Statzer, C.; Luthria, K.; Sharma, A.; Kann, M.G.; Ewald, C.Y. The Human Extracellular Matrix Diseasome Reveals Genotype–Phenotype Associations with Clinical Implications for Age-Related Diseases. Biomedicines2023, 11, 1212.
Statzer, C.; Luthria, K.; Sharma, A.; Kann, M.G.; Ewald, C.Y. The Human Extracellular Matrix Diseasome Reveals Genotype–Phenotype Associations with Clinical Implications for Age-Related Diseases. Biomedicines 2023, 11, 1212.
Statzer, C.; Luthria, K.; Sharma, A.; Kann, M.G.; Ewald, C.Y. The Human Extracellular Matrix Diseasome Reveals Genotype–Phenotype Associations with Clinical Implications for Age-Related Diseases. Biomedicines2023, 11, 1212.
Statzer, C.; Luthria, K.; Sharma, A.; Kann, M.G.; Ewald, C.Y. The Human Extracellular Matrix Diseasome Reveals Genotype–Phenotype Associations with Clinical Implications for Age-Related Diseases. Biomedicines 2023, 11, 1212.
Abstract
The extracellular matrix (ECM) is earning an increasingly relevant role in many disease states and the process of aging. Analyzing these disease states is possible with GWAS and PheWAS methodology, and through our analysis, we aimed to explore the relationships between polymorphisms in the compendium of ECM genes (i.e., matrisome genes) in various disease states. A significant contribution on the part of the ECM polymorphisms is evident in many varying types of diseases, particularly those in the core matrisome genes. Our results confirm previous links to connective tissue disorders, but also unearth new and underexplored relationships with neurological, psychiatric, and age-related disease states. Upon analysis of drug indications for gene-disease relationships, we identified numerous targets that may be repurposed for age-related pathology. The identification of ECM polymorphisms and their contribution to disease plays an integral role in future therapeutic developments, drug repurposing, precision medicine, and personalized care.
Keywords
Phenome; Matrisome; Matreotype; Phenotype; Extracellular Matrix; Data Mining; SNP; PheWAS; GWAS; Electronic Health Records; Drug Repurposing; Precision Medicine; Collagen; Human
Subject
Biology and Life Sciences, Anatomy and Physiology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.