Submitted:
01 March 2023
Posted:
02 March 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Metabolic syndrome
3. Hypertension and cardiovascular diseases
4. Type 2 diabetes mellitus (T2DM)
5. Obesity
6. Nonalcoholic fatty liver disease (NAFLD)
7. Discussion
References
- Polefka, T.G., et al., Effects of solar radiation on the skin. J Cosmet Dermatol, 2012. 11(2): p. 134-43. [CrossRef]
- D’Orazio, J., et al., UV radiation and the skin. International journal of molecular sciences, 2013. 14(6): p. 12222-12248. [CrossRef]
- Holick, M.F., Environmental factors that influence the cutaneous production of vitamin D. The American journal of clinical nutrition, 1995. 61(3): p. 638S-645S. [CrossRef]
- Sliney, D.H., Ultraviolet radiation effects upon the eye: problems of dosimetry. Radiation Protection Dosimetry, 1997. 72(3-4): p. 197-206. [CrossRef]
- Feelisch, M., et al., Is sunlight good for our heart? European heart journal, 2010. 31(9): p. 1041-1045. [CrossRef]
- Weller, R.B., Sunlight Has Cardiovascular Benefits Independently of Vitamin D. Blood Purif, 2016. 41(1-3): p. 130-4. [CrossRef]
- Alfredsson, L., et al., Insufficient Sun Exposure Has Become a Real Public Health Problem. Int J Environ Res Public Health, 2020. 17(14). [CrossRef]
- Vitezova, A., et al., Vitamin D status and metabolic syndrome in the elderly: the Rotterdam Study. European Journal of Endocrinology, 2015. 172(3): p. 327-335. [CrossRef]
- Autier, P., et al., Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. The lancet Diabetes & endocrinology, 2017. 5(12): p. 986-1004. [CrossRef]
- Geldenhuys, S., et al., Ultraviolet radiation suppresses obesity and symptoms of metabolic syndrome independently of vitamin D in mice fed a high-fat diet. Diabetes, 2014. 63(11): p. 3759-3769. [CrossRef]
- Rostand, S.G., Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension, 1997. 30(2): p. 150-156. [CrossRef]
- Brennan, P., et al., Seasonal variation in arterial blood pressure. Br Med J (Clin Res Ed), 1982. 285(6346): p. 919-923.
- Weller, R.B., The health benefits of UV radiation exposure through vitamin D production or non-vitamin D pathways. Blood pressure and cardiovascular disease. Photochem Photobiol Sci, 2017. 16(3): p. 374-380. [CrossRef]
- Weller, R.B., Sunlight has cardiovascular benefits independently of vitamin D. Blood purification, 2016. 41(1-3): p. 130-134. [CrossRef]
- Pittas, A.G., et al., Systematic review: Vitamin D and cardiometabolic outcomes. Ann Intern Med, 2010. 152(5): p. 307-14. [CrossRef]
- Bolland, M.J., et al., The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. Lancet Diabetes Endocrinol, 2014. 2(4): p. 307-320. [CrossRef]
- Moncada, S., R. Palmer, and E. Higgs, Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacological reviews, 1991. 43(2): p. 109-142.
- Förstermann, U. and W.C. Sessa, Nitric oxide synthases: regulation and function. Eur Heart J, 2012. 33(7): p. 829-37, 837a-837d. [CrossRef]
- Lundberg, J.O. and M. Govoni, Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radical Biology and Medicine, 2004. 37(3): p. 395-400. [CrossRef]
- Rassaf, T., M. Feelisch, and M. Kelm, Circulating NO pool: assessment of nitrite and nitroso species in blood and tissues. Free Radical Biology and Medicine, 2004. 36(4): p. 413-422. [CrossRef]
- Mowbray, M., et al., Enzyme-independent NO stores in human skin: quantification and influence of UV radiation. Journal of Investigative Dermatology, 2009. 129(4): p. 834-842. [CrossRef]
- Kuhn, A., et al., Aberrant timing in epidermal expression of inducible nitric oxide synthase after UV irradiation in cutaneous lupus erythematosus. Journal of Investigative Dermatology, 1998. 111(1): p. 149-153. [CrossRef]
- Paunel, A.N., et al., Enzyme-independent nitric oxide formation during UVA challenge of human skin: characterization, molecular sources, and mechanisms. Free Radical Biology and Medicine, 2005. 38(5): p. 606-615. [CrossRef]
- Liu, D., et al., UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase. J Invest Dermatol, 2014. 134(7): p. 1839-1846. [CrossRef]
- Rodriguez, J., et al., Chemical nature of nitric oxide storage forms in rat vascular tissue. Proceedings of the National Academy of Sciences, 2003. 100(1): p. 336-341. [CrossRef]
- Ferguson, A.L., et al., Exposure to solar ultraviolet radiation limits diet-induced weight gain, increases liver triglycerides and prevents the early signs of cardiovascular disease in mice. Nutr Metab Cardiovasc Dis, 2019. 29(6): p. 633-638. [CrossRef]
- Sasaki, N., et al., UVB exposure prevents atherosclerosis by regulating immunoinflammatory responses. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017. 37(1): p. 66-74. [CrossRef]
- Byrne, S.N., et al., The immune-modulating cytokine and endogenous Alarmin interleukin-33 is upregulated in skin exposed to inflammatory UVB radiation. The American journal of pathology, 2011. 179(1): p. 211-222. [CrossRef]
- Miller, A.M., et al., IL-33 reduces the development of atherosclerosis. The Journal of experimental medicine, 2008. 205(2): p. 339-346. [CrossRef]
- Lindqvist, P.G., H. Olsson, and M. Landin-Olsson, Are active sun exposure habits related to lowering risk of type 2 diabetes mellitus in women, a prospective cohort study? Diabetes research and clinical practice, 2010. 90(1): p. 109-114. [CrossRef]
- Afzal, S., S.E. Bojesen, and B.G. Nordestgaard, Low 25-hydroxyvitamin D and risk of type 2 diabetes: a prospective cohort study and metaanalysis. Clinical chemistry, 2013. 59(2): p. 381-391. [CrossRef]
- Pittas, A.G., et al., Vitamin D supplementation and prevention of type 2 diabetes. New England journal of medicine, 2019. 381(6): p. 520-530. [CrossRef]
- Zheng, J.S., et al., The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: A meta-analysis and Mendelian randomisation analysis. PLoS Med, 2020. 17(10): p. e1003394. [CrossRef]
- Kanuri, B.N., et al., Altered glucose and lipid homeostasis in liver and adipose tissue pre-dispose inducible NOS knockout mice to insulin resistance. Sci Rep, 2017. 7: p. 41009. [CrossRef]
- Sansbury, B.E., et al., Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res, 2012. 111(9): p. 1176-89. [CrossRef]
- Sydow, K., C.E. Mondon, and J.P. Cooke, Insulin resistance: potential role of the endogenous nitric oxide synthase inhibitor ADMA. Vasc Med, 2005. 10 Suppl 1: p. S35-43. [CrossRef]
- Kim, S.H. and J. Plutzky, Brown Fat and Browning for the Treatment of Obesity and Related Metabolic Disorders. Diabetes Metab J, 2016. 40(1): p. 12-21. [CrossRef]
- D'Antona, G., et al., Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell metabolism, 2010. 12(4): p. 362-372. [CrossRef]
- Nisoli, E., et al., Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science, 2005. 310(5746): p. 314-317. [CrossRef]
- Dhamrait, G.K., et al., Characterising nitric oxide-mediated metabolic benefits of low-dose ultraviolet radiation in the mouse: a focus on brown adipose tissue. Diabetologia, 2020. 63(1): p. 179-193. [CrossRef]
- Allemann, T.S., et al., Low-dose UV radiation before running wheel access activates brown adipose tissue. J Endocrinol, 2020. 244(3): p. 473-486. [CrossRef]
- Parikh, S., et al., Food-seeking behavior is triggered by skin ultraviolet exposure in males. Nat Metab, 2022. 4(7): p. 883-900. [CrossRef]
- Parikh, R., et al., Skin exposure to UVB light induces a skin-brain-gonad axis and sexual behavior. Cell Rep, 2021. 36(8): p. 109579. [CrossRef]
- Teng, S., et al., Regular exposure to non-burning ultraviolet radiation reduces signs of non-alcoholic fatty liver disease in mature adult mice fed a high fat diet: results of a pilot study. BMC Res Notes, 2019. 12(1): p. 78. [CrossRef]
- Nozaki, Y., et al., Deficiency of eNOS exacerbates early-stage NAFLD pathogenesis by changing the fat distribution. BMC Gastroenterol, 2015. 15: p. 177. [CrossRef]
- Sheldon, R.D., et al., Chronic NOS inhibition accelerates NAFLD progression in an obese rat model. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2015. 308(6): p. G540-G549. [CrossRef]
- Khazai, N., S.E. Judd, and V. Tangpricha, Calcium and vitamin D: skeletal and extraskeletal health. Curr Rheumatol Rep, 2008. 10(2): p. 110-7. [CrossRef]
- Rebel, H., et al., UV exposure inhibits intestinal tumor growth and progression to malignancy in intestine-specific Apc mutant mice kept on low vitamin D diet. International journal of cancer, 2015. 136(2): p. 271-277. [CrossRef]
- Martineau, A.R., et al., Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. bmj, 2017. 356. [CrossRef]
- Karapiperis, C., et al., A Strong Seasonality Pattern for Covid-19 Incidence Rates Modulated by UV Radiation Levels. Viruses, 2021. 13(4). [CrossRef]
- Wolf, M., et al., Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int, 2007. 72(8): p. 1004-13. [CrossRef]
- Krause, R., et al., Vitamin D Status in Chronic Kidney Disease - UVB Irradiation Is Superior to Oral Supplementation. Anticancer Res, 2016. 36(3): p. 1397-401.
- Fell, G.L., et al., Skin β-endorphin mediates addiction to UV light. Cell, 2014. 157(7): p. 1527-34. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).