theoretical Physics in the Palm of Your Hand: Integrated Technical Treatment, 285 (2020).
- P. A. Cano and A. Ruipérez, String gravity in d = 4, Physical Review D 105, 04402 (2022).
- A. Guerrieri, J. Penedones, and P. Vieira, Where is string theory in the space of scattering amplitudes?, Physical Review Letters 127, 081601 (2021). [CrossRef]
- O. O. Novikov, P t-symmetric quantum field theory on the noncommutative spacetime, Modern Physics Letters A 35, 2050012 (2020).
- V. G. Kupriyanov and P., Vitale, A novel approach to non-commutative gauge theory, Journal of High Energy Physics, 2020, 1 (2020). [CrossRef]
- G. Pascoli, A comparative study of mond and mog theories versus κ-model: An application to galaxy clusters, Canadian Journal of Physics (2023). [CrossRef]
- I. Quiros, Selected topics in scalar–tensor theories and beyond, International Journal of Modern Physics D 28,, 1930012 (2019). [CrossRef]
- D. Glavan and C. Lin, Einstein-gauss-bonnet gravity in four-dimensional spacetime, Physical review letters 124, 081301 (2020). [CrossRef]
- F. Melia, A candid assessment of standard cosmology, Publications of the Astronomical Society of the Pacific 134, 121001 (2022).
- N. Frusciante and L. Perenon, Effective field theory of dark energy: A review, Physics Reports 857, (2020). [CrossRef]
- E. Oks, Brief review of recent advances in understanding dark matter and dark energy, New Astronomy Reviews 93, 101632 (2021). [CrossRef]
- M. Demirtas, M. Kim, L. McAllister, J. Moritz, and A. Rios-Tascon, Exponentially small cosmological constant in string theory, Physical Review Letters 128, 011602 (2022). [CrossRef]
- H. Firouzjahi, Cosmological constant problem on the horizon, Physical Review D 106, 083510 (2022). [CrossRef]
- I. Dymnikova, The higgs mechanism and cosmological constant today, Universe 8, 305 (2022). [CrossRef]
- P. Ogonowski, Proposed method of combining continuum mechanics with einstein field equations, International Journal of Modern Physics D 2350010, 15 (2023). [CrossRef]
- A. Danehkar, Electric-magnetic duality in gravity and higher-spin fields, Frontiers in Physics 6, (2019). [CrossRef]
- J. Lindgren and J. Liukkonen, Maxwell’s equations from spacetime geometry and the role of weyl curvature, in Journal of Physics: Conference Series, Vol. 1956 (IOP Publishing, 2021) p. 012017. [CrossRef]
- A. Bakopoulos and P. Kanti, From gem to electromagnetism, General Relativity and Gravitation 46, (2014).
- C. G. Böhmer and R. J. Downes, From continuum mechanics to general relativity, International Journal of Modern Physics D 23, 1442015 (2014). [CrossRef]
- N. Voicu, On a new unified geometric description of gravity and electromagnetism (2011), arXiv:1111.5270 [math-ph].
- N. J. Poplawski, A unified, purely affine theory of gravitation and electromagnetism (2007), arXiv:0705.0351 [gr-qc].
- E. Matagne, Algebraic decomposition of the electromagnetic constitutive tensor. a step towards a pre-metric based gravitation?, Annalen der Physik 17 (2005). [CrossRef]
- L. Visinelli, S Vagnozz, and U. Danielsson, Revisiting a negative cosmological constant from low-redshift data, Symmetry 11, 1035 (2019). [CrossRef]
- A. A. Sen, S. A. Adil and S. Sen, Do cosmological observations allow a negative λ?, Monthly Notices of the Royal Astronomical Society 518, 1098 (2023).
- A. R. El-Nablus, Phase transitions in the early universe with negatively induced supergravity cosmological constant, Chinese Physics Letters 23, 1124 (2006).
- C. S. Helrich, The classical theory of fields: electromagnetism (Springer Science & Business Media, 2012).
- C. A. Brau, Modern problems in classical electrodynamics (Oxford univ. press, 2004).
- P. L. Saldanha, Alternative expression for the electromagnetic lagrangian, Brazilian Journal of Physics 46, 316 (2016). [CrossRef]
- N. Popławski, Classical physics: spacetime and fields, arXiv preprint arXiv:0911.0334 (2009).
- H. Casini and J. M. Magán, On completeness and generalized symmetries in quantum field theory, Modern Physics Letters A 36, 2130025 (2021). [CrossRef]
- I. L. Buchbinder and I. Shapiro, Introduction to quantum field theory with applications to quantum gravity (Oxford University Press, 2021).
- Y. Meurice, Quantum Field Theory (IOP Publishing, 2021).
- L. Wylleman, L. F. O. Costa and J. Natário, Poynting vector, super-poynting vector, and principal observers in electromagnetism and general relativity, Classical and Quantum Gravity 38, 165009 (2021). [CrossRef]
- S. Carlip, The stress-energy tensor, in General Relativity: A Concise Introduction (Oxford University Pres, 2019) p. 59.
- P. Bussey, Improving our understanding of the klein-gordon equation, arXiv preprint arXiv:2212.06878 (2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
