Submitted:
28 February 2023
Posted:
02 March 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Mechanisms of resistance
| Antimicrobial class |
Mechanism of resistance Genes/operons |
Species | Comments |
Beta-lactams
|
Production of bet-lactamase plasmid non-induced or plasmid-mediated -Low-affinity PBP4 -Overproduction of PBP5 |
E. faecalis (rare in E. faecium) E. faecalis E. faecium |
*: High level resistance to penicillin, ampicillin, and piperacillin **: High level resistance to penicillin, ampicillin, and piperacillin and carbapenems |
Aminoglycosides
|
Defective aerobic transport across the cell membrane -Modification of the aminoglycoside by different enzymes -Alteration of the ribosomal target site |
Enterococcus spp |
Structural resistance in all species Self- transferable plasmids: phosphotransferase, nucleotidyl transferase, acetyltransferase Chromosomal mutation. Confers resistance to Streptomycin |
Glycopeptides (principal phenotypes)
|
Transposons inserted into the chromosome or on plasmids. Induced by either vancomycin or teicoplanin Transposons inserted into the chromosome or on plasmids. Induced only by teicoplanin Located in the chromosome and non-transferable. Located in the chromosome and non-transferable. Expressed constitutively. Located in the chromosome and not transferable. Located on the chromosome and transferable. Expressed constitutively. Could be transferred by conjugation. Plasmid-encoded resistance. Could be transferred by conjugation |
E. faecium, E. faecalis E. faecium, E. faecalis E. gallinarum, E. casseliflavus, E. flavescens E. faecium E. faecalis E. faecium E. faecalis E. faecalis E. faecium E. faecium |
Synthesis of peptidoglycan precursors with low affinity for pentaglycopeptides ending in D-Ala-D-lac instead of D-Ala-D-Ala Synthesis of peptidoglycan precursors with low affinity for pentaglycopeptides ending in D-Ala-D-Ser instead of D-Ala-D-Ala |
| Quinolones |
|
E. faecalis E. faecalis, E. faecium E. faecalis, E. faecium |
Encodes protein that protects DNA gyrase from inhibition by fluroquinolones |
| Oxazolidines |
|
E. faecalis, E. faecium E. faecalis, E. faecium |
Mutations reducing affinity in ribosomal subunit. Methylation of 23S rRNA |
| Daptomycin |
|
E. faecalis, E. faecium | Stress-sensing response system Alteration in membrane charge and fluidity |
| Macrolides and clindamycin | Methylation of an adenoma residue in the 23S rRNA (gene ermB) | Enterococcus spp | Located on plasmids and chromosomic transposons. Constitutive or inducible |
| Tetracyclines |
|
Enterococcus spp E. faecium |
Located on plasmid and transposons. Constitutive or inducible Reported with Tigecycline |
| Chloramphenicol | Chloramphenicol acetyltransferase (gene cat) | Enterococcus spp | Produces acetylation of chloramphenicol. Plasmid-mediated |
| Sulphonamides and trimethoprim | No gene identified. | Enterococcus spp | Enterococci can use exogenous folates |
2.1. Beta-lactams
2.2. Aminoglycosides
2.3. Glycopeptides
2.4. Daptomycin
2.5. Quinolones
2.6. Oxazolidinones
2.7. Tigecycline
2.8. Therapeutic Choices
2.9. Beta with-lactams aminoglycosides (A + G)
2.10. Dual beta-lactam therapy (A + C)
2.11. Glycopeptides
2.12. Daptomycin
2.13. Fosfomycin
2.14. Linezolid and Tedizolid
2.15. Quinolones
2.16. Tigecycline
2.17. Dalbavancin and Oritavancin
2.18. Duration of treatment
2.19. Outpatient Parenteral Antimicrobial Therapy (OPAT) with the standard guidelines
2.20. Oral treatment
3. Conclusions and future perspective
References
- Murdoch DR, Corey GR, Hoen B, Miró JM, Fowler VG Jr, Bayer AS, et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch Intern Med. 2009; 169:463–73. [CrossRef]
- Habib, G.; Erba, P.A.; Iung, B.; Donal, E.; Cosyns, B.; Laroche, C.; Popescu, B.A.; Prendergast, B.; Tornos, P.; Sadeghpour, A.; et al. Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: a prospective cohort study. Eur. Heart J. 2019, 40, 3222–3232. Erratum in Eur. Heart J. 2020, 41, 2091. [CrossRef]
- Muñoz P, Kestler M, De Alarcón A, Miró JM, Bermejo J, Rodríguez-Abella H et al. Current Epidemiology and Outcome of Infective Endocarditis: A Multicenter, Prospective, Cohort Study. Medicine (Baltimore). 2015 Oct;94(43): e1816. [CrossRef]
- Fernández-Hidalgo N, Escolà-Vergé L, Pericàs JM. Enterococcus faecalis endocarditis: what's next? Future Microbiol. 2020 Mar; 15:349-364. [CrossRef]
- Pericàs JM, Llopis J, Muñoz P, Gálvez-Acebal J, Kestler M, Valerio M et al. A Contemporary Picture of Enterococcal Endocarditis: a comparison of 516 cases with,308 cases of non-enterococcal endocarditis from the GAMES Cohort (2008-2016). J Am Coll Cardiol. 2020 Feb 11;75(5):482-494.
- Dahl, A.; Fowler, V.G.; Miro, J.M.; E Bruun, N. Sign of the Times: Updating Infective Endocarditis Diagnostic Criteria to Recognize Enterococcus faecalis as a Typical Endocarditis Bacterium. Clin. Infect. Dis. 2022, 75, 1097–1102. [CrossRef]
- Fernández-Guerrero, M.L.; Herrero, L.; Bellver, M.; Gadea, I.; Roblas, R.F.; De Górgolas, M. Nosocomial enterococcal endocarditis: a serious hazard for hospitalized patients with enterococcal bacteraemia. J. Intern. Med. 2002, 252, 510–515. [CrossRef]
- Lomas, J.; Martínez-Marcos, F.; Plata, A.; Ivanova, R.; Gálvez, J.; Ruiz, J.; Reguera, J.; Noureddine, M.; de la Torre, J.; de Alarcón, A. Healthcare-associated infective endocarditis: an undesirable effect of healthcare universalization. Clin. Microbiol. Infect. 2010, 16, 1683–1690. [CrossRef]
- Ambrosioni, J.; Muñoz, P.; de Alarcón, A.; Kestler, M.; Mari-Hualde, A.; Moreno, A.; Rodríguez-Álvarez, R.; Ojeda-Burgos, G.; Gálvez-Acebal, J.; Hidalgo-Tenorio, C.; et al. Prevalence of Colorectal Neoplasms Among Patients With Enterococcus faecalis Endocarditis in the GAMES Cohort (2008–2017). Mayo Clin. Proc. 2021, 96, 132–146. [CrossRef]
- Escolà-Vergé L, Peghin M, Givone F, Pérez-Rodríguez MT, Suárez-Varela M, Meije Y et al. Prevalence of colorectal disease in Enterococcus faecalis infective endocarditis: results of an observational multicenter study. Rev Esp Cardiol (Engl Ed). 2020 Sep;73(9):711-717. [CrossRef]
- Khan, A.; Aslam, A.; Satti, K.N.; Ashiq, S. Infective endocarditis post-transcatheter aortic valve implantation (TAVI), microbiological profile and clinical outcomes: A systematic review. PLOS ONE 2020, 15, e0225077. [CrossRef]
- McDonald JR, Olaison L, Anderson DJ, Hoen B, Miro JM, Eykyn S et al. Enterococcal endocarditis: 107 cases from the international collaboration on endocarditis merged database. Am J Med. 2005 jul;118(7):759-66. [CrossRef]
- Fernández Guerrero ML, Goyenechea A, Verdejo C, Roblas RF, de Górgolas M. Enterococcal endocarditis on native and prosthetic valves: a review of clinical and prognostic factors with emphasis on hospital-acquired infections as a major determinant of outcome. Medicine (Baltimore). 2007 Nov;86(6):363-377. [CrossRef]
- Martínez-Marcos FJ, Lomas-Cabezas JM, Hidalgo-Tenorio C, de la Torre-Lima J, Plata-Ciézar A, Reguera-Iglesias JM et al. Enterococcal endocarditis: a multicenter study of 76 cases. Enferm Infecc Microbiol Clin. 2009 Dec;27(10):571-9. [CrossRef]
- Conwell M, Dooley JSG, Naughton PJ. Enterococcal biofilm-A nidus for antibiotic resistance transfer? J Appl Microbiol. 2022 May;132(5):3444-3460. [CrossRef]
- García-Solache, M.; Rice, L.B. The Enterococcus: a Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [CrossRef]
- Heath, C.H.; Blackmore, T.K.; Gordon, D.L. Emerging resistance in Enterococcus spp.. 1996, 164, 116–20.
- Casalta, J.-P.; Thuny, F.; Fournier, P.-E.; Lepidi, H.; Habib, G.; Grisoli, D.; Raoult, D. DNA Persistence and Relapses Questions on the Treatment Strategies of Enterococcus Infections of Prosthetic Valves. PLOS ONE 2012, 7, e53335. [CrossRef]
- Lecomte R, Laine JB, Issa N, Revest M, Gaborit B, Le Turnier P et al. Long-term Outcome of Patients with Non-operated Prosthetic Valve Infective Endocarditis: Is Relapse the Main Issue? Clin Infect Dis. 2020 Aug 22;71(5):1316-1319. [CrossRef]
- Calderón-Parra, J.; Kestler, M.; Ramos-Martínez, A.; Bouza, E.; Valerio, M.; de Alarcón, A.; Luque, R.; Goenaga, M..; Echeverría, T.; Fariñas, M.C.; et al. Clinical Factors Associated with Reinfection versus Relapse in Infective Endocarditis: Prospective Cohort Study. J. Clin. Med. 2021, 10, 748. [CrossRef]
- Danneels, P.; Hamel, J.-F.; Picard, L.; Martinet, P.; Talarmin, J.-P.; Guimard, T.; Le Moal, G.; Brochard-Libois, J.; Beaudron, A.; Letheulle, J.; et al. Impact of Enterococcus faecalis Endocarditis Treatment on Risk of Relapse. Clin. Infect. Dis. 2023, 76, 281–290. [CrossRef]
- López-Cortés LE, Fernández-Cuenca F, Luque-Márquez R, de Alarcón A. Enterococcal Endocarditis: Relapses or Reinfections? Clin Infect Dis. 2021 Jan 27;72(2):360-361. [CrossRef]
- Bonten, M.J.; Willems, R.; A Weinstein, R. Vancomycin-resistant enterococci: why are they here, and where do they come from? Lancet Infect. Dis. 2001, 1, 314–325. [CrossRef]
- Mascini, E.; Bonten, M. Vancomycin-resistant enterococci: consequences for therapy and infection control. Clin. Microbiol. Infect. 2005, 11, 43–56. [CrossRef]
- Fontana, R.; Ligozzi, M.; Pittaluga, F.; Satta, G. Intrinsic Penicillin Resistance in Enterococci. Microb. Drug Resist. 1996, 2, 209–213. [CrossRef]
- Sonne M, Jawetz E. Comparison of the action of ampicillin and benzylpenicillin on enterococci in vitro. Appl Microbiol. 1968 Apr;16(4):645-8. [CrossRef]
- Arias, C.A.; Singh, K.V.; Panesso, D.; Murray, B.E. Evaluation of ceftobiprole medocaril against Enterococcus faecalis in a mouse peritonitis model. J. Antimicrob. Chemother. 2007, 60, 594–598. [CrossRef]
- Arias CA, Singh KV, Panesso D, Murray BE. Time-kill and synergism studies of ceftobiprole against Enterococcus faecalis, including beta-lactamase-producing and vancomycin-resistant isolates. Antimicrob. Agents Chemother. 2007. 51, 2043–2047. [CrossRef]
- Jacqueline C, Caillon J, Le Mabecque V, Miègeville AF, Ge Y, Biek D et al. In vivo activity of a novel anti-methicillin-resistant Staphylococcus aureus cephalosporin, ceftaroline, against vancomycin-susceptible and -resistant Enterococcus faecalis strains in a rabbit endocarditis model: a comparative study with linezolid and vancomycin. Antimicrob. Agents Chemother. 2009. 53, 5300–5302. [CrossRef]
- Wilson, W.R.; Geraci, J.E. Treatment of streptococcal infective endocarditis. Am. J. Med. 1985, 78, 128–137. [CrossRef]
- M L Fernández Guerrero, A Núñez García. Enterococcal endocarditis, a model of therapeutic difficulty. Rev Clin Esp . 1995 Oct;195 Suppl 4:41-5.
- Shah, P.M. Paradoxical effect of antibiotics. J. Antimicrob. Chemother. 1982, 10, 259–260. [CrossRef]
- Fontana, R.; Grossato, A.; Ligozzi, M.; A Tonin, E. In vitro response to bactericidal activity of cell wall-active antibiotics does not support the general opinion that enterococci are naturally tolerant to these antibiotics. Antimicrob. Agents Chemother. 1990, 34, 1518–1522. [CrossRef]
- Tomayko, J.F.; Zscheck, K.K.; Singh, K.V.; E Murray, B. Comparison of the beta-lactamase gene cluster in clonally distinct strains of Enterococcus faecalis. Antimicrob. Agents Chemother. 1996, 40, 1170–1174. [CrossRef]
- Coudron PE, Markowitz SM, Wong ES. Isolation of a beta-lactamase producing strain of Enterococcus faecium. Antimicrob Agents Chemother. 1992; 36:1125-6. [CrossRef]
- Duez C, Zorzi W, Sapunaric F, Amoroso A, Thamm I, Coyette J. The penicillin resistance of Enterococcus faecalis JH2-2R results from an overproduction of the low-affinity penicillin-binding protein PBP4 and does not involve a psr-like gene. Microbiology. 2001; 147:2561–2569. [CrossRef]
- Rice LB, Desbonnet C, Tait-Kamradt A, Garcia-Solache M, Lonks J, Moon TM et al. Structural and regulatory changes in PBP4 trigger decreased beta-lactam susceptibility in Enterococcus faecalis. mBio. 2018; 9: e00361-18.
- Rice LB, Bellais S, Carias LL, Hutton-Thomas R, Bonomo RA, Caspers P, et al . Impact of specific pbp5 mutations on expression of beta-lactam resistance in Enterococcus faecium. Antimicrob Agents Chemother. 2004; 48:3028–3032. [CrossRef]
- Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev. 1990; 3: 46-65. [CrossRef]
- Geraci JE, Martin WJ. Subacute enterococcal endocarditis: clinical, pathologic and therapeutic considerations in 33 patients. Circulation. 1954; 10:173–194.
- Jawetz E, Sonne M. Penicillin-streptomycin treatment of enterococcal endocarditis: a reevaluation. N Engl J Med. 1966; 274:710–715.
- Moellering RC, Weinberg AN. Studies on antibiotic synergism against enterococci. II. Effect of various antibiotics on the uptake of 14C-labelled streptomycin by enterococci. J Clin Invest. 1971; 50:2580–2584.
- Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993; 57:138–163. [CrossRef]
- Chow, J.W. Aminoglycoside Resistance in Enterococci. Clin. Infect. Dis. 2000, 31, 586–589. [CrossRef]
- Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin Microbiol Rev. 2000; 13:686-707.
- Kühn, I.; Iversen, A.; Finn, M.; Greko, C.; Burman, L.G.; Blanch, A.R.; Vilanova, X.; Manero, A.; Taylor, H.; Caplin, J.; et al. Occurrence and Relatedness of Vancomycin-Resistant Enterococci in Animals, Humans, and the Environment in Different European Regions. Appl. Environ. Microbiol. 2005, 71, 5383–5390. [CrossRef]
- Phillips, I.; Casewell, M.; Cox, T.; De Groot, B.; Friis, C.; Jones, R.; Nightingale, C.; Preston, R.; Waddell, J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J. Antimicrob. Chemother. 2003, 53, 28–52. [CrossRef]
- Mendes RE, Castanheira M, Farrell DJ, Flamm RK, Sader HS, Jones RN. Longitudinal (2001-14) analysis of enterococci and VRE causing invasive infections in European and US hospitals, including a contemporary (2010-13) analysis of oritavancin in vitro potency. J Antimicrob Chemother. 2016 Dec;71(12):3453-3458. [CrossRef]
- Carpenter, C.F.; Chambers, H.F. Daptomycin: Another Novel Agent for Treating Infections Due to Drug-Resistant Gram-Positive Pathogens. Clin. Infect. Dis. 2004, 38, 994–1000. [CrossRef]
- Satlin MJ, Nicolau DP, Humphries RM, Kuti JL , Campeau SA , Lewis Ii JS et al. Development of Daptomycin Susceptibility Breakpoints for Enterococcus faecium and Revision of the Breakpoints for Other Enterococcal Species by the Clinical and Laboratory Standards Institute. Clin Infect Dis. 2020 Mar 3;70(6):1240-1246. [CrossRef]
- Turnidge, J.; Kahlmeter, G.; Cantón, R.; MacGowan, A.; Giske, C. and the European Committee on Antimicrobial Susceptibility Testing. Daptomycin in the treatment of enterococcal bloodstream infections and endocarditis: a EUCAST position paper. Clin. Microbiol. Infect. 2020, 26, 1039–1043. [CrossRef]
- Kamboj, M.; Cohen, N.; Gilhuley, K.; Babady, N.E.; Seo, S.K.; Sepkowitz, K.A. Emergence of Daptomycin-Resistant VRE: Experience of a Single Institution. Infect. Control. Hosp. Epidemiology 2011, 32, 391–394. [CrossRef]
- Kelesidis T, Humphries R, Uslan DZ, Pegues DA. Daptomycin non-susceptible enterococci: an emerging challenge for clinicians. Clin Infect Dis. 2011 Jan 15;52(2):228-34.
- Miller WR, Bayer AS, Arias CA. Mechanism of action and resistance to daptomycin in Staphylococcus aureus and enterococci. Cold Spring Harb Perspect Med. 2016; 6: a026997. [CrossRef]
- Mishra, N.N.; Bayer, A.S.; Tran, T.T.; Shamoo, Y.; Mileykovskaya, E.; Dowhan, W.; Guan, Z.; Arias, C.A. Daptomycin Resistance in Enterococci Is Associated with Distinct Alterations of Cell Membrane Phospholipid Content. PLOS ONE 2012, 7, e43958. [CrossRef]
- Tankovic, J.; Bachoual, R.; Ouabdesselam, S.; Boudjadja, A.; Soussy, C.-J. In-vitro activity of moxifloxacin against fluoroquinolone-resistant strains of aerobic Gram-negative bacilli and Enterococcus faecalis. J. Antimicrob. Chemother. 1999, 43, 19–23. [CrossRef]
- Kanematsu, E.; Deguchi, T.; Yasuda, M.; Kawamura, T.; Nishino, Y.; Kawada, Y. Alterations in the GyrA Subunit of DNA Gyrase and the ParC Subunit of DNA Topoisomerase IV Associated with Quinolone Resistance in Enterococcus faecalis. Antimicrob. Agents Chemother. 1998, 42, 433–435. [CrossRef]
- Oyamada, Y.; Ito, H.; Fujimoto, K.; Asada, R.; Niga, T.; Okamoto, R.; Inoue, M.; Yamagishi, J.-I. Combination of known and unknown mechanisms confers high-level resistance to fluoroquinolones in Enterococcus faecium. J. Med Microbiol. 2006, 55, 729–736. [CrossRef]
- Dadashi M, Sharifian P, Bostanshirin N, Hajikhani B , Bostanghadiri N, Khosravi-Dehaghi N et al. The Global Prevalence of Daptomycin, Tigecycline, and Linezolid-Resistant Enterococcus faecalis and Enterococcus faecium Strains from Human Clinical Samples: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2021 Sep 10; 8:720647. [CrossRef]
- Marshall, S.H.; Donskey, C.J.; Hutton-Thomas, R.; Salata, R.A.; Rice, L.B. Gene Dosage and Linezolid Resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob. Agents Chemother. 2002, 46, 3334–3336. [CrossRef]
- Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol. 2005; 57:1064–1073.
- Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother. 2015; 70:2182–2190. [CrossRef]
- Vester, B. The cfr and cfr-like multiple resistance genes. Res. Microbiol. 2018, 169, 61–66. [CrossRef]
- Yaghoubi, S.; Zekiy, A.O.; Krutova, M.; Gholami, M.; Kouhsari, E.; Sholeh, M.; Ghafouri, Z.; Maleki, F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 41, 1003–1022. [CrossRef]
- Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Tleyjeh IM, Rybak MJ, et al. Diagnosis, Antimicrobial Therapy, and Management of Complications: A Scientific Statement for Healthcare Professionals from the American Heart Association. Circulation. 2015 Oct 13;132(15):1435-86.
- Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015 Nov 21;36(44):3075-3128. [CrossRef]
- Wilson WR, Wilkowske CJ, Wright AJ, Sande MA, Geraci JE. Treatment of streptomycin-susceptible and streptomycin-resistant enterococcal endocarditis. Ann Intern Med. 1984 Jun;100(6):816-23. [CrossRef]
- Serra, P.; Brandimarte, C.; Martino, P.; Carlone, S.; Giunchi, G. Synergistic treatment of enterococcal endocarditis: in vitro and in vivo studies.. 1977, 137, 1562–7.
- Mainardi JL, Gutmann L, Acar JF, Goldstein FW. Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob Agents Chemother. 1995 Sep;39(9):1984-7. [CrossRef]
- Gavaldà, J.; Torres, C.; Tenorio, C.; López, P.; Zaragoza, M.; Capdevila, J.A.; Almirante, B.; Ruiz, F.; Borrell, N.; Gomis, X.; et al. Efficacy of Ampicillin plus Ceftriaxone in Treatment of Experimental Endocarditis Due to Enterococcus faecalis Strains Highly Resistant to Aminoglycosides. Antimicrob. Agents Chemother. 1999, 43, 639–646. [CrossRef]
- Liao, C.-H.; Huang, Y.-T.; Tsai, H.-Y.; Hsueh, P.-R. In vitro synergy of ampicillin with gentamicin, ceftriaxone and ciprofloxacin against Enterococcus faecalis. Int. J. Antimicrob. Agents 2014, 44, 85–86. [CrossRef]
- Gavaldà J, Len O, Miró JM, Muñoz P, Montejo M, Alarcón A, et al. A. Brief communication: treatment of Enterococcus faecalis endocarditis with ampicillin plus ceftriaxone. Ann Intern Med. 2007 Apr 17;146(8):574-9.
- Gavaldà, J.; Onrubia, P.L.; Gómez, M.T.M.; Gomis, X.; Ramírez, J.L.; Len, O.; Rodríguez, D.; Crespo, M.; Ruíz, I.; Pahissa, A. Efficacy of ampicillin combined with ceftriaxone and gentamicin in the treatment of experimental endocarditis due to Enterococcus faecalis with no high-level resistance to aminoglycosides. J. Antimicrob. Chemother. 2003, 52, 514–517. [CrossRef]
- Fernández-Hidalgo, N.; Almirante, B.; Gavaldà, J.; Gurgui, M.; Peña, C.; de Alarcón, A.; Ruiz, J.; Vilacosta, I.; Montejo, M.; Vallejo, N.; et al. Ampicillin Plus Ceftriaxone Is as Effective as Ampicillin Plus Gentamicin for TreatingEnterococcus faecalisInfective Endocarditis. Clin. Infect. Dis. 2013, 56, 1261–1268. [CrossRef]
- Pericas, J.; Cervera, C.; del Rio, A.; Moreno, A.; de la Maria, C.G.; Almela, M.; Falces, C.; Ninot, S.; Castañeda, X.; Armero, Y.; et al. Changes in the treatment of Enterococcus faecalis infective endocarditis in Spain in the last 15 years: from ampicillin plus gentamicin to ampicillin plus ceftriaxone. Clin. Microbiol. Infect. 2014, 20, O1075–O1083. [CrossRef]
- Owens RC Jr, Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial associated risk factors for Clostridium difficile infection. Clin Infect Dis. 2008; 46 (Suppl 1): S19–31.
- Amberpet R, Sistla S, Parija SC, Thabah MM. Screening for intestinal colonization with vancomycin resistant enterococci and associated risk factors among patients admitted to an adult intensive care unit of a large teaching hospital. J Clin Diagn Res. 2016; 10: DC06–9.
- McKinnell, J.A.; Kunz, D.F.; Chamot, E.; Patel, M.; Shirley, R.M.; Moser, S.A.; Baddley, J.W.; Pappas, P.G.; Miller, L.G. Association between vancomycin-resistant Enterococci bacteremia and ceftriaxone usage.. Infect. Control. Hosp. Epidemiology 2012, 33, 718–24. [CrossRef]
- Laktic̀ová, V.; Hutton-Thomas, R.; Meyer, M.; Gurkan, E.; Rice, L.B. Antibiotic-Induced Enterococcal Expansion in the Mouse Intestine Occurs throughout the Small Bowel and Correlates Poorly with Suppression of Competing Flora. Antimicrob. Agents Chemother. 2006, 50, 3117–3123. [CrossRef]
- Rice LB, Hutton-Thomas R, Lakticova V, Helfand MS, Donskey CJ. Beta-lactam antibiotics and gastrointestinal colonization with vancomycin-resistant enterococci. J Infect Dis. 2004; 189:1113–8.
- Panagiotidis, G.; Bäckström, T.; Asker-Hagelberg, C.; Jandourek, A.; Weintraub, A.; Nord, C.E. Effect of Ceftaroline on Normal Human Intestinal Microflora. Antimicrob. Agents Chemother. 2010, 54, 1811–1814. [CrossRef]
- Luther, M.K.; Rice, L.B.; LaPlante, K.L. Ampicillin in Combination with Ceftaroline, Cefepime, or Ceftriaxone Demonstrates Equivalent Activities in a High-Inoculum Enterococcus faecalis Infection Model. Antimicrob. Agents Chemother. 2016, 60, 3178–3182. [CrossRef]
- Werth, B.J.; Shireman, L.M. Pharmacodynamics of Ceftaroline plus Ampicillin against Enterococcus faecalis in an In Vitro Pharmacokinetic/Pharmacodynamic Model of Simulated Endocardial Vegetations. Antimicrob. Agents Chemother. 2017, 61. [CrossRef]
- Arias CA, Singh KV, Panesso D, Murray BE. Time-kill and synergism studies of ceftobiprole against Enterococcus faecalis, including beta-lactamase-producing and vancomycin-resistant isolates. Antimicrob Agents Chemother. 2007 Jun;51(6):2043-7.
- Ramos, M.C.; Grayson, M.L.; Eliopoulos, G.M.; Bayer, A.S. Comparison of daptomycin, vancomycin, and ampicillin-gentamicin for treatment of experimental endocarditis caused by penicillin-resistant enterococci. Antimicrob. Agents Chemother. 1992, 36, 1864–1869. [CrossRef]
- Chen, H.Y.; Williams, J.D. The activity of vancomycin and teicoplanin alone and in combination with gentamicin or ampicillin againstStreptococcus faecalis. Eur. J. Clin. Microbiol. Infect. Dis. 1984, 3, 436–438. [CrossRef]
- Chandrasekar, P.H.; Price, S.; Levine, D.P. In-vitro evaluation of cefpirome (HR 810), teicoplanin and four other antimicrobials against enterococci. J. Antimicrob. Chemother. 1985, 16, 179–182. [CrossRef]
- Pohlod, D.J.; Saravolatz, L.D.; Somerville, M.M. In-vitro susceptibility of Gram-positive cocci to LY146032 teicoplanin, sodium fusidate, vancomycin, and rifampicin. J. Antimicrob. Chemother. 1987, 20, 197–202. [CrossRef]
- Spencer, R.C.; Goering, R. A critical review of the in-vitro activity of teicoplanin. Int. J. Antimicrob. Agents 1995, 5, 169–177. [CrossRef]
- Sullam, P.M.; Täuber, M.G.; Hackbarth, C.J.; A Sande, M. Therapeutic efficacy of teicoplanin in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 1985, 27, 135–136. [CrossRef]
- López, P.; Gavaldà, J.; Martin, M.T.; Almirante, B.; Gomis, X.; Azuaje, C.; Borrell, N.; Pou, L.; Falcó, V.; Pigrau, C.; et al. Efficacy of Teicoplanin-Gentamicin Given Once a Day on the Basis of Pharmacokinetics in Humans for Treatment of Enterococcal Experimental Endocarditis. Antimicrob. Agents Chemother. 2001, 45, 1387–1393. [CrossRef]
- Escolà-Vergé, L.; Fernández-Hidalgo, N.; Rodríguez-Pardo, D.; Pigrau, C.; González-López, J.J.; Bartolomé, R.; Almirante, B. Teicoplanin for treating enterococcal infective endocarditis: A retrospective observational study from a referral centre in Spain. Int. J. Antimicrob. Agents 2019, 53, 165–170. [CrossRef]
- De Nadaï, T.; François, M.; Sommet, A; Dubois, D.; Metsu, D.; Grare, .; Marchou, B; Delobel, PMartin-Blondel, G. Efficacy of teicoplanin monotherapy following initial standard therapy in Enterococcus faecalis infective endocarditis: A retrospective cohort study. Infection.2019; 47: 463–469.
- Presterl, E.; Graninger, W.; Georgopoulos, A. The efficacy of teicoplanin in the treatment of endocarditis caused by Gram-positive bacteria. J. Antimicrob. Chemother. 1993, 31, 755–766. [CrossRef]
- Hayden, M.K.; Trenholme, G.M.; Schultz, J.E.; Sahm, D.F. In Vivo Development of Teicoplanin Resistance in a VanB Enterococcus faecium Isolate. J. Infect. Dis. 1993, 167, 1224–1227. [CrossRef]
- Ceron, I.; Bermejo, J.; Bouza, E.; Eworo, A.; Cruz, A.F.; Cuerpo, G.; Robles, J.A.G.; del Vecchio, M.G.; Mansilla, A.G.; Ramallo, V.G.; et al. Efficacy of daptomycin in the treatment of enterococcal endocarditis: a 5 year comparison with conventional therapy. J. Antimicrob. Chemother. 2014, 69, 1669–1674. [CrossRef]
- Carugati, M.; Bayer, A.S.; Miró, J.M.; Park, L.P.; Guimarães, A.C.; Skoutelis, A.; Fortes, C.Q.; Durante-Mangoni, E.; Hannan, M.M.; Nacinovich, F.; et al. High-Dose Daptomycin Therapy for Left-Sided Infective Endocarditis: a Prospective Study from the International Collaboration on Endocarditis. Antimicrob. Agents Chemother. 2013, 57, 6213–6222. [CrossRef]
- Bassetti M, Russo A, Givone F, Ingani M, Graziano E, Bassetti M. Should High-dose Daptomycin be an Alternative Treatment Regimen for Enterococcal Endocarditis? Infect. Dis. Ther. 2019, 8, 695–702.
- Cervera, C.; Castañeda, X.; Pericas, J.M.; del Río, A.; de la Maria, C.G.; Mestres, C.; Falces, C.; Marco, F.; Moreno, A.; Miró, J.M. Clinical utility of daptomycin in infective endocarditis caused by Gram-positive cocci. Int. J. Antimicrob. Agents 2011, 38, 365–370. [CrossRef]
- Peghin M, Russo A, Givone F, Ingani M, Graziano E, Bassetti M. Should High dose daptomycin be an alternative treatment regimen for enterococcal endocarditis? Infect Dis Ther. 2019; 8(4), 695–702.
- Pericàs, J.M.; García-De-La-Mària, C.; Brunet, M.; Armero, Y.; García-González, J.; Casals, G.; Almela, M.; Quintana, E.; Falces, C.; Ninot, S.; et al. Early in vitro development of daptomycin non-susceptibility in high-level aminoglycoside-resistant Enterococcus faecalis predicts the efficacy of the combination of high-dose daptomycin plus ampicillin in an in vivo model of experimental endocarditis. J. Antimicrob. Chemother. 2017, 72, 1714–1722. [CrossRef]
- Hall, A.D.; Steed, M.E.; Arias, C.A.; Murray, B.E.; Rybak, M.J. Evaluation of Standard- and High-Dose Daptomycin versus Linezolid against Vancomycin-Resistant Enterococcus Isolates in an In Vitro Pharmacokinetic/Pharmacodynamic Model with Simulated Endocardial Vegetations. Antimicrob. Agents Chemother. 2012, 56, 3174–3180. [CrossRef]
- Arias, C.A.; Panesso, D.; McGrath, D.M.; Qin, X.; Mojica, M.F.; Miller, C.; Diaz, L.; Tran, T.T.; Rincon, S.; Barbu, E.M.; et al. Genetic Basis for In Vivo Daptomycin Resistance in Enterococci. New Engl. J. Med. 2011, 365, 892–900. [CrossRef]
- Storm, J.C.; Diekema, D.J.; Kroeger, J.S.; Johnson, S.J.; Johannsson, B. Daptomycin exposure precedes infection and/or colonization with daptomycin non-susceptible enterococcus. Antimicrob. Resist. Infect. Control. 2012, 1, 19–19. [CrossRef]
- Werth, B.J.; Shireman, L.M. Pharmacodynamics of Ceftaroline plus Ampicillin against Enterococcus faecalis in an In Vitro Pharmacokinetic/Pharmacodynamic Model of Simulated Endocardial Vegetations. Antimicrob. Agents Chemother. 2017, 61. [CrossRef]
- Sakoulas, G.; Nonejuie, P.; Nizet, V.; Pogliano, J.; Crum-Cianflone, N.; Haddad, F. Treatment of High-Level Gentamicin-Resistant Enterococcus faecalis Endocarditis with Daptomycin plus Ceftaroline. Antimicrob. Agents Chemother. 2013, 57, 4042–4045. [CrossRef]
- Smith JR, Barber KE, Raut A, Aboutaleb M, Sakoulas G, Rybak MJ. β-Lactam combinations with daptomycin provide synergy against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother. 2015; 70:1738–43.
- Sierra-Hoffman, M.; Iznaola, O.; Goodwin, M.; Mohr, J. Combination Therapy with Ampicillin and Daptomycin for Treatment of Enterococcus faecalis Endocarditis. Antimicrob. Agents Chemother. 2012, 56, 6064–6064. [CrossRef]
- Rice, L.B.; Eliopoulos, G.M.; Moellering, R.C. In vitro synergism between daptomycin and fosfomycin against Enterococcus faecalis isolates with high-level gentamicin resistance. Antimicrob. Agents Chemother. 1989, 33, 470–473. [CrossRef]
- Rice, L.B.; Eliopoulos, C.T.; Yao, J.D.; Eliopoulos, G.M.; Moellering, R.C. In vivo activity of the combination of daptomycin and fosfomycin compared with daptomycin alone against a strain of Enterococcus faecalis with high-level gentamicin resistance in the rat endocarditis model. Diagn. Microbiol. Infect. Dis. 1992, 15, 173–176. [CrossRef]
- Farina, C.; Russello, G.; Chinello, P.; Pasticci, M.; Raglio, A.; Ravasio, V.; Rizzi, M.; Scarparo, C.; Vailati, F.; Suter, F.; et al. In vitro Activity Effects of Twelve Antibiotics Alone and in Association against Twenty-Seven Enterococcus faecalis Strains Isolated from Italian Patients with Infective Endocarditis: High in vitro Synergistic Effect of the Association Ceftriaxone-Fosfomycin. Chemotherapy 2011, 57, 426–433. [CrossRef]
- Tang, H.-J.; Chen, C.-C.; Zhang, C.-C.; Su, B.-A.; Li, C.-M.; Weng, T.-C.; Chiang, S.-R.; Ko, W.-C.; Chuang, Y.-C. In vitro efficacy of fosfomycin-based combinations against clinical vancomycin-resistant Enterococcus isolates. Diagn. Microbiol. Infect. Dis. 2013, 77, 254–257. [CrossRef]
- Pujol, M.; Miró, J.-M.; Shaw, E.; Aguado, J.-M.; San-Juan, R.; Puig-Asensio, M.; Pigrau, C.; Calbo, E.; Montejo, M.; Rodriguez-Álvarez, R.; et al. Daptomycin Plus Fosfomycin Versus Daptomycin Alone for Methicillin-resistant Staphylococcus aureus Bacteremia and Endocarditis: A Randomized Clinical Trial. Clin. Infect. Dis. 2020, 72, 1517–1525. [CrossRef]
- García-De-La-Mària, C.; Gasch, O.; García-Gonzalez, J.; Soy, D.; Shaw, E.; Ambrosioni, J.; Almela, M.; Pericàs, J.M.; Falces, C.; Hernandez-Meneses, M.; et al. The Combination of Daptomycin and Fosfomycin Has Synergistic, Potent, and Rapid Bactericidal Activity against Methicillin-Resistant Staphylococcus aureus in a Rabbit Model of Experimental Endocarditis. Antimicrob. Agents Chemother. 2018, 62. [CrossRef]
- García-De-La-Mària, C.; Gasch, O.; Castañeda, X.; García-González, J.; Soy, D.; Cañas, M.-A.; Ambrosioni, J.; Almela, M.; Pericàs, J.M.; Téllez, A.; et al. Cloxacillin or fosfomycin plus daptomycin combinations are more active than cloxacillin monotherapy or combined with gentamicin against MSSA in a rabbit model of experimental endocarditis. J. Antimicrob. Chemother. 2020, 75, 3586–3592. [CrossRef]
- García-De-La-Mària, C.; Cruceta, A.; Miró, J.M.; Moreno, A.; Pericàs, J.M.; Ambrosioni, J.; Tellez, A.; Hernandez-Meneses, M.; del Río, A.; Cervera, C.; et al. Efficacy and safety of fosfomycin plus imipenem versus vancomycin for complicated bacteraemia and endocarditis due to methicillin-resistant Staphylococcus aureus: a randomized clinical trial. Clin. Microbiol. Infect. 2018, 24, 673–676. [CrossRef]
- Oliva, A.; Tafin, U.F.; Maiolo, E.M.; Jeddari, S.; Bétrisey, B.; Trampuz, A. Activities of Fosfomycin and Rifampin on Planktonic and Adherent Enterococcus faecalis Strains in an Experimental Foreign-Body Infection Model. Antimicrob. Agents Chemother. 2014, 58, 1284–1293. [CrossRef]
- Arias CA, Murray BE. Emergence and management of drug resistant enterococcal infections. Expert Rev Anti Infect Ther. 2008; 6(5):637–55.
- Scheetz MH, Knechtel SA, Malczynski M, Postelnick MJ, Qi C. Increasing incidence of linezolid-intermediate or -resistant, vancomycin-resistant Enterococcus faecium strains parallels increasing linezolid consumption. Antimicrob Agents Chemother. 2008 Jun;52(6):2256-9.
- Bender, J.K.; Cattoir, V.; Hegstad, K.; Sadowy, E.; Coque, T.M.; Westh, H.; Hammerum, A.M.; Schaffer, K.; Burns, K.; Murchan, S.; et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updat. 2018, 40, 25–39. [CrossRef]
- Birmingham MC, Rayner VR, Meagher AK, Flavin SM, Batts DH, Schentag JJ. Linezolid for the treatment of multidrug-resistant, gram-positive infections: experience from a compassionate-use program. Clin Infect Dis. 2003 Jan 15;36(2):159-68.
- Falagas, M.E.; Manta, K.G.; Ntziora, F.; Vardakas, K.Z. Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J. Antimicrob. Chemother. 2006, 58, 273–280. [CrossRef]
- Stevens, M.P.; Edmond, M.B. Endocarditis Due to Vancomycin-Resistant Enterococci: Case Report and Review of the Literature. Clin. Infect. Dis. 2005, 41, 1134–1142. [CrossRef]
- Tsigrelis, C.; Singh, K.V.; Coutinho, T.D.; Murray, B.E.; Baddour, L.M. Vancomycin-Resistant Enterococcus faecalis Endocarditis: Linezolid Failure and Strain Characterization of Virulence Factors. J. Clin. Microbiol. 2007, 45, 631–635. [CrossRef]
- Berdal, J.-E.; Eskesen, A. Short-term success, but long-term treatment failure with linezolid for enterococcal endocarditis. Scand. J. Infect. Dis. 2008, 40, 765–766. [CrossRef]
- Tsigrelis, C.; Singh, K.V.; Coutinho, T.D.; Murray, B.E.; Baddour, L.M. Vancomycin-Resistant Enterococcus faecalis Endocarditis: Linezolid Failure and Strain Characterization of Virulence Factors. J. Clin. Microbiol. 2007, 45, 631–635. [CrossRef]
- Toro, S.L.S.-D.; Greenwood-Quaintance, K.E.; Patel, R. In vitro activity of tedizolid against linezolid-resistant staphylococci and enterococci. Diagn. Microbiol. Infect. Dis. 2016, 85, 102–104. [CrossRef]
- Zhanel, G.G.; Love, R.; Adam, H.; Golden, A.; Zelenitsky, S.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.S.; Rubinstein, E.; Walkty, A.; et al. Tedizolid: A Novel Oxazolidinone with Potent Activity Against Multidrug-Resistant Gram-Positive Pathogens. Drugs 2015, 75, 253–270. [CrossRef]
- Singh, K.V.; Arias, C.A.; Murray, B.E. Efficacy of Tedizolid against Enterococci and Staphylococci, Including cfr + Strains, in a Mouse Peritonitis Model. Antimicrob. Agents Chemother. 2019, 63. [CrossRef]
- Barber KE, Smith JR, Raut A, Rybak MJ. Evaluation of tedizolid against Staphylococcus aureus and enterococci with reduced susceptibility to vancomycin, daptomycin or linezolid. J Antimicrob Chemother. 2016 Jan;71(1):152-5.
- Iqbal, K.; Rohde, H.; Huang, J.; Tikiso, T.; Amann, L.F.; Zeitlinger, M.; Wicha, S.G. A pharmacokinetic-pharmacodynamic (PKPD) model-based analysis of tedizolid against enterococci using the hollow-fibre infection model. J. Antimicrob. Chemother. 2022, 77, 2470–2478. [CrossRef]
- Landman, D.; Quale, J.M.; Mobarakai, N.; Zaman, M.M. Ampicillin plus ciprofloxacin therapy of experimental endocarditis caused by multidrug-resistant Enterococcus faecium. J. Antimicrob. Chemother. 1995, 36, 253–258. [CrossRef]
- Fernandez-Guerrero, M.; Rouse, M.S.; Henry, N.K.; E Geraci, J.; Wilson, W.R. In vitro and in vivo activity of ciprofloxacin against enterococci isolated from patients with infective endocarditis. Antimicrob. Agents Chemother. 1987, 31, 430–433. [CrossRef]
- van Nieuwkoop, C.; Visser, L.G.; Groeneveld, J.H.M.; Kuijper, E.J. Chronic bacterial prostatitis and relapsing Enterococcus faecalis bacteraemia successfully treated with moxifloxacin. J. Infect. 2008, 56, 155–156. [CrossRef]
- Markham A. Delafloxacin: First Global Approval. Drugs. 2017 Sep;77(13):1481-1486.
- Lee, Y.R.; Burton, C.E.; Bevel, K.R. Delafloxacin for the Treatment of Acute Bacterial Skin and Skin Structure Infections. J. Pharm. Technol. 2019, 35, 110–118. [CrossRef]
- Bassetti, M.; Melchio, M.; Giacobbe, D.R. Delafloxacin for the treatment of adult patients with community-acquired bacterial pneumonia. Expert Rev. Anti-infective Ther. 2021, 20, 649–656. [CrossRef]
- Grosse, E.J.E.; Babinchak, T.; Dartois, N.; Rose, G.; Loh, E.; Tigecycline 300 cSSSI Study Group; Tigecycline 305 cSSSI Study Group. The Efficacy and Safety of Tigecycline in the Treatment of Skin and Skin-Structure Infections: Results of 2 Double-Blind Phase 3 Comparison Studies with Vancomycin-Aztreonam. Clin. Infect. Dis. 2005, 41 (Suppl. 5), S341–S353. [CrossRef]
- Babinchak, T.; Ellis-Grosse, E.; Dartois, N.; Rose, G.M.; Loh, E.; Tigecycline 301 Study Group; Tigecycline 306 Study Group. The Efficacy and Safety of Tigecycline for the Treatment of Complicated Intra-Abdominal Infections: Analysis of Pooled Clinical Trial Data. Clin. Infect. Dis. 2005, 41 (Suppl. S5), S354-367. [CrossRef]
- Entenza, J.; Moreillon, P. Tigecycline in combination with other antimicrobials: a review of in vitro, animal and case report studies. Int. J. Antimicrob. Agents 2009, 34, 8.e1–8.e9. [CrossRef]
- Jenkins, I. Linezolid- and vancomycin-resistant Enterococcus faecium endocarditis: Successful treatment with tigecycline and daptomycin. J. Hosp. Med. 2007, 2, 343–344. [CrossRef]
- Polidori, M.; Nuccorini, A.; Tascini, C.; Gemignani, G.; Iapoce, R.; Leonildi, A.; Tagliaferri, E.; Menichetti, F. Vancomycin-ResistantEnterococcus faecium(VRE) Bacteremia in Infective Endocarditis Successfully Treated with Combination Daptomycin and Tigecycline. J. Chemother. 2011, 23, 240–241. [CrossRef]
- Schutt, A.C.; Bohm, N.M. Multidrug-Resistant Enterococcus faecium Endocarditis Treated with Combination Tigecycline and High-Dose Daptomycin. Ann. Pharmacother. 2009, 43, 2108–2112. [CrossRef]
- Peleg, A.Y.; Potoski, B.A.; Rea, R.; Adams, J.; Sethi, J.; Capitano, B.; Husain, S.; Kwak, E.J.; Bhat, S.V.; Paterson, D.L. Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J. Antimicrob. Chemother. 2006, 59, 128–131. [CrossRef]
- Lefort, A.; Lafaurie, M.; Massias, L.; Petegnief, Y.; Saleh-Mghir, A.; Muller-Serieys, C.; Le Guludec, D.; Fantin, B. Activity and Diffusion of Tigecycline (GAR-936) in Experimental Enterococcal Endocarditis. Antimicrob. Agents Chemother. 2003, 47, 216–222. [CrossRef]
- Molina, K.C.; Miller, M.A.; Mueller, S.W.; Van Matre, E.T.; Krsak, M.; Kiser, T.H. Clinical Pharmacokinetics and Pharmacodynamics of Dalbavancin. Clin. Pharmacokinet. 2021, 61, 363–374. [CrossRef]
- Oliva, A.; Stefani, S.; Venditti, M.; Di Domenico, E.G. Biofilm-Related Infections in Gram-Positive Bacteria and the Potential Role of the Long-Acting Agent Dalbavancin. Front. Microbiol. 2021, 12. [CrossRef]
- Sader, H.S.; E Mendes, R.; A Pfaller, M.; Flamm, R.K. Antimicrobial activity of dalbavancin tested against Gram-positive organisms isolated from patients with infective endocarditis in US and European medical centres. J. Antimicrob. Chemother. 2019, 74, 1306–1310. [CrossRef]
- Gatti, M.; Andreoni, M.; Pea, F.; Viale, P. Real-World Use of Dalbavancin in the Era of Empowerment of Outpatient Antimicrobial Treatment: A Careful Appraisal Beyond Approved Indications Focusing on Unmet Clinical Needs. Drug Des. Dev. Ther. 2021, ume 15, 3349–3378. [CrossRef]
- Tobudic, S.; Forstner, C.; Burgmann, H.; Lagler, H.; Ramharter, M.; Steininger, C.; Vossen, M.(.; Winkler, S.; Thalhammer, F. Dalbavancin as Primary and Sequential Treatment for Gram-Positive Infective Endocarditis: 2-Year Experience at the General Hospital of Vienna. Clin. Infect. Dis. 2018, 67, 795–798. [CrossRef]
- Hidalgo-Tenorio, C.; Vinuesa, D.; Plata, A.; Dávila, P.M.; Iftimie, S.; Sequera, S.; Loeches, B.; Lopez-Cortés, L.E.; Fariñas, M.C.; Fernández-Roldan, C.; et al. DALBACEN cohort: dalbavancin as consolidation therapy in patients with endocarditis and/or bloodstream infection produced by gram-positive cocci. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 1–10. [CrossRef]
- Arhin, F.F.; Draghi, D.C.; Pillar, C.M.; Parr, T.R.; Moeck, G.; Sahm, D.F. Comparative In Vitro Activity Profile of Oritavancin against Recent Gram-Positive Clinical Isolates. Antimicrob. Agents Chemother. 2009, 53, 4762–4771. [CrossRef]
- Pfaller, M.; Sader, H.; Flamm, R.; Castanheira, M.; Mendes, R.E. Oritavancin in vitro activity against gram-positive organisms from European and United States medical centers: results from the SENTRY Antimicrobial Surveillance Program for 2010–2014. Diagn. Microbiol. Infect. Dis. 2018, 91, 199–204. [CrossRef]
- Saravolatz, L.D.; Stein, G.E. Oritavancin: A Long-Half-Life Lipoglycopeptide. Clin. Infect. Dis. 2015, 61, 627–632. [CrossRef]
- Yan, Q.; Karau, M.J.; Patel, R. In vitro activity of oritavancin against planktonic and biofilm states of vancomycin-susceptible and vancomycin-resistant enterococci. Diagn. Microbiol. Infect. Dis. 2018, 91, 348–350. [CrossRef]
- Scoble, P.J.; Reilly, J.; Tillotson, G.S. Real-World Use of Oritavancin for the Treatment of Osteomyelitis. Drugs - Real World Outcomes 2020, 7, 46–54. [CrossRef]
- Morrisette, T.; A Miller, M.; Montague, B.T.; Barber, G.R.; McQueen, R.B.; Krsak, M. On- and off-label utilization of dalbavancin and oritavancin for Gram-positive infections. J. Antimicrob. Chemother. 2019, 74, 2405–2416. [CrossRef]
- Bassetti, M.; Labate, L.; Vena, A.; Giacobbe, D.R. Role or oritavancin and dalbavancin in acute bacterial skin and skin structure infections and other potential indications. Curr. Opin. Infect. Dis. 2021, 34, 96–108. [CrossRef]
- Stewart, C.L.; Turner, M.S.; Frens, J.J.; Snider, C.B.; Smith, J.R. Real-World Experience with Oritavancin Therapy in Invasive Gram-Positive Infections. Infect. Dis. Ther. 2017, 6, 277–289. [CrossRef]
- Johnson, J.A.; Feeney, E.R.; Kubiak, D.W.; Corey, G.R. Prolonged Use of Oritavancin for Vancomycin-Resistant Enterococcus faecium Prosthetic Valve Endocarditis. Open Forum Infect. Dis. 2015, 2, ofv156. [CrossRef]
- Pericàs JM, Cervera C, Moreno A, Garcia-de-la-Mària C, Almela M, Falces C, et al. Outcome of Enterococcus faecalis infective endocarditis according to the length of antibiotic therapy: Preliminary data from a cohort of 78 patients. PLoS One. 2018 Feb 20;13(2): e0192387.
- Ramos-Martínez, A.; Pericàs, J.M.; Fernández-Cruz, A.; Muñoz, P.; Valerio, M.; Kestler, M.; Montejo, M.; Fariñas, M.C.; Sousa, D.; Domínguez, F.; et al. Four weeks versus six weeks of ampicillin plus ceftriaxone in Enterococcus faecalis native valve endocarditis: A prospective cohort study. PLOS ONE 2020, 15, e0237011. [CrossRef]
- Herzstein, J.; Ryan, J.L.; Mangi, R.J.; Greco, T.P.; Andriole, V.T. Optimal therapy for enterococcal endocarditis. Am. J. Med. 1984, 76, 186–191. [CrossRef]
- Olaison L, Schadewitz K; Swedish Society of Infectious Diseases Quality Assurance Study Group for Endocarditis. Enterococcal endocarditis in Sweden, 1995-1999: can shorter therapy with aminoglycosides be used? Clin Infect Dis. 2002 Jan 15;34(2):159-66.
- Dahl A, Rasmussen RV, Bundgaard H, Hassager C, Bruun LE, Lauridsen TK et al. Enterococcus faecalis infective endocarditis: a pilot study of the relationship between duration of gentamicin treatment and outcome. Circulation. 2013 Apr 30;127(17):1810-7.
- Buchholtz, K.; Larsen, C.T.; Hassager, C.; Bruun, N.E. Severity of Gentamicin's Nephrotoxic Effect on Patients with Infective Endocarditis: A Prospective Observational Cohort Study of 373 Patients. Clin. Infect. Dis. 2009, 48, 65–71. [CrossRef]
- Cosgrove, S.E.; Vigliani, G.A.; Campion, M.; Fowler, J.V.G.; Abrutyn, E.; Corey, G.R.; Levine, D.P.; Rupp, M.E.; Chambers, H.F.; Karchmer, A.W.; et al. Initial Low-Dose Gentamicin forStaphylococcus aureusBacteremia and Endocarditis Is Nephrotoxic. Clin. Infect. Dis. 2009, 48, 713–721. [CrossRef]
- Buchholtz, K.; Larsen, C.T.; Hassager, C.; Bruun, N.E. Infective endocarditis: Long-term reversibility of kidney function impairment. A 1-y post-discharge follow-up study. Scand. J. Infect. Dis. 2010, 42, 484–490. [CrossRef]
- Chirouze, C.; Athan, E.; Alla, F.; Chu, V.; Corey, G.R.; Selton-Suty, C.; Erpelding, M.-L.; Miro, J.; Olaison, L.; Hoen, B. Enterococcal endocarditis in the beginning of the 21st century: analysis from the International Collaboration on Endocarditis-Prospective Cohort Study. Eur Heart J. 2019 Oct 14;40(39):3222-3232. [CrossRef]
- Steckelberg, J.M.; Murphy, J.G.; Ballard, D.; Bailey, K.; Tajik, A.J.; Taliercio, C.P.; Giuliani, E.R.; Wilson, W.R. Emboli in Infective Endocarditis: The Prognostic Value of Echocardiography. Ann. Intern. Med. 1991, 114, 635–640. [CrossRef]
- García-Cabrera E, Fernández-Hidalgo N, Almirante B, Ivanova-Georgieva R, Noureddine M, Plata A et al. Neurological complications of infective endocarditis: risk factors, outcome, and impact of cardiac surgery: a multicenter observational study. Circulation. 2013 Jun 11;127(23):2272-84.
- Williams, D.N.; Baker, C.A.; Kind, A.C.; Sannes, M.R. The history and evolution of outpatient parenteral antibiotic therapy (OPAT). Int. J. Antimicrob. Agents 2015, 46, 307–312. [CrossRef]
- Andrews, M.-M.; Von Reyn, C.F. Patient Selection Criteria and Management Guidelines for Outpatient Parenteral Antibiotic Therapy for Native Valve Infective Endocarditis. Clin. Infect. Dis. 2001, 33, 203–209. [CrossRef]
- Pericà s, J.M.; Llopis, J.; Ramallo, V.J.G.; Goenaga, M.Á.; Muñoz, P.; García-Leoni, M.E.; Fariñas, M.C.; Pajarón, M.; Ambrosioni, J.; Luque, R.; et al. Outpatient Parenteral Antibiotic Treatment for Infective Endocarditis: A Prospective Cohort Study From the GAMES Cohort. Clin. Infect. Dis. 2019, 69, 1690–1700. [CrossRef]
- Pericàs, J.M.; Llopis, J.; Muñoz, P.; González-Ramallo, V.; García-Leoni, M.E.; de Alarcón, A.; Luque, R.; Goenaga, M.&.; Hernández-Meneses, M.; Nicolás, D.; et al. Outpatient Parenteral Antibiotic Treatment vs Hospitalization for Infective Endocarditis: Validation of the OPAT-GAMES Criteria. Open Forum Infect. Dis. 2022, 9, ofac442. [CrossRef]
- Dubé, L.; Caillon, J.; Jacqueline, C.; Bugnon, D.; Potel, G.; Asseray, N. The optimal aminoglycoside and its dosage for the treatment of severe Enterococcus faecalis infection. An experimental study in the rabbit endocarditis model. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2545–2547. [CrossRef]
- Fantin, B.; Carbon, C. Importance of the aminoglycoside dosing regimen in the penicillin-netilmicin combination for treatment of Enterococcus faecalis-induced experimental endocarditis. Antimicrob. Agents Chemother. 1990, 34, 2387–2391. [CrossRef]
- Marangos, M.N.; Nicolau, D.P.; Quintiliani, R.; Nightingale, C.H. Influence of gentamicin dosing interval on the efficacy of penicillin-containing regimens in experimental Enterococcus faecalis endocarditis.. J. Antimicrob. Chemother. 1997, 39, 519–522. [CrossRef]
- Hessen, M.T.; Pitsakis, P.G.; E Levison, M. Postantibiotic effect of penicillin plus gentamicin versus Enterococcus faecalis in vitro and in vivo. Antimicrob. Agents Chemother. 1989, 33, 608–611. [CrossRef]
- Gavaldà, J.; Cardona, P.J.; Almirante, B.; A Capdevila, J.; Laguarda, M.; Pou, L.; Crespo, E.; Pigrau, C.; Pahissa, A. Treatment of experimental endocarditis due to Enterococcus faecalis using once-daily dosing regimen of gentamicin plus simulated profiles of ampicillin in human serum. Antimicrob. Agents Chemother. 1996, 40, 173–178. [CrossRef]
- Schwank, S.; Blaser, J. Once-versus thrice-daily netilmicin combined with amoxicillin, penicillin, or vancomycin against Enterococcus faecalis in a pharmacodynamic in vitro model. Antimicrob. Agents Chemother. 1996, 40, 2258–2261. [CrossRef]
- Pagkalis, S.; Mantadakis, E.; Mavros, M.N.; Ammari, C.; Falagas, M.E. Pharmacological Considerations for the Proper Clinical Use of Aminoglycosides. Drugs 2011, 71, 2277–2294. [CrossRef]
- Sánchez, M..G.; Urkola, X.K.; Santiago, E.B.; García, P.M.; Moreno, E.V.; Álvarez, M.C.F.; Cobo, R.T.; Pulido, J.M.P.; González, A.d.A.; Regueiro, D.S.; et al. Aetiology of renal failure in patients with infective endocarditis. The role of antibiotics. 2017, 149, 331–338. [CrossRef]
- Gil-Navarro, M.V.; Lopez-Cortes, L.E.; Luque-Marquez, R.; Galvez-Acebal, J.; Alarcon-Gonzalez, A. Outpatient parenteral antimicrobial therapy in Enterococcus faecalis infective endocarditis. J. Clin. Pharm. Ther. 2017, 43, 220–223. [CrossRef]
- Herrera-Hidalgo L, de Alarcón A, López-Cortes LE, Luque-Márquez R, López-Cortes LF, Gutiérrez-Valencia A, Gil-Navarro MV. Is Once-Daily High-Dose Ceftriaxone plus Ampicillin an Alternative for Enterococcus faecalis Infective Endocarditis in Outpatient Parenteral Antibiotic Therapy Programs? Antimicrob Agents Chemother. 2020 Dec 16;65(1): e02099-20.
- Patel, I.; Miller, K.; Weinfeld, R.; Spicehandler, J. Multiple Intravenous Dose Pharmacokinetics of Ceftriaxone in Man. Chemotherapy 1981, 27, 47–56. [CrossRef]
- Perry TR, Schentag JJ. Clinical use of ceftriaxone: a pharmacokinetic-pharmacodynamic perspective on the impact of minimum inhibitory concentration and serum protein binding. Clin Pharmacokinet. 2001;40(9):685-94.
- Grégoire, M.; Dailly, E.; Le Turnier, P.; Garot, D.; Guimard, T.; Bernard, L.; Tattevin, P.; Vandamme, Y.-M.; Hoff, J.; Lemaitre, F.; et al. High-Dose Ceftriaxone for Bacterial Meningitis and Optimization of Administration Scheme Based on Nomogram. Antimicrob. Agents Chemother. 2019, 63. [CrossRef]
- Luderer JR, Patel IH, Durkin J, Schneck DW. Age and ceftriaxone kinetics. Clin Pharmacol Ther. 1984 Jan;35(1):19-25.
- Patel, I.H.; Sugihara, J.G.; E Weinfeld, R.; Wong, E.G.; Siemsen, A.W.; Berman, S.J. Ceftriaxone pharmacokinetics in patients with various degrees of renal impairment. Antimicrob. Agents Chemother. 1984, 25, 438–442. [CrossRef]
- Herrera-Hidalgo, L.; Lomas-Cabezas, J.M.; López-Cortés, L.E.; Luque-Márquez, R.; López-Cortés, L.F.; Martínez-Marcos, F.J.; de la Torre-Lima, J.; Plata-Ciézar, A.; Hidalgo-Tenorio, C.; García-López, M.V.; et al. Ampicillin Plus Ceftriaxone Combined Therapy for Enterococcus faecalis Infective Endocarditis in OPAT. J. Clin. Med. 2021, 11, 7. [CrossRef]
- Jimenez-Toro, I.; Rodriguez, C.A.; Zuluaga, A.F.; Otalvaro, J.D.; Perez-Madrid, H.; Vesga, O. Pharmacokinetic/Pharmacodynamic Index Linked to In Vivo Efficacy of the Ampicillin-Ceftriaxone Combination against Enterococcus faecalis. Antimicrob. Agents Chemother. 2023, 67, e0096622. [CrossRef]
- Jimenez-Toro, I.; Rodriguez, C.A.; Zuluaga, A.F.; Otalvaro, J.D.; Vesga, O. A new pharmacodynamic approach to study antibiotic combinations against enterococci in vivo: Application to ampicillin plus ceftriaxone. PLOS ONE 2020, 15, e0243365. [CrossRef]
- Maher, M.; Jensen, K.J.; Lee, D.; E Nix, D. Stability of Ampicillin in Normal Saline and Buffered Normal Saline.. 2016, 20, 338–342.
- Hellinger, W.C.; Rouse, M.S.; Rabadan, P.M.; Henry, N.K.; Steckelberg, J.M.; Wilson, W.R. Continuous intravenous versus intermittent ampicillin therapy of experimental endocarditis caused by aminoglycoside-resistant enterococci. Antimicrob. Agents Chemother. 1992, 36, 1272–1275. [CrossRef]
- Lewis, P.O.; Jones, A.; Amodei, R.J.; Youssef, D. Continuous Infusion Ampicillin for the Outpatient Management of Enterococcal Endocarditis: A Case Report and Literature Review. J. Pharm. Pr. 2018, 33, 392–394. [CrossRef]
- Nickolai, D.J.; Lammel, C.J.; A Byford, B.; Morris, J.H.; Kaplan, E.B.; Hadley, W.K.; Brooks, G.F. Effects of storage temperature and pH on the stability of eleven beta-lactam antibiotics in MIC trays. J. Clin. Microbiol. 1985, 21, 366–370. [CrossRef]
- Herrera-Hidalgo, L.; Gil-Navarro, M.; Penchala, S.D.; de Alarcón, A.; Luque-Márquez, R.; López-Cortes, L.; Gutiérrez-Valencia, A. Ceftriaxone pharmacokinetics by a sensitive and simple LC–MS/MS method: Development and application. J. Pharm. Biomed. Anal. 2020, 189, 113484. [CrossRef]
- Herrera-Hidalgo, L.; Luque-Márquez, R.; Gálvez-Acebal, J.; de Alarcón, A.; López-Cortes, L.F.; Gutiérrez-Valencia, A.; Gil-Navarro, M.V. Ampicillin and Ceftriaxone Solution Stability at Different Temperatures in Outpatient Parenteral Antimicrobial Therapy. Antimicrob. Agents Chemother. 2020, 64. [CrossRef]
- Fernández-Rubio, B.; Herrera-Hidalgo, L.; Luque-Márquez, R.; de Alarcón, A.; López-Cortés, L.E.; Luque-Pardos, S.; Gutiérrez-Urbón, J.M.; Fernández-Polo, A.; Gil-Navarro, M.V.; Gutiérrez-Valencia, A. Stability of Ampicillin plus Ceftriaxone Combined in Elastomeric Infusion Devices for Outpatient Parenteral Antimicrobial Therapy. Antibiotics 2023, 12, 432. [CrossRef]
- Herrera-Hidalgo, L.; de Alarcón, A.; López-Cortes, L.E.; Luque-Márquez, R.; López-Cortes, L.F.; Gutiérrez-Valencia, A.; Gil-Navarro, M.V. Enterococcus faecalis Endocarditis and Outpatient Treatment: A Systematic Review of Current Alternatives. Antibiotics 2020, 9, 657. [CrossRef]
- Phillips, B.; Watson, G.H. Oral treatment of subacute bacterial endocarditis in children.. Arch. Dis. Child. 1977, 52, 235–237. [CrossRef]
- Chetty S, Mitha AS. High-dose oral amoxycillin in the treatment of infect ive endocarditis. S Afr Med J .1988; 73: 709–10.
- Stamboulian, D.; Bonvehi, P.; Arevalo, C.; Bologna, R.; Cassetti, I.; Scilingo, V.; Efron, E. Antibiotic Management of Outpatients with Endocarditis Due to Penicillin-Susceptible Streptococci. Clin. Infect. Dis. 1991, 13, S160–S163. [CrossRef]
- Tissot-Dupont, H.; Gouriet, F.; Oliver, L.; Jamme, M.; Casalta, J.-P.; Jimeno, M.-T.; Arregle, F.; Lavoute, C.; Hubert, S.; Philip, M.; et al. High-dose trimethoprim-sulfamethoxazole and clindamycin for Staphylococcus aureus endocarditis. Int. J. Antimicrob. Agents 2019, 54, 143–148. [CrossRef]
- Mzabi, A.; Kernéis, S.; Richaud, C.; Podglajen, I.; Fernandez-Gerlinger, M.-P.; Mainardi, J.-L. Switch to oral antibiotics in the treatment of infective endocarditis is not associated with increased risk of mortality in non–severely ill patients. Clin. Microbiol. Infect. 2016, 22, 607–612. [CrossRef]
- Demonchy, E.; Dellamonica, P.; Roger, P.; Bernard, E.; Cua, E.; Pulcini, C. Audit of antibiotic therapy used in 66 cases of endocarditis. 2011, 41, 602–607. [CrossRef]
- Parker RH, Fossieck BE. Intravenous followed by oral antimicrobial therapy for staphylococcal endocarditis. Ann Intern Med. 1980; 93: 832–4.
- Dworkin RJ, Lee BL, Sande MA, Chambers HF. Treatment of right-sided Staphylococcus aureus endocarditis in intravenous drug users with ciprofloxacin and rifampicin. Lancet. 1989; 334: 1071–3. [CrossRef]
- Heldman, A.W.; Hartert, T.V.; Ray, S.C.; Daoud, E.G.; Kowalski, T.E.; Pompili, V.J.; Sisson, S.D.; Tidmore, W.C.; Eigen, K.A.V.; Goodman, S.N.; et al. Oral antibiotic treatment of right-sided staphylococcal endocarditis in injection drug users: Prospective randomized comparison with parenteral therapy. Am. J. Med. 1996, 101, 68–76. [CrossRef]
- Colli, A.; Campodonico, R.; Gherli, T. Early Switch From Vancomycin to Oral Linezolid for Treatment of Gram-Positive Heart Valve Endocarditis. Ann. Thorac. Surg. 2007, 84, 87–91. [CrossRef]
- Iversen K, Høst N, Bruun NE, Elming H, Pump B, Christensen JJ et al. Partial oral treatment of endocarditis. Am Heart J. 2013 Feb;165(2):116-22.
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J.; et al. Partial Oral versus Intravenous Antibiotic Treatment of Endocarditis. New Engl. J. Med. 2019, 380, 415–424. [CrossRef]
- Pries-Heje, M.M.; Wiingaard, C.; Ihlemann, N.; Gill, S.U.; Bruun, N.E.; Elming, H.; Povlsen, J.A.; Madsen, T.; Jensen, K.T.; Fursted, K.; et al. Five-Year Outcomes of the Partial Oral Treatment of Endocarditis (POET) Trial. New Engl. J. Med. 2022, 386, 601–602. [CrossRef]
- Bundgaard, J.S.; Iversen, K.; Pries-Heje, M.; Ihlemann, N.; Bak, T.S.; Østergaard, L.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; et al. The impact of partial-oral endocarditis treatment on anxiety and depression in the POET trial. J. Psychosom. Res. 2022, 154, 110718. [CrossRef]
| Indication | Recommendation | Dosage and route | Duration (weeks) | Class and Level of evidence | Comments |
| Strains susceptible to Penicillin and Gentamicin in patients who can tolerate β-Lactam therapy | Ampicillin or penicillin G plus gentamicin |
2 g IV every 4 h 18–30 million U/24 h IV either continuously or in 6 equally divided doses 3 mg/kg ideal body weight in 2–3 equally divided doses IV |
4-6 4-6 4-6 |
IIa/B | 4-wk therapy recommended for patients with native valve and symptoms of illness <3 months. 6-wk therapy recommended for native valve symptoms >3 months and for patients with prosthetic valve or prosthetic material. |
| Ampicillin plus ceftriaxone |
2 g IV every 4 h 2 g IV every 12 h |
6 6 |
IIa/B | Recommended for patients with initial creatinine clearance <50 mL/min or who develop creatinine. clearance <50 mL/min during therapy with gentamicin-containing regimen. |
|
| Strains susceptible to Penicillin and resistant to Aminoglycosides or Streptomycin-susceptible/ Gentamicin-resistant in patients able to tolerate β-Lactam therapy |
Ampicillin plus ceftriaxone |
2 g IV every 4 h 2 g IV every 12 h |
6 6 |
IIa/B | |
| Ampicillin or penicillin G plus Streptomycin# |
2 g IV every 4 h 18–30 million U/24 h IV either continuously or in 6 equally divided doses 15 mg/kg ideal body weight per 24h IV or IM in 2 equally divided doses |
4-6 4-6 4-6 |
IIa/B | Use is reasonable only for patients with availability of rapid Streptomycin serum concentrations. Patients with creatinine clearance <50 mL/min or who develop creatinine clearance <50 mL/min during treatment should be treated with double–β- lactam regimen. Patients with abnormal cranial nerve VIII function should be treated with double–β-lactam regimen. |
|
| Patients unable to tolerate β-Lactam or Penicillin-resistant Enterococcus species and Aminoglycoside-susceptible strains |
Vancomycin plus gentamycin¶ |
30 mg/kg per 24 h IV in 2 equally divided doses 3 mg/kg per 24 h IV in 3 equally divided doses |
6 6 |
IIa/B (IIb/C for β-Lactamase- producing strain) |
For β-lactamase–producing strain, if able to tolerate a β-lactam antibiotic, ampicillin-sulbactam plus aminoglycoside therapy may be used§ |
| Enterococcus species caused by strains resistant to Penicillin, Aminoglycosides, and Vancomycin | Linezolid or Daptomycin |
600 mg IV or orally every 12 h 10–12 mg/kg IV per dose |
> 6 > 6 |
IIb/C IIb/C |
Linezolid use may be associated with potentially severe bone marrow suppression, neuropathy, and numerous drug interactions. Patients with IE caused by these strains should be treated by a care team including specialists in infectious diseases, cardiology, cardiac surgery, clinical pharmacy, and, in children, pediatrics. Cardiac valve replacement may be necessary for cure. |
| Indication | Recommendation | Dosage and route | Duration (weeks) | Class and Level of evidence | Comments |
| Beta-lactam and gentamicin-susceptible strains | Amoxicillin/ampicillin plus Gentamycin Paediatric doses: Ampicillin 300 mg/kg/day |
200 mg/kg/day IV in 4–6 doses 3 mg/kg/day IV or IM in 1 dose |
4-6 2-6 |
I/B | 6-week therapy recommended for patients with > 3 months symptoms or PVE. Some experts recommend giving gentamicin for only 2 weeks (IIa/B). |
| Ampicillin plus Ceftriaxone Paediatric doses: Ceftriaxone 100 g/kg/12 h IV or IM |
200 mg/kg/day IV in 4–6 doses 4 g/day IV or IM in 2 doses |
6 6 |
I/B | This combination is active against E. faecalis strains with and without HLAR¶, being the combination of choice in patients with HLAR E. faecalis endocarditis. This combination is not active against E. faecium |
|
| Intolerance to beta-lactams or beta-lactam resistant# strains | Vancomycin plus Gentamycin Paediatric doses: Vancomycin 40 mg/kg/day IV in 2–3 equally divided doses |
30 mg/kg/day IV in 2 doses 3 mg/kg/day IV or IM in 1 dose |
6 6 |
I/C | |
| Strains with multi-resistance to aminoglycosides, beta-lactams and vancomycin | Ampicillin plus daptomycin Linezolid |
200 mg/kg/day IV in 4–6 doses 10–12 mg/kg IV per dose 600 mg/day IV or PO |
> 6 > 6 > 6 |
I/C IIa/C |
monitor haematological toxicity |
| quinupristin–dalfopristin | 7.5 mg/kg IV every 8 hours | > 6 | IIa/C | Quinupristin–dalfopristin is not active against E. faecalis |
| Recommendation | Dosage and route | Duration (weeks) | References | Comments |
| Teicoplanin with/without gentamycin |
6-10 mg/Kg/d IV or IM per dose 3 mg/kg/day IV or IM |
6-8 2 |
92,93,94 | Good results in experimental models and in humans as sequential therapy for IE |
| Daptomycin plus ceftaroline or ceftobiprole |
10–12 mg/kg IV per dose 400 mg IV every 12 h 500 mg IV every 8 h |
6-8 | 82,83,84, 106,107 | Synergistic effects in vitro and experimental models. Very few experience in human IE. |
| Daptomycin plus imipenem |
10–12 mg/kg IV per dose 1 gr IV every 6 h |
6-8 | 107 | Synergistic effects in vitro and experimental models |
| Daptomycin plus Fosfomycin with/without gentamycin |
10–12 mg/kg IV per dose 3 g IV every 6 h 3 mg/kg/day IV or IM |
6-8 | 109. 11.112, 113 114,115,116 |
Synergistic effects in vitro and experimental models. Good results for S. aureus IE |
| Tedizolid | 200 mg IV or PO/24 h | 126, 127,128, 129 | Less toxic and more active in vitro than linezolid. There is no experience among IE in humans | |
| Ampicillin plus Ciprofloxacin/ofloxacin |
2 g IV every 4 h 500 mg/8-12 h |
6-8 | 133,134,135 | Very few experience in E. faecalis bacteremia |
| Tigecycline Plus Daptomycin |
50-100 mg/12 h 10–12 mg/kg IV per dose |
6-8 | 142,143,144 | Always Consider the use of higher doses of tigecycline |
| Dalbavancin | 1500 mg in a single dose IV, then 1000 mg every two weeks | 6-8 | 150,151,152 | Good results in humans as sequentially therapy for IE |
| Oritavancin | 1200 mg in a single dose IV, then 800 mg every week | 6-8 | 158,159,160 | Very scarce experience reported in human IE |
| Amoxicillin plus moxifloxacin |
1 g. every 6 h 400 mg every 12 h |
4-6 | 211,212 | Oral treatment must be considered as a sequentially strategy in selected patients. |
| Amoxicillin plus Linezolid |
1 g. every 6 h 600 mg very 12 h |
4-6 | 211,212 | Oral treatment must be considered as a sequentially strategy in selected patients. |
| Amoxicillin plus Rifampicin |
1 g. every 6 h 600 mg every 12 h |
4-6 | 211,212 | Oral treatment must be considered as a sequentially strategy in selected patients. |
| Moxifloxacin plus Linezolid |
400 mg every 12 h 600 mg very 12 h |
4-6 | 211,212 | Oral treatment must be considered as a sequentially strategy in selected patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
