Submitted:
01 March 2023
Posted:
02 March 2023
You are already at the latest version
Abstract
Keywords:Â
1. Introduction
- (1)
- For the first time, this paper systematically evaluates the transferability of adversarial examples among DNN-based SAR-ATR models. Meanwhile, our research reveals that there may be potential common vulnerabilities among DNN models performing the same task.
- (2)
- We propose a novel network to enable real-time transferable adversarial attacks. Once the proposed network is well-trained, it can real-time craft adversarial examples with high transferability, thus attacking black-box victim models without resorting to any prior knowledge. As such, our approach possesses promising applications in AI security.
- (3)
- The proposed method is evaluated on the most authoritative SAR-ATR dataset. Experimental results indicate that our approach achieves state-of-the-art transferability with acceptable adversarial perturbations and minimum time costs compared to existing attack methods, i.e., it excellently realizes real-time transferable adversarial attacks.
2. Preliminaries
2.1. Adversarial Attacks for DNN-Based SAR-ATR Models
- For the non-targeted attack:
- For the targeted attack:
2.2. Transferability of Adversarial Examples
3. The Proposed Transferable Adversarial Network (TAN)
3.1. Training Process of the Generator
3.2. Training Process of the Attenuator
3.3. Network Structure of the Generator and Attenuator
3.4. Complete Training Process of TAN
| Algorithm 1 Transferable Adversarial Network Training. |
|
4. Experiments
4.1. Data Descriptions
4.2. Implementation Details
4.3. Evaluation Metrics
4.4. DNN-Based SAR-ATR Models
4.5. Comparison of Attack Performance
4.6. Comparison of Transferability
4.7. Comparison of Real-Time Performance
4.8. Visualization of Adversarial Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Kuai, Y.; Wen, G.; Liu, L. Robust Visual Tracking via Collaborative and Reinforced Convolutional Feature Learning. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–0. [CrossRef]
- Kuai, Y.; Wen, G.; Li, D. Masked and dynamic Siamese network for robust visual tracking. Information Sciences 2019, 503, 169–182. [CrossRef]
- Cong, R.; Yang, N.; Li, C.; Fu, H.; Zhao, Y.; Huang, Q.; Kwong, S. Global-and-local collaborative learning for co-salient object detection. IEEE transactions on cybernetics 2022. [CrossRef]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y.Q. Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [CrossRef]
- Chen, S.; Wang, H.; Xu, F.; Jin, Y.Q. Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4806–4817. [CrossRef]
- Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional neural network with data augmentation for SAR target recognition. IEEE Geosci. Remote Sens. Lett. 2016, 13, 364–368. [CrossRef]
- Du, C.; Chen, B.; Xu, B.; Guo, D.; Liu, H. Factorized discriminative conditional variational auto-encoder for radar HRRP target recognition. Signal Process. 2019, 158, 176–189. [CrossRef]
- Vint, D.; Anderson, M.; Yang, Y.; Ilioudis, C.; Di Caterina, G.; Clemente, C. Automatic Target Recognition for Low Resolution Foliage Penetrating SAR Images Using CNNs and GANs. Remote Sens. 2021, 13, 596. [CrossRef]
- Huang, T.; Zhang, Q.; Liu, J.; Hou, R.; Wang, X.; Li, Y. Adversarial attacks on deep-learning-based SAR image target recognition. J. Netw. Comput. Appl. 2020, 162, 102632. [CrossRef]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [CrossRef]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [CrossRef]
- Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial examples in the physical world. In Artificial Intelligence Safety and Security; Chapman and Hall/CRC: London, UK, 2018; pp. 99–112.
- Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. Deepfool: A simple and accurate method to fool deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2574–2582. [CrossRef]
- Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in adversarial settings. In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P), Saarbrücken, Germany, 21–24 March 2016; pp. 372–387. [CrossRef]
- Su, J.; Vargas, D.V.; Sakurai, K. One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 2019, 23, 828–841. [CrossRef]
- Chen, P.Y.; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.J. Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, Dallas, TX, USA, 3 November 2017; pp. 15–26. [CrossRef]
- Chen, J.; Jordan, M.I.; Wainwright, M.J. Hopskipjumpattack: A query-efficient decision-based attack. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (sp), San Francisco, CA, USA, 18–21 May 2020; pp. 1277–1294. [CrossRef]
- Liu, Y.; Chen, X.; Liu, C.; Song, D. Delving into transferable adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770 2016. [CrossRef]
- Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; Li, J. Boosting adversarial attacks with momentum. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 9185–9193. [CrossRef]
- Lin, J.; Song, C.; He, K.; Wang, L.; Hopcroft, J.E. Nesterov accelerated gradient and scale invariance for adversarial attacks. arXiv preprint arXiv:1908.06281 2019. [CrossRef]
- Xie, C.; Zhang, Z.; Zhou, Y.; Bai, S.; Wang, J.; Ren, Z.; Yuille, A.L. Improving transferability of adversarial examples with input diversity. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2730–2739. [CrossRef]
- Wang, X.; He, K. Enhancing the transferability of adversarial attacks through variance tuning. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1924–1933. [CrossRef]
- Xu, Y.; Du, B.; Zhang, L. Assessing the threat of adversarial examples on deep neural networks for remote sensing scene classification: Attacks and defenses. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1604–1617. [CrossRef]
- Xu, Y.; Ghamisi, P. Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [CrossRef]
- Li, H.; Huang, H.; Chen, L.; Peng, J.; Huang, H.; Cui, Z.; Mei, X.; Wu, G. Adversarial examples for CNN-based SAR image classification: An experience study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1333–1347. [CrossRef]
- Du, C.; Huo, C.; Zhang, L.; Chen, B.; Yuan, Y. Fast C&W: A Fast Adversarial Attack Algorithm to Fool SAR Target Recognition with Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [CrossRef]
- Du, M.; Bi, D.; Du, M.; Xu, X.; Wu, Z. ULAN: A Universal Local Adversarial Network for SAR Target Recognition Based on Layer-Wise Relevance Propagation. Remote Sensing 2022, 15, 21. [CrossRef]
- Xia, W.; Liu, Z.; Li, Y. SAR-PeGA: A Generation Method of Adversarial Examples for SAR Image Target Recognition Network. IEEE Transactions on Aerospace and Electronic Systems 2022, pp. 1–11. [CrossRef]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14. Springer, 2016, pp. 694–711. [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Communications of the ACM 2020, 63, 139–144. [CrossRef]
- Keydel, E.R.; Lee, S.W.; Moore, J.T. MSTAR extended operating conditions: A tutorial. Algorithms Synth. Aperture Radar Imag. III 1996, 2757, 228–242. [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708. [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 June 2016; pp. 2818–2826. [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 2017. [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 6848–6856. [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [CrossRef]
- Kim, H. Torchattacks: A pytorch repository for adversarial attacks. arXiv preprint arXiv:2010.01950 2020. [CrossRef]









| Module | Input size | Output Size |
|---|---|---|
| Input | ||
| Downsampling_1 | ||
| Downsampling_2 | ||
| Residual_1 ∼ 6 | ||
| Upsampling_1 | ||
| Upsampling_2 | ||
| Output |
| Target Class | Serial | Training Data | Testing Data | ||
|---|---|---|---|---|---|
| Depression Angle | Number | Depression Angle | Number | ||
| 2S1 | b01 | 299 | 274 | ||
| BMP2 | 9566 | 233 | 196 | ||
| BRDM2 | E-71 | 298 | 274 | ||
| BTR60 | k10yt7532 | 256 | 195 | ||
| BTR70 | c71 | 233 | 196 | ||
| D7 | 92v13015 | 299 | 274 | ||
| T62 | A51 | 299 | 273 | ||
| T72 | 132 | 232 | 196 | ||
| ZIL131 | E12 | 299 | 274 | ||
| ZSU234 | d08 | 299 | 274 | ||
| Surrogate | ||||||
|---|---|---|---|---|---|---|
| DenseNet121 | 98.72% | 1.90% | 81.53% | 24.03% | 3.595 | 4.959 |
| GoogLeNet | 98.06% | 3.83% | 89.78% | 36.11% | 2.884 | 3.305 |
| InceptionV3 | 96.17% | 0.82% | 89.41% | 19.62% | 3.552 | 4.181 |
| Mobilenet | 96.91% | 2.72% | 87.88% | 36.81% | 3.218 | 4.083 |
| ResNet50 | 97.98% | 3.34% | 83.80% | 28.65% | 3.684 | 4.568 |
| Shufflenet | 96.66% | 3.46% | 84.30% | 23.66% | 3.331 | 3.286 |
| Mean | 97.42% | 2.68% | 86.12% | 28.15% | 3.377 | 4.064 |
| Surrogate | ||||||
|---|---|---|---|---|---|---|
| DenseNet121 | 10.00% | 98.08% | 88.47% | 78.09% | 3.086 | 3.587 |
| GoogLeNet | 10.00% | 99.09% | 89.25% | 85.90% | 3.377 | 4.289 |
| InceptionV3 | 10.00% | 98.81% | 86.87% | 78.97% | 3.453 | 3.495 |
| Mobilenet | 10.00% | 97.40% | 88.38% | 81.37% | 3.257 | 3.553 |
| ResNet50 | 10.00% | 97.69% | 87.29% | 82.10% | 3.408 | 3.490 |
| Shufflenet | 10.00% | 98.36% | 86.85% | 83.11% | 3.345 | 3.874 |
| Mean | 10.00% | 98.24% | 87.85% | 81.59% | 3.321 | 3.714 |
| Surrogate | Method | Non-targeted | Targeted | ||
|---|---|---|---|---|---|
| DenseNet121 | TAN | 1.90% | 3.595 | 98.08% | 3.086 |
| MIFGSM | 0.00% | 3.555 | 98.61% | 3.613 | |
| DIFGSM | 0.00% | 3.116 | 95.39% | 2.816 | |
| NIFGSM | 0.21% | 3.719 | 68.72% | 3.550 | |
| SINIFGSM | 1.15% | 3.676 | 82.32% | 3.648 | |
| VMIFGSM | 0.00% | 3.665 | 98.14% | 3.602 | |
| VNIFGSM | 0.08% | 3.691 | 96.89% | 3.635 | |
| GoogLeNet | TAN | 3.83% | 2.884 | 99.09% | 3.377 |
| MIFGSM | 0.04% | 3.615 | 98.36% | 3.601 | |
| DIFGSM | 0.04% | 3.090 | 94.47% | 2.830 | |
| NIFGSM | 0.41% | 3.674 | 64.32% | 3.520 | |
| SINIFGSM | 4.04% | 3.647 | 69.79% | 3.615 | |
| VMIFGSM | 0.04% | 3.587 | 97.84% | 3.601 | |
| VNIFGSM | 0.37% | 3.588 | 95.74% | 3.636 | |
| InceptionV3 | TAN | 0.82% | 3.552 | 98.81% | 3.453 |
| MIFGSM | 0.00% | 3.599 | 96.00% | 3.563 | |
| DIFGSM | 0.04% | 3.010 | 86.72% | 2.811 | |
| NIFGSM | 0.21% | 3.671 | 51.66% | 3.397 | |
| SINIFGSM | 2.93% | 3.689 | 62.46% | 3.593 | |
| VMIFGSM | 0.00% | 3.614 | 91.54% | 3.577 | |
| VNIFGSM | 0.00% | 3.632 | 84.02% | 3.605 | |
| Mobilenet | TAN | 2.72% | 3.218 | 97.40% | 3.257 |
| MIFGSM | 8.29% | 3.557 | 99.86% | 3.538 | |
| DIFGSM | 6.64% | 2.821 | 91.64% | 2.610 | |
| NIFGSM | 6.88% | 3.575 | 80.05% | 3.519 | |
| SINIFGSM | 1.77% | 3.664 | 85.14% | 3.662 | |
| VMIFGSM | 2.35% | 3.572 | 99.40% | 3.499 | |
| VNIFGSM | 1.32% | 3.635 | 95.58% | 3.582 | |
| ResNet50 | TAN | 3.34% | 3.684 | 97.69% | 3.408 |
| MIFGSM | 0.95% | 3.659 | 97.08% | 3.613 | |
| DIFGSM | 0.33% | 3.141 | 90.35% | 2.824 | |
| NIFGSM | 0.33% | 3.710 | 45.34% | 3.501 | |
| SINIFGSM | 3.96% | 3.720 | 71.64% | 3.652 | |
| VMIFGSM | 0.87% | 3.644 | 96.17% | 3.618 | |
| VNIFGSM | 0.25% | 3.692 | 94.17% | 3.632 | |
| Shufflenet | TAN | 3.46% | 3.331 | 98.36% | 3.345 |
| MIFGSM | 0.00% | 3.567 | 100.00% | 3.518 | |
| DIFGSM | 0.00% | 2.790 | 97.54% | 2.599 | |
| NIFGSM | 0.16% | 3.632 | 91.77% | 3.455 | |
| SINIFGSM | 0.00% | 3.660 | 95.79% | 3.568 | |
| VMIFGSM | 0.00% | 3.617 | 100.00% | 3.511 | |
| VNIFGSM | 0.04% | 3.654 | 99.73% | 3.568 | |
| Surrogate | Method | DenseNet121 | GoogLeNet | InceptionV3 | Mobilenet | ResNet50 | Shufflenet |
|---|---|---|---|---|---|---|---|
| DenseNet121 | TAN | 1.90% | 4.25% | 7.46% | 9.93% | 9.11% | 12.90% |
| MIFGSM | 0.00% | 10.10% | 12.82% | 26.46% | 16.32% | 28.65% | |
| DIFGSM | 0.00% | 8.16% | 11.46% | 26.01% | 19.17% | 30.83% | |
| NIFGSM | 0.21% | 14.67% | 14.67% | 26.75% | 20.07% | 30.67% | |
| SINIFGSM | 1.15% | 16.69% | 19.29% | 35.66% | 17.64% | 36.11% | |
| VMIFGSM | 0.00% | 8.86% | 11.62% | 24.40% | 15.13% | 25.89% | |
| VNIFGSM | 0.08% | 8.04% | 11.62% | 22.38% | 13.60% | 23.54% | |
| GoogLeNet | TAN | 6.88% | 3.83% | 8.16% | 23.62% | 10.51% | 26.88% |
| MIFGSM | 10.18% | 0.04% | 17.72% | 32.36% | 27.66% | 42.13% | |
| DIFGSM | 8.33% | 0.04% | 14.47% | 32.52% | 24.73% | 38.66% | |
| NIFGSM | 22.88% | 0.41% | 24.28% | 32.32% | 35.16% | 44.44% | |
| SINIFGSM | 7.96% | 4.04% | 13.15% | 33.22% | 15.09% | 28.07% | |
| VMIFGSM | 8.57% | 0.04% | 16.32% | 29.72% | 25.64% | 38.58% | |
| VNIFGSM | 10.02% | 0.37% | 15.50% | 27.99% | 26.30% | 36.93% | |
| InceptionV3 | TAN | 8.20% | 9.60% | 0.82% | 21.43% | 14.67% | 23.45% |
| MIFGSM | 19.25% | 35.00% | 0.00% | 39.45% | 33.14% | 42.54% | |
| DIFGSM | 16.86% | 33.22% | 0.04% | 43.69% | 33.76% | 47.07% | |
| NIFGSM | 32.11% | 34.46% | 0.21% | 42.09% | 43.08% | 44.89% | |
| SINIFGSM | 27.37% | 38.05% | 2.93% | 49.22% | 41.18% | 56.06% | |
| VMIFGSM | 18.51% | 26.92% | 0.00% | 34.46% | 31.04% | 37.18% | |
| VNIFGSM | 21.68% | 26.38% | 0.00% | 33.80% | 34.50% | 37.63% | |
| Mobilenet | TAN | 14.34% | 15.83% | 13.56% | 2.72% | 14.18% | 18.59% |
| MIFGSM | 65.99% | 59.32% | 53.59% | 8.29% | 55.56% | 59.77% | |
| DIFGSM | 51.28% | 53.34% | 49.34% | 6.64% | 49.34% | 52.18% | |
| NIFGSM | 65.75% | 58.66% | 51.85% | 6.88% | 52.31% | 55.56% | |
| SINIFGSM | 64.67% | 45.14% | 49.01% | 1.77% | 51.81% | 58.37% | |
| VMIFGSM | 62.49% | 52.10% | 50.45% | 2.35% | 49.63% | 52.84% | |
| VNIFGSM | 56.27% | 50.04% | 43.61% | 1.32% | 43.82% | 48.19% | |
| ResNet50 | TAN | 5.94% | 9.27% | 10.14% | 12.94% | 3.34% | 11.01% |
| MIFGSM | 14.59% | 24.15% | 17.72% | 16.90% | 0.95% | 26.42% | |
| DIFGSM | 11.13% | 17.07% | 15.09% | 20.45% | 0.33% | 26.59% | |
| NIFGSM | 21.72% | 28.19% | 20.28% | 19.74% | 0.33% | 29.43% | |
| SINIFGSM | 26.50% | 24.15% | 22.59% | 30.50% | 3.96% | 33.84% | |
| VMIFGSM | 13.31% | 22.42% | 16.36% | 15.95% | 0.87% | 23.33% | |
| VNIFGSM | 15.00% | 22.67% | 16.45% | 14.47% | 0.25% | 22.63% | |
| Shufflenet | TAN | 17.72% | 23.54% | 16.49% | 22.22% | 17.85% | 3.46% |
| MIFGSM | 66.69% | 70.03% | 65.00% | 55.81% | 65.00% | 0.00% | |
| DIFGSM | 53.46% | 57.58% | 55.32% | 51.44% | 55.44% | 0.00% | |
| NIFGSM | 67.23% | 61.58% | 58.62% | 48.35% | 61.62% | 0.16% | |
| SINIFGSM | 68.51% | 58.33% | 60.92% | 50.41% | 56.64% | 0.00% | |
| VMIFGSM | 57.25% | 55.32% | 54.29% | 40.23% | 53.34% | 0.00% | |
| VNIFGSM | 56.68% | 54.25% | 51.57% | 37.30% | 52.14% | 0.04% |
| Surrogate | Method | DenseNet121 | GoogLeNet | InceptionV3 | Mobilenet | ResNet50 | Shufflenet |
|---|---|---|---|---|---|---|---|
| DenseNet121 | TAN | 98.08% | 79.12% | 70.71% | 59.03% | 62.31% | 52.39% |
| MIFGSM | 98.61% | 52.47% | 49.05% | 39.47% | 43.78% | 37.62% | |
| DIFGSM | 95.39% | 51.08% | 46.62% | 35.02% | 39.51% | 32.29% | |
| NIFGSM | 68.72% | 33.06% | 27.61% | 22.18% | 25.78% | 22.92% | |
| SINIFGSM | 82.32% | 40.62% | 33.17% | 29.95% | 31.93% | 30.59% | |
| VMIFGSM | 98.14% | 48.94% | 44.10% | 33.56% | 39.29% | 34.06% | |
| VNIFGSM | 96.89% | 48.78% | 46.03% | 34.70% | 39.80% | 35.52% | |
| GoogLeNet | TAN | 81.04% | 99.09% | 66.59% | 56.72% | 63.86% | 55.02% |
| MIFGSM | 61.56% | 98.36% | 47.57% | 34.16% | 37.57% | 29.75% | |
| DIFGSM | 58.81% | 94.47% | 47.91% | 32.17% | 36.20% | 26.88% | |
| NIFGSM | 31.46% | 64.32% | 25.34% | 19.85% | 23.14% | 19.63% | |
| SINIFGSM | 41.97% | 69.79% | 34.39% | 28.21% | 29.77% | 25.48% | |
| VMIFGSM | 53.37% | 97.84% | 42.19% | 30.67% | 34.94% | 26.36% | |
| VNIFGSM | 56.26% | 95.74% | 43.96% | 32.31% | 36.11% | 29.49% | |
| InceptionV3 | TAN | 75.11% | 71.56% | 98.81% | 67.23% | 63.62% | 54.57% |
| MIFGSM | 42.64% | 35.92% | 96.00% | 32.49% | 35.00% | 29.51% | |
| DIFGSM | 42.99% | 33.70% | 86.72% | 31.16% | 34.13% | 28.20% | |
| NIFGSM | 27.12% | 24.67% | 51.66% | 19.49% | 23.76% | 22.45% | |
| SINIFGSM | 26.76% | 25.23% | 62.46% | 21.90% | 24.36% | 22.59% | |
| VMIFGSM | 36.38% | 34.05% | 91.54% | 30.15% | 31.43% | 28.52% | |
| VNIFGSM | 37.82% | 33.55% | 84.02% | 31.44% | 32.28% | 28.58% | |
| Mobilenet | TAN | 61.30% | 57.66% | 61.53% | 97.40% | 60.97% | 63.11% |
| MIFGSM | 19.98% | 18.66% | 22.87% | 99.86% | 23.55% | 20.31% | |
| DIFGSM | 23.96% | 21.92% | 23.79% | 91.64% | 24.51% | 22.65% | |
| NIFGSM | 15.76% | 15.58% | 16.85% | 80.05% | 18.06% | 15.91% | |
| SINIFGSM | 16.81% | 15.52% | 18.96% | 85.14% | 21.20% | 16.63% | |
| VMIFGSM | 18.46% | 17.84% | 18.70% | 99.40% | 21.49% | 19.61% | |
| VNIFGSM | 21.60% | 18.41% | 22.34% | 95.58% | 24.67% | 21.96% | |
| ResNet50 | TAN | 71.39% | 71.54% | 71.02% | 73.68% | 97.69% | 66.26% |
| MIFGSM | 43.23% | 30.51% | 41.57% | 42.41% | 97.08% | 36.29% | |
| DIFGSM | 45.18% | 34.25% | 42.37% | 39.40% | 90.35% | 34.36% | |
| NIFGSM | 22.07% | 20.45% | 20.33% | 19.36% | 45.34% | 19.75% | |
| SINIFGSM | 25.81% | 21.38% | 27.15% | 31.01% | 71.64% | 26.02% | |
| VMIFGSM | 36.44% | 26.33% | 35.75% | 38.61% | 96.17% | 32.79% | |
| VNIFGSM | 40.80% | 27.10% | 38.26% | 38.87% | 94.17% | 36.49% | |
| Shufflenet | TAN | 53.91% | 47.78% | 51.69% | 60.35% | 58.78% | 98.36% |
| MIFGSM | 18.29% | 16.43% | 17.06% | 19.46% | 17.20% | 100.00% | |
| DIFGSM | 23.55% | 20.36% | 20.80% | 22.55% | 21.35% | 97.54% | |
| NIFGSM | 13.96% | 13.06% | 13.14% | 14.47% | 13.66% | 91.77% | |
| SINIFGSM | 15.83% | 15.23% | 15.34% | 19.42% | 16.05% | 95.79% | |
| VMIFGSM | 17.58% | 16.34% | 17.09% | 21.65% | 18.46% | 99.94% | |
| VNIFGSM | 19.43% | 17.97% | 18.68% | 22.87% | 19.98% | 99.73% |
| Method | DenseNet121 | GoogLeNet | InceptionV3 | Mobilenet | ResNet50 | Shufflenet | Mean |
|---|---|---|---|---|---|---|---|
| TAN | 0.002029 | 0.002201 | 0.002039 | 0.002218 | 0.002031 | 0.002045 | 0.002094 |
| MIFGSM | 0.018285 | 0.006351 | 0.012636 | 0.005093 | 0.013445 | 0.004451 | 0.010044 |
| DIFGSM | 0.018276 | 0.006363 | 0.012653 | 0.005103 | 0.013468 | 0.004488 | 0.010059 |
| NIFGSM | 0.018312 | 0.006354 | 0.012646 | 0.005111 | 0.013477 | 0.004456 | 0.010059 |
| SINIFGSM | 0.091032 | 0.031499 | 0.063015 | 0.024865 | 0.067202 | 0.021676 | 0.049882 |
| VMIFGSM | 0.109252 | 0.037827 | 0.075580 | 0.029803 | 0.080479 | 0.025968 | 0.059818 |
| VNIFGSM | 0.109184 | 0.037804 | 0.075483 | 0.029776 | 0.080560 | 0.025907 | 0.059786 |
| Method | DenseNet121 | GoogLeNet | InceptionV3 | Mobilenet | ResNet50 | Shufflenet | Mean |
|---|---|---|---|---|---|---|---|
| TAN | 0.002070 | 0.002069 | 0.002036 | 0.002055 | 0.002087 | 0.002097 | 0.002069 |
| MIFGSM | 0.018281 | 0.006353 | 0.012634 | 0.005088 | 0.013451 | 0.004446 | 0.010042 |
| DIFGSM | 0.018291 | 0.006369 | 0.012652 | 0.005104 | 0.013490 | 0.004488 | 0.010065 |
| NIFGSM | 0.018306 | 0.006358 | 0.012661 | 0.005105 | 0.013486 | 0.004460 | 0.010063 |
| SINIFGSM | 0.091064 | 0.031539 | 0.063066 | 0.024871 | 0.067216 | 0.021664 | 0.049903 |
| VMIFGSM | 0.109262 | 0.037860 | 0.075579 | 0.029776 | 0.080481 | 0.025984 | 0.059823 |
| VNIFGSM | 0.109176 | 0.037819 | 0.075502 | 0.029798 | 0.080546 | 0.025923 | 0.059794 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
