Submitted:
08 February 2023
Posted:
10 February 2023
You are already at the latest version
Abstract
Keywords:
Rifampin
Rifampin in In Vitro Studies of Age-Related Neurodegenerative Proteinopathies
Rifampin (Systemic) in Animal Models of Neurodegerative Proteinopathies
Rifampin (Intranasal) in Animal Models of Neurodegerative Proteinopathies
Rifampin (Systemic) in Human Trials of Neurodegerative Proteinopathies
Rifampin (Intranasal) in Human Trials of Neurodegerative Proteinopathies
Intranasal Rifampin Delivery to the Brain
“Bi-Directional” Intranasal Delivery to the Brain
Conclusion
Author Contributions
Conflicts of Interest
Consent for Publication
Abbreviations
References
- Ciccocioppo F, Bologna G, Ercolino E, Pierdomenico L, Simeone P, Lanuti P, Pieragostino D, Del Boccio P, Marchisio M, Miscia S. Neurodegenerative diseases as proteinopathies-driven immune disorders. Neural Regen Res. 2020 May;15(5):850-856. [CrossRef] [PubMed] [PubMed Central]
- Di Domenico F, Lanzillotta C. The disturbance of protein synthesis/degradation homeostasis is a common trait of age-related neurodegenerative disorders. Adv Protein Chem Struct Biol. 2022;132:49-87. Epub 2022 Jun 9. [CrossRef] [PubMed]
- Metaxakis A, Ploumi C, Tavernarakis N. Autophagy in Age-Associated Neurodegeneration. Cells. 2018 May 5;7(5):37. [CrossRef] [PubMed] [PubMed Central]
- Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med. 2004 Jul;10 Suppl:S10-7. [CrossRef] [PubMed]
- Wolzak K, Nölle A, Farina M, Abbink TE, van der Knaap MS, Verhage M, Scheper W. Neuron-specific translational control shift ensures proteostatic resilience during ER stress. EMBO J. 2022 Aug 16;41(16):e110501. Epub 2022 Jul 6. [CrossRef] [PubMed] [PubMed Central]
- Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, et al. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron. 2017 Mar 8;93(5):1015-1034. [CrossRef] [PubMed]
- Vilchez D, Saez I, Dillin A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun. 2014 Dec 8;5:5659. [CrossRef] [PubMed]
- Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019 Jul;20(7):421-435. [CrossRef] [PubMed]
- Dikic I. Proteasomal and Autophagic Degradation Systems. Annu Rev Biochem. 2017 Jun 20;86:193-224. Epub 2017 May 1. [CrossRef] [PubMed]
- Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2018 Sep;17(9):660-688. Epub 2018 Aug 17. [CrossRef] [PubMed] [PubMed Central]
- Hekmatimoghaddam S, Zare-Khormizi MR, Pourrajab F. Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases. Biofactors. 2017 Nov;43(6):737-759. Epub 2016 Feb 22. [CrossRef] [PubMed]
- Sensi P. History of the development of rifampin. Rev Infect Dis. 1983 Jul-Aug;5 Suppl 3:S402-6. [CrossRef] [PubMed]
- Goto M, Kimura T, Hagio S, Ueda K, Kitajima S, Tokunaga H, Sato E. Neuropathological analysis of dementia in a Japanese leprosarium. Dementia. 1995 May-Jun;6(3):157-61. [CrossRef] [PubMed]
- Chui DH, Tabira T, Izumi S, Koya G, Ogata J. Decreased beta-amyloid and increased abnormal Tau deposition in the brain of aged patients with leprosy. Am J Pathol. 1994 Oct;145(4):771-5. [PubMed] [PubMed Central]
- Boeree MJ, Diacon AH, Dawson R, Narunsky K, du Bois J, Venter A, Phillips PP, Gillespie SH, McHugh TD, Hoelscher M, et.al; PanACEA Consortium. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015 May 1;191(9):1058-65. [CrossRef] [PubMed]
- Cresswell FV, Meya DB, Kagimu E, Grint D, Te Brake L, Kasibante J, Martyn E, Rutakingirwa M, Quinn CM, Okirwoth M, et al. High-Dose Oral and Intravenous Rifampicin for the Treatment of Tuberculous Meningitis in Predominantly Human Immunodeficiency Virus (HIV)-Positive Ugandan Adults: A Phase II Open-Label Randomized Controlled Trial. Clin Infect Dis. 2021 Sep 7;73(5):876-884. [CrossRef] [PubMed] [PubMed Central]
- Mendes AI, Rebelo R, Aroso I, Correlo VM, Fraga AG, Pedrosa J, Marques AP. Development of an antibiotics delivery system for topical treatment of the neglected tropical disease Buruli ulcer. Int J Pharm. 2022 Jul 25;623:121954. Epub 2022 Jun 24. [CrossRef] [PubMed]
- Berkenfeld K, McConville JT, Lamprecht A. Inhalable formulations of rifampicin by spray drying of supersaturated aqueous solutions. Eur J Pharm Biopharm. 2020 Aug;153:14-22. Epub 2020 May 22. [CrossRef] [PubMed]
- Khadka P, Dummer J, Hill PC, Katare R, Das SC. A review of formulations and preclinical studies of inhaled rifampicin for its clinical translation. Drug Deliv Transl Res. 2022 Sep 21:1–26. Epub ahead of print. [CrossRef] [PubMed] [PubMed Central]
- Chojnacki M, Philbrick A, Wucher B, Reed JN, Tomaras A, Dunman PM, Wozniak RAF. Development of a Broad-Spectrum Antimicrobial Combination for the Treatment of Staphylococcus aureus and Pseudomonas aeruginosa Corneal Infections. Antimicrob Agents Chemother. 2018 Dec 21;63(1):e01929-18. [CrossRef] [PubMed] [PubMed Central]
- Prabhakar MC, Rao AV, Krishna DR, Ramanakar TV, Rao PG, Reddy KN. New approach to curb the transmission of leprosy. Hansenol Int. 1989 Jun;14(1):6-13. [PubMed]
- Mamidi NV, Prabhakar MC, Krishna DR. Disposition of rifampicin following intranasal and oral administration. Indian J Lepr. 1996 Apr-Jun;68(2):149-53. [PubMed]
- Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978 Mar-Apr;3(2):108-27. [CrossRef] [PubMed]
- Chen R, Wang J, Zhang Y, Tang S, Zhan S. Key factors of susceptibility to anti-tuberculosis drug-induced hepatotoxicity. Arch Toxicol. 2015 Jun;89(6):883-97. Epub 2015 Feb 19. [CrossRef] [PubMed]
- Zhang M, Wang M, He JQ. Intensified Antituberculosis Therapy Regimen Containing Higher Dose Rifampin for Tuberculous Meningitis: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2022 Feb 25;9:822201. [CrossRef] [PubMed] [PubMed Central]
- Aarnoutse RE, Kibiki GS, Reither K, Semvua HH, Haraka F, Mtabho CM, Mpagama SG, van den Boogaard J, Sumari-de Boer IM, Magis-Escurra C, et al; PanACEA Consortium. Pharmacokinetics, Tolerability, and Bacteriological Response of Rifampin Administered at 600, 900, and 1,200 Milligrams Daily in Patients with Pulmonary Tuberculosis. Antimicrob Agents Chemother. 2017 Oct 24;61(11):e01054-17. [CrossRef] [PubMed] [PubMed Central]
- Yulug B, Hanoglu L, Kilic E, Schabitz WR. RIFAMPICIN: an antibiotic with brain protective function. Brain Res Bull. 2014 Aug;107:37-42. Epub 2014 Jun 4. [CrossRef] [PubMed]
- Li J, Zhu M, Rajamani S, Uversky VN, Fink AL. Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol. 2004 Nov;11(11):1513-21. [CrossRef] [PubMed]
- Umeda T, Ono K, Sakai A, Yamashita M, Mizuguchi M, Klein WL, Yamada M, Mori H, Tomiyama T. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers. Brain. 2016 May;139(Pt 5):1568-86. Epub 2016 Mar 28. [CrossRef] [PubMed]
- Qosa H, Abuznait AH, Hill RA, Kaddoumi A. Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer's disease. J Alzheimers Dis. 2012;31(1):151-65. [CrossRef] [PubMed] [PubMed Central]
- Imbimbo BP, Giardina GA. γ-secretase inhibitors and modulators for the treatment of Alzheimer's disease: disappointments and hopes. Curr Top Med Chem. 2011;11(12):1555-70. [CrossRef] [PubMed]
- Sperling RA, Jack CR Jr, Aisen PS. Testing the right target and right drug at the right stage. Sci Transl Med. 2011 Nov 30;3(111):111cm33. [CrossRef] [PubMed] [PubMed Central]
- Panza F, Logroscino G, Imbimbo BP, Solfrizzi V. Is there still any hope for amyloid-based immunotherapy for Alzheimer's disease? Curr Opin Psychiatry. 2014 Mar;27(2):128-37. [CrossRef] [PubMed]
- Loeb MB, Molloy DW, Smieja M, Standish T, Goldsmith CH, Mahony J, Smith S, Borrie M, Decoteau E, Davidson W, et al. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer's disease. J Am Geriatr Soc. 2004 Mar;52(3):381-7. [CrossRef] [PubMed]
- Iizuka T, Morimoto K, Sasaki Y, Kameyama M, Kurashima A, Hayasaka K, Ogata H, Goto H. Preventive Effect of Rifampicin on Alzheimer Disease Needs at Least 450 mg Daily for 1 Year: An FDG-PET Follow-Up Study. Dement Geriatr Cogn Dis Extra. 2017 Jun 19;7(2):204-214. [CrossRef] [PubMed] [PubMed Central]
- West T, Kirmess KM, Meyer MR, Holubasch MS, Knapik SS, Hu Y, Contois JH, Jackson EN, Harpstrite SE, Bateman RJ, et al. A blood-based diagnostic test incorporating plasma Aβ42/40 ratio, ApoE proteotype, and age accurately identifies brain amyloid status: findings from a multi cohort validity analysis. Mol Neurodegener. 2021 May 1;16(1):30. [CrossRef] [PubMed] [PubMed Central]
- Available at: https://livertox.nih.gov/Rifampin.htm (Accessed 1.7.23).
- Available at: https://www.drugs.com/drug-interactions/rifampin.html (Accessed 1-7-23).
- Tomiyama T, Asano S, Suwa Y, Morita T, Kataoka K, Mori H, Endo N. Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem Biophys Res Commun. 1994 Oct 14;204(1):76-83. [CrossRef] [PubMed]
- Bi W, Zhu L, Jing X, Zeng Z, Liang Y, Xu A, Liu J, Xiao S, Yang L, Shi Q, et al. Rifampicin improves neuronal apoptosis in LPS-stimulated co-cultured BV2 cells through inhibition of the TLR-4 pathway. Mol Med Rep. 2014 Oct;10(4):1793-9. Epub 2014 Aug 11. [CrossRef] [PubMed] [PubMed Central]
- Acuña L, Hamadat S, Corbalán NS, González-Lizárraga F, Dos-Santos-Pereira M, Rocca J, Díaz JS, Del-Bel E, Papy-García D, Chehín RN, et al. Rifampicin and Its Derivative Rifampicin Quinone Reduce Microglial Inflammatory Responses and Neurodegeneration Induced In Vitro by α-Synuclein Fibrillary Aggregates. Cells. 2019 Jul 25;8(8):776. [CrossRef] [PubMed] [PubMed Central]
- Ubhi K, Rockenstein E, Mante M, Patrick C, Adame A, Thukral M, Shults C, Masliah E. Rifampicin reduces alpha-synuclein in a transgenic mouse model of multiple system atrophy. Neuroreport. 2008 Aug 27;19(13):1271-6. [CrossRef] [PubMed] [PubMed Central]
- Zhu L, Yuan Q, Zeng Z, Zhou R, Luo R, Zhang J, Tsang CK, Bi W. Rifampicin Suppresses Amyloid-β Accumulation Through Enhancing Autophagy in the Hippocampus of a Lipopolysaccharide-Induced Mouse Model of Cognitive Decline. J Alzheimers Dis. 2021;79(3):1171-1184. [CrossRef] [PubMed]
- Zhou R, Zhu L, Zeng Z, Luo R, Zhang J, Guo R, Zhang L, Zhang Q, Bi W. Targeted brain delivery of RVG29-modified rifampicin-loaded nanoparticles for Alzheimer's disease treatment and diagnosis. Bioeng Transl Med. 2022 Aug 26;7(3):e10395. [CrossRef] [PubMed] [PubMed Central]
- Kaur P, Sodhi RK. Memory recuperative potential of rifampicin in aluminum chloride-induced dementia: role of pregnane X receptors. Neuroscience. 2015 Mar 12;288:24-36. Epub 2014 Dec 27. [CrossRef] [PubMed]
- Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018 Oct;143:155-170. Epub 2018 Oct 25. [CrossRef] [PubMed]
- Umeda T, Tanaka A, Sakai A, Yamamoto A, Sakane T, Tomiyama T. Intranasal rifampicin for Alzheimer's disease prevention. Alzheimers Dement (N Y). 2018 Jul 14;4:304-313. [CrossRef] [PubMed] [PubMed Central]
- Umeda T, Hatanaka Y, Sakai A, Tomiyama T. Nasal Rifampicin Improves Cognition in a Mouse Model of Dementia with Lewy Bodies by Reducing α-Synuclein Oligomers. Int J Mol Sci. 2021 Aug 6;22(16):8453. [CrossRef] [PubMed] [PubMed Central]
- Umeda T, Sakai A, Shigemori K, Yokota A, Kumagai T, Tomiyama T. Oligomer-Targeting Prevention of Neurodegenerative Dementia by Intranasal Rifampicin and Resveratrol Combination - A Preclinical Study in Model Mice. Front Neurosci. 2021 Dec 13;15:763476. [CrossRef] [PubMed] [PubMed Central]
- Umeda T, Uekado R, Shigemori K, Eguchi H, Tomiyama T. Nasal Rifampicin Halts the Progression of Tauopathy by Inhibiting Tau Oligomer Propagation in Alzheimer Brain Extract-Injected Mice. Biomedicines. 2022 Jan 27;10(2):297. [CrossRef] [PubMed] [PubMed Central]
- Hatanaka Y, Umeda T, Shigemori K, Takeuchi T, Nagai Y, Tomiyama T. C9orf72 Hexanucleotide Repeat Expansion-Related Neuropathology Is Attenuated by Nasal Rifampicin in Mice. Biomedicines. 2022 May 6;10(5):1080. [CrossRef] [PubMed] [PubMed Central]
- Molloy DW, Standish TI, Zhou Q, Guyatt G; DARAD Study Group. A multicenter, blinded, randomized, factorial controlled trial of doxycycline and rifampin for treatment of Alzheimer's disease: the DARAD trial. Int J Geriatr Psychiatry. 2013 May;28(5):463-70. Epub 2012 Jun 21. [CrossRef] [PubMed]
- Iizuka T, Morimoto K, Sasaki Y, Kameyama M, Kurashima A, Hayasaka K, Ogata H, Goto H. Preventive Effect of Rifampicin on Alzheimer Disease Needs at Least 450 mg Daily for 1 Year: An FDG-PET Follow-Up Study. Dement Geriatr Cogn Dis Extra. 2017 Jun 19;7(2):204-214. [CrossRef] [PubMed] [PubMed Central]
- Yulug B, Hanoglu L, Ozansoy M, Isık D, Kilic U, Kilic E, Schabitz WR. Therapeutic role of rifampicin in Alzheimer's disease. Psychiatry Clin Neurosci. 2018 Mar;72(3):152-159. Epub 2018 Feb 10. [CrossRef] [PubMed]
- https://precivityad.com Accessed 1/7/23.
- Feng L, He H, Xiong X, Xia K, Qian S, Ye Q, Feng F, Zhou S, Hong X, Liu Y, et al. Plasma-derived phosphoglycerate mutase 5 as a biomarker for Parkinson's disease. Front Aging Neurosci. 2022 Oct 28;14:1022274. [CrossRef] [PubMed] [PubMed Central]
- Romano S, Romano C, Peconi M, Fiore A, Bellucci G, Morena E, Troili F, Cipollini V, Annibali V, Giglio S, et al. Circulating U13 Small Nucleolar RNA as a Potential Biomarker in Huntington's Disease: A Pilot Study. Int J Mol Sci. 2022 Oct 18;23(20):12440. [CrossRef] [PubMed] [PubMed Central]
- Trevino JT, Quispe RC, Khan F, Novak V. Non-Invasive Strategies for Nose-to-Brain Drug Delivery. J Clin Trials. 2020;10(7):439. Epub 2020 Dec 10. PMCID: PMC7836101. [PubMed] [PubMed Central]
- Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018 Feb 15;195:44-52. Epub 2017 Dec 22. [CrossRef] [PubMed]
- Graff CL, Pollack GM. Drug transport at the blood-brain barrier and the choroid plexus. Curr Drug Metab. 2004 Feb;5(1):95-108. [CrossRef] [PubMed]
- Graff CL, Pollack GM. Functional evidence for P-glycoprotein at the nose-brain barrier. Pharm Res. 2005 Jan;22(1):86-93. [CrossRef] [PubMed]
- Trevino JT, Quispe RC, Khan F, Novak V. Non-Invasive Strategies for Nose-to-Brain Drug Delivery. J Clin Trials. 2020;10(7):439. Epub 2020 Dec 10. [PubMed] [PubMed Central]
- Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, Fishel MA, Plymate SR, Breitner JC, DeGroodt W, et al. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology. 2008 Feb 5;70(6):440-8. Epub 2007 Oct 17. Erratum in: Neurology. 2008 Sep 9;71(11):866. [CrossRef] [PubMed]
- Hoekman JD, Ho RJ. Enhanced analgesic responses after preferential delivery of morphine and fentanyl to the olfactory epithelium in rats. Anesth Analg. 2011 Sep;113(3):641-51. Epub 2011 Jun 27. [CrossRef] [PubMed] [PubMed Central]
- Rabinowicz AL, Carrazana E, Maggio ET. Improvement of Intranasal Drug Delivery with Intravail® Alkylsaccharide Excipient as a Mucosal Absorption Enhancer Aiding in the Treatment of Conditions of the Central Nervous System. Drugs R D. 2021 Dec;21(4):361-369. Epub 2021 Aug 25. [CrossRef] [PubMed] [PubMed Central]
- Djupesland PG, Messina JC, Mahmoud RA. Breath powered nasal delivery: a new route to rapid headache relief. Headache. 2013 Sep;53 Suppl 2:72-84. [CrossRef] [PubMed] [PubMed Central]
- Farnoud A, Tofighian H, Baumann I, Martin AR, Rashidi MM, Menden MP, Schmid O. Pulsatile Bi-Directional Aerosol Flow Affects Aerosol Delivery to the Intranasal Olfactory Region: A Patient-Specific Computational Study. Front Pharmacol. 2021 Nov 23;12:746420. [CrossRef] [PubMed] [PubMed Central]
- Xi J, Wang Z, Si XA, Zhou Y. Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling. Eur J Pharm Sci. 2018 Jun 15;118:113-123. Epub 2018 Mar 27. [CrossRef] [PubMed]
- Xi J, Wang Z, Nevorski D, White T, Zhou Y. Nasal and Olfactory Deposition with Normal and Bidirectional Intranasal Delivery Techniques: In Vitro Tests and Numerical Simulations. J Aerosol Med Pulm Drug Deliv. 2017 Apr;30(2):118-131. Epub 2016 Dec 15. [CrossRef] [PubMed]
- Yarragudi SB, Kumar H, Jain R, Tawhai M, Rizwan S. Olfactory Targeting of Microparticles Through Inhalation and Bi-directional Airflow: Effect of Particle Size and Nasal Anatomy. J Aerosol Med Pulm Drug Deliv. 2020 Oct;33(5):258-270. Epub 2020 May 18. [CrossRef] [PubMed]
- Djupesland PG, Skretting A, Winderen M, Holand T. Bi-directional nasal delivery of aerosols can prevent lung deposition. J Aerosol Med. 2004 Fall;17(3):249-59. [CrossRef] [PubMed]
- Djupesland PG, Skretting A. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump. J Aerosol Med Pulm Drug Deliv. 2012 Oct;25(5):280-9. Epub 2012 Jan 17. [CrossRef] [PubMed]
- Xi J, Wang Z, Si XA, Zhou Y. Nasal dilation effects on olfactory deposition in unilateral and bi-directional deliveries: In vitro tests and numerical modeling. Eur J Pharm Sci. 2018 Jun 15;118:113-123. Epub 2018 Mar 27. [CrossRef] [PubMed]
- https://www.uspharmacist.com/article/rifampin-1-nasal-drops. Accessed 1-6-2023.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).