Preprint
Review

This version is not peer-reviewed.

A Glimpse of Ocean of Abundant Discoveries: Two-Way Cross Family Analysis of In-Silico Ranked 2nd Order Unexplored, ETC-1922159 Affected, Synergistic Combinations in CRC Cells

Submitted:

18 September 2024

Posted:

20 September 2024

You are already at the latest version

Abstract
Often, in biology, we are faced with the problem of exploring relevant unknown biological hypotheses in the form of myriads of combination of factors that might be affecting the pathway under certain conditions. For example, Brancati et al.1 observe that mutations in poliovirus receptor related protein 4 (PVRL4), encoding cell adhesion molecule nectin-4, causes Ectodermal dysplasia-syndactyly syndrome. Interaction with cad- herins also implies an influence of nectin-4 on Wnt signaling, which plays a relevant role in limb development (Brancati et al.1). However, not much work has been done to explore the relation of Wnts and PVR family. In CRC cells treated with ETC-1922159, both were found up regulated. In a recent unpublished work in Open Science Framework, Sinha2, we had the opportunity to rank these unknown biological hypotheses for both up and down regulated genes at 2nd order level after drug administration. The search engine alloted high nu- merical valued rankings to some combinations of PVR-WNT, thus indicating a possibility of high combinatorial synergy also. The in-silico derived influences can be represented graphically as - PVR w.r.t WNT with PVR <- WNT9A; and WNT w.r.t PVR with WNT-7B/9A <- PVR and WNT4 <- PVRL2; In the light of the recent findings of PVR with IFN (interferon) and the known interactions between IFN and Wnts, there might be a possibilty to explore the bridge of PVR, IFN and WNTs. The 3 fold (PVR - IFN; IFN - WNT; WNT - PVR), 2 way cross family analysis might shed light on the possible combinations that might be of import. Here, we present a 2-way cross family analysis of multiple, such in-silico ranked 2nd order synergistic combinations, after ETC-1922159 treatment of CRC cells. Via this 2-way cross family analysis, we are able to discover through majority voting, the combinations that might of interest to biologists and also derive plausible influences of components of combinations among themselves. Note that these form biological hypotheses which indicate whether a particular combination and the direction of influence within the combination, exist synergistically in CRC cells. Wet lab tests will indicate the veracity of these combinations and if proven true, will lead to further study of mechanism between the components.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
This manuscript extends to 80 pages and is cumbersome to read. Thus the manuscript has been divided into 8 smaller articles, each focusing on a particular gene/protein of interest and its possible synergy with other genes/proteins. These 8 articles are as follows -

1. Introduction

We reproduce a part of the manuscript [3] before we delve into the details of the current work. In [2], a frame work of a search engine is developed which can rank combinations of factors in a signaling pathway. Such combinations are of import due to the vast search space in which they exist and the difficulty to find them. The search engine facilitates in prioritizing the combinations as ranked biological hypotheses which the biologists might want to test in wet lab, to know if a synergistic combination is prevalent in a signaling pathway, in a (in)direct manner. Interested readers are advised to go through [2] for details regarding the search engine and the discoveries mentioned in there.
The research article, which is a mini encyclopaedia, contains results from this search engine. For each of the combinations of a family of genes at 2nd order level, we first present experimental confirmations of existence of combinations that are working synergistically, as cited in published literature. Next, based on the confirmed combinations, we infer plausible combinations, generated from the search engine, that might be working synergistically in CRC cells affected by ETC-1922159. The research shows ground breaking results in detail, which the biologists/oncologists can refer to for further wet lab tests. We present a 2-way cross family analysis of multiple, such in-silico ranked 2nd order synergistic combinations, after ETC-1922159 treatment of CRC cells. Via this 2-way cross family analysis, we are able to discover through majority voting, the combinations that might of interest to biologists and also derive plausible influences of components of combinations among themselves. Note that these form biological hypotheses which indicate whether a particular combination and the direction of influence within the combination, exist synergistically in CRC cells. Wet lab tests will indicate the veracity of these combinations and if proven true, will lead to further study of mechanism between the components.

2. Materials and Methods

2.1. Combinatorial Search Problem and a Possible Solution

We have already addressed the issue of combinatorial search problem and a possible solution in [3,4]. The details of the methodology of this manuscript have been explained in great detail in [4] & its application in [3]. Readers are requested to go through the same for gaining deeper insight into the working of the pipeline and its use of published data set generated after administration of ETC-1922159. In order to understand the significance of the solution proposed to the problem of combinatorial search that the biologists face in revealing unknown biological search problem, these works are of importance.
Briefly, the pipleline works by computing sensitivity indicies for each of these unique combinations and then vectorising these indices to connote and form discriminative feature vector for each combination. Since each combination is unique, the training and the test data are same. In the training data, the combinations are arranged and ranks from 1 to n are assigned. The ranking algorithm then learns the patterns from these combinations/sensitivity index vectors. Next the learned model is used to rank the test data by generating the ranking score for each of the unique combination. Sorting these shuffled scores of test data leads to prioritization of the combinations.

2.2. Wnt Signaling and Secretion

[5]’s accidental discovery of the Wingless played a pioneering role in the emergence of a widely expanding research field of the Wnt signaling pathway. A majority of the work has focused on issues related to • the discovery of genetic and epigenetic factors affecting the pathway [6,7], • implications of mutations in the pathway and its dominant role on cancer and other diseases [8], • investigation into the pathway’s contribution towards embryo development [9], homeostasis [10,11] and apoptosis [12] and • safety and feasibility of drug design for the Wnt pathway [13,14,15,16,17].
The Wnt phenomena can be roughly segregated into signaling and secretion part. The Wnt signaling pathway works when the WNT ligand gets attached to the Frizzled(FZD)/LRP coreceptor complex. FZD may interact with the Dishevelled (DVL) causing phosphorylation. It is also thought that Wnts cause phosphorylation of the LRP via casein kinase 1 (CK1) and kinase GSK3. These developments further lead to attraction of Axin which causes inhibition of the formation of the degradation complex. The degradation complex constitutes of AXIN, the β-catenin transportation complex APC, CK1 and GSK3. When the pathway is active the dissolution of the degradation complex leads to stabilization in the concentration of β-catenin in the cytoplasm. As β-catenin enters into the nucleus it displaces the GROUCHO and binds with transcription cell factor TCF thus instigating transcription of Wnt target genes. GROUCHO acts as lock on TCF and prevents the transcription of target genes which may induce cancer. In cases when the Wnt ligands are not captured by the coreceptor at the cell membrane, AXIN helps in formation of the degradation complex. The degradation complex phosphorylates β-catenin which is then recognised by F BOX/WD repeat protein β-TRCP. β-TRCP is a component of ubiquitin ligase complex that helps in ubiquitination of β-catenin thus marking it for degradation via the proteasome. A cartoon of the signaling transduction snapshot is shown in Figure 1.
Contrary to the signaling phenomena, the secretion phenomena is about the release and transportation of the WNT protein/ligand in and out of the cell, respectively. Briefly, the WNT proteins that are synthesized with the endoplasmic reticulum (ER), are known to be palmitoyleated via the Porcupine (PORCN) to form the WNT ligand, which is then ready for transportation [18]. It is believed that these ligands are then transported via the EVI/WNTLESS transmembrane complex out of the cell [19,20]. The EVI/WNTLESS themselves are known to reside in the Golgi bodies and interaction with the WNT ligands for the later’s glycosylation [21,22]. Once outside the cell, the WNTs then interact with the cell receptors, as explained in the foregoing paragraph, to induce the Wnt signaling. Of importance is the fact that the EVI/WNTLESS also need a transporter in the from of a complex termed as Retromer. A cartoon of the signaling transduction snapshot is shown in Figure 2.

2.3. PORCN-WNT Inhibitors

The regulation of the Wnt pathway is dependent on the production and secretion of the WNT proteins. Thus, the inhibition of a causal factor like PORCN which contributes to the WNT secretion has been proposed to be a way to interfere with the Wnt cascade, which might result in the growth of tumor. Several groups have been engaged in such studies and known PORCN-WNT inhibitors that have been made available till now are IWP-L6 [23,24], C59 [25], LGK974 [26] and ETC-1922159 [27]. In this study, the focus of the attention is on the implications of the ETC-1922159, after the drug has been administered. The drug is a enantiomer with a nanomolar activity and excellent bioavailability as claimed in [27].

3. Results & Discussion

3.1. WNT Related Synergies

3.1.1. WNT10B-ASCL2

WNT10B has been found to be implicated in a range of cancers. In gastric cancer, the knockdown of WNT10B showed reduced expression of cell proliferation and migration as well as inhibition of epithelial-mesenchymal transition Wu et al. [28]. On the other hand, WNT10B is also involved in the formation of bone mass and progenitor maintenance of various kinds of tissue, while deletion of the same leads to loss of bone mass and mesenchymal progenitor cells Stevens et al. [29]. Their contribution is also reported in axonal regeneration in injured CNS Tassew et al. [30]. Furthermore, like WNT10B, WNT10A and WNT6 have shown to play a major role in inhibiting adipogenesis and stimulates osteoblastogenesis while regulating the mesenchymal stem cells Cawthorn et al. [31] & Collins et al. [32]. Involvement in heptocellular carcinoma of WNT10B has been found wherein it is shown that stable silencing of WNT10B leads to significant reduction in proliferation, colony formation, migration and invasion in HepG2 HCC cell line Wu et al. [33]. Its implication in breast cancer Wend et al. [34] & Chen et al. [35] as well as endometrial cancer Chen et al. [36] has also been reported.
In colorectal cancer, WNT10B has shown to play a dual function of both oncogenesis promotion via β-catenin/TCF pathway and the inhibition of cell growth, possibly via FGF family of proteins Yoshikawa et al. [37]. Methylation of WNT10B has been found in the some of the cancer cell lines while its reversal has lead to over-expression of the WNT10B. However, the over-expression of WNT10B has lead to reduced cell growth in cancer, indicating a β-catenin independent component to be behind such a phenomena. Methylation of over-expressed WNT10B and synergistic work with FGF family of proteins later indicate the promotion of oncogenesis, as has been demonstrated in Yoshikawa et al. [37].
In a more recent work, ASCL2 has been found to play a major role in stemness in colon crypts and is implicated in colon cancer Zhu et al. [38]. Switching off the ASCL2 leads to a literal blockage of the stemness process and vice versa. At the downstream level, ASCL2 is regulated by TCF4/β-catenin via non-coding RNA target named WiNTRLINC1 Giakountis et al. [39]. Activation of ASCL2 leads to feedforward transcription of the non-coding RNA and thus a loop is formed which helps in the stemness and is highly effective in colon cancer. At the upstream level, ASCL2 is known act as a WNT/RSPONDIN switch that controls the stemness Schuijers et al. [40]. It has been shown that removal of RSPO1 lead to decrease in the Wnt signaling due to removal of the FZD receptors that led to reduced expression of ASCL2. Also, low levels of LGR5 were observed due to this phenomena. The opposite happened by increasing the RSPO1 levels. After the drug treatment, it was found that ASCL2 was highly suppressed pointing to the inhibition of stemness in the colorectal cancer cells. Also, Schuijers et al. [40] show that by genetically disrupting PORCN or inducing a PORCN inhibitor (like IWP-2), there is loss of stem cell markers like LGR5 and RNF43, which lead to disappearance of stem cells and moribund state of mice. A similar affect can be found with ETC-1922159, where there is suppression of RNF43 and LGR5 that lead to inhibition of the Wnt pathway and thus the ASCL2 regulation. These wet lab evidences are confirmed in the relatively low ranking of the combination ASCL2-RNF43 via the inhibition of PORCN-WNT that leads to blocking of the stemness that is induced by ASCL2. Since ASCL2 is directly mediated by the WNT proteins, the recorded ASCL2-WNT10B combination showed low priority ranking of 488, 497 and 321 for rbf, laplace and linear kernels, respectively, thus indicating a possible connection between WNT10B and ASCL2 activation. WNT10B might be playing a crucial role in stemness. This is further confirmed by wet lab experiments in Reddy et al. [41], which show BVES deletion results in amplified stem cell activity and Wnt signaling after radiation. WNT10B has been implicated in colorectal cancer Yoshikawa et al. [37].

3.1.2. ABC Transporters - WNT Cross Family Analysis

Hlavata et al. [42] have shown the role of ABC transporters in progression and clinical outcome of colorectal cancer. Work by Kobayashi et al. [43] show that Wnt-β catenin signaling regulates ABCC3 (MRP3) transporter expression in colorectal cancer. ABCA2 belongs to the category of ABC transporters that play an essential role in the development of resistance by the efflux of anticancer agents outside of cancer cells Hlavata et al. [42]. Hlavata et al. [42] observed that ABCA2 had no significant change/affect in colorectal cancer cases. Kobayashi et al. [43] found ABCA2 to be downregulated in colorectal cancer case. In ETC-1922159 affected CRC cells, down regulation of ABCA2 was observed, after the inhibition of proliferation in respective cells. Multiple members of ABC transporters and WNTs were found to be UP regulated after ETC-159 in CRC cells and WNTs are known to regulate ABCs. Below, we show a range of up regulated, possible unknown and unexplored synergistic 2nd order combinations that were ranked by the search engine. Note that the high numerical valued ranks (i.e nearing to 1800/2000 and above) indicate high potential of synergy that might be existing in CRC cells after the drug administration. Majority voting of rankings across the three different kernels point to the potential of the synergistic discovery. Wet labs investigations will assist in confirmation of these discoveries and if proven true, might lead to understanding of further mechanism between the components.
Table 1 and Table 2 show the rankings of ABC family w.r.t to WNT family members and WNT family w.r.t to ABC family members, respectively. From these two tables, we derive the plausible influences that might be existing in a two way format that is depicted in Table 3. In Table 1, WNT2B - ABC-C3 combination shows a majority voting of 1853 (laplace) and 2498 (rbf). Similarly, WNT7B - ABC-C13 shows a majority voting of 2245 (linear) and 2298 (rbf). These two combinations are depicted in Table 3 as ABC members influenced by WNT members (see under ABC w.r.t WNT). Reversibily, in Table 2 ABC-A5 - WNT2B shows a majority voting of 2018 (linear) and 2132 (rbf), ABC-A5 - WNT4 shows a majority voting of 2436 (linear) and 2449 (rbf), ABC-A5 - WNT9A shows a majority voting of 1989 (laplace), 2209 (linear) and 2365 (rbf), WNT2B - ABC-C5 shows a majority voting of 1970 (laplace), 2309 (linear) and 2248 (rbf), ABC-C5 - WNT9A shows a majority voting of 2183 (linear) and 2480 (rbf), WNT2B - ABC-C13 shows a majority voting of 2150 (linear) and 2048 (rbf), WNT7B - ABC-C13 shows a majority voting of 2508 (laplace) and 1830 (linear), WNT7B - ABC-D1 shows a majority voting of 2238 (laplace) and 2021 (linear), WNT7B - ABC-G1 shows a majority voting of 1808 (linear) and 1866 (rbf), WNT7B - ABC-G2 shows a majority voting of 2334 (linear) and 2145 (rbf) and WNT9A - ABC-G2 shows a majority voting of 1919 (laplace) and 2003 (rbf). These point to WNT members influenced by ABC members (see under WNT w.r.t ABC). Hypothetically, what we find is that the synergies can be bi-directional also and might contain various intermitent factors through which the factors might be working synergistically. These hypothese form present themselves as important combinations that might be of interest to biologists/oncologists.
One can also interpret the results of the Table 3 graphically, with the following influences - • ABC w.r.t WNT with WNT-2B -> ABC-C3; WNT-7B -> ABC-C13; and • WNT w.r.t ABC with ABC-A5 <- WNT-2B/4/9A; WNT-2B/9A <- ABC-C5; WNT-2B/7B <- ABC-C13; WNT-7B <- ABC-D1; WNT-7B <- ABC-G1; WNT-7B/9A <- ABC-G2. Thus, in this way, we can utilize the search engine to derive the various probable combinations between the factors of interest and their interdependent influences through the two-way cross family analysis.

3.1.3. IL - WNT Cross Family Analysis

Interleukin (IL) has been found in cross talk with WNT pathway. Kaler et al. [44] show that NFκB induced WNT signaling in colorectal cancer via interleukin-1β IL1B. Further, Zhong et al. [45] have shown that nitric oxide mediates crosstalk between interleukin 1β and Wnt signaling in primary human chondrocytes by reducing DKK1 and FRZB expression. The role of IL-17 (Interleukin-17) family is known to be controversial in CRC, however there are cases were it has been reported to be a prognostic marker for colorectal cancer Lin et al. [46] & Housseau et al. [47]. A homologue of the family, IL-17D a novel cytokine has been discovered Starnes et al. [48] and found to play a role in many of the cancers. In cells treated with ETC-1922159, IL-17D was found to be down regulated and reversibly it must have been regulated in the colorectal cancer cases. Recently, crosstalk between WNT/β-Catenin and NF-κB signaling pathway during inflammation has been reported by Ma and Hottiger [49]. Ma et al. [50] also show WNT/β-catenin negative feedback loop inhibits IL-1 induced matrix metalloproteinase expression in human articular chondrocytes. Masckauchán et al. [51] conclude that WNT/β-catenin signaling promotes angiogenesis possibly via the induction of known angiogenic regulators such as Interleukin-8. In mouse colon, Interleukin-1 signaling is shown to mediate obesity-promoted elevations in inflammatory cytokines, WNT activation, and epithelial proliferation by Pfalzer et al. [52]. In pulmonary fibrosis, Aumiller et al. [53] show that WNT/β-Catenin signaling induces IL-1β expression by alveolar epithelial cells. Chen et al. [54] show that IL-23 promotes the epithelial-mesenchymal transition of oesophageal carcinoma cells via the WNT/β-catenin pathway. Finally, Malysheva et al. [55] show that IL-6/WNT interactions in rheumatoid arthritis.
Family members belonging to each of the factors like WNT, IL etc, might be involved synergistically in pathological case or otherwise. IL and WNT members were found to be up regulated after the treatment of ETC-1922159 in colorectal cancer cells. We present here, multiple plausible and alternative synergistic combinatorial biological hypotheses for IL-WNT combination, which emerge after a cross family member analysis of the in silico revelations pertaining to the components under investigation.
Table 4 shows IL-WNT two way cross family analysis. The left side of the Table contains rankings of IL family with respect to WNTs and the right side of the Table contains rankings of WNT family with respect to ILs. Depicted in Table are the plausible combinatorial hypotheses derived from majority voting of the rankings in Table 4. On the left half, w.r.t WNT2B, IL-6ST/8/17REL show a synergy with WNT2B. These are reflected with rankings of 1797 (linear) and 2088 (rbf) for IL-6ST - WNT2B; rankings of 2107 (laplace), 1817 (linear) and 2088 (rbf) for IL-8 - WNT2B and rankings of 1824 (laplace) and 2241 (rbf) for IL-17REL - WNT2B, respectively. W.r.t WNT4, IL-1B/1RAP/15RA/17C show a synergy with WNT4. These are reflected with rankings of 1867 (laplace) and 1976 (linear) for IL-1B - WNT4; rankings of 2302 (laplace) and 1826 (linear) for IL-1RAP - WNT4; rankings of 1987 (laplace) and 2265 (linear) for IL-15RA - WNT4 and rankings of 2018 (laplace) and 1881 (linear) for IL-17C - WNT4, respectively. W.r.t WNT7B, IL-1RN/17REL show a synergy with WNT7B. These are reflected with rankings of 1882 (laplace) and 1796 (linear) for IL-1RN - WNT7B and rankings of 2053 (laplace), 2445 (linear) and 2489 (rbf) for IL-17REL - WNT4, respectively. W.r.t WNT9A, IL-1RAP/15RA show a synergy with WNT9A. These are reflected with rankings of 2273 (linear) and 2159 (rbf) for IL-1RAP - WNT9A and rankings of 1776 (laplace) and 2380 (linear) for IL-15RA - WNT9A, respectively.
On the right half, WNT2B w.r.t IL family, IL-1A/1RAP/8 show a synergy with WNT2B. These are reflected with rankings of 2290 (laplace) and 2427 (rbf) for IL-1A - WNT2B; rankings of 2488 (laplace) and 1892 (rbf) for IL-1RAP - WNT2B and rankings of 2157 1824 (laplace) and 2025 (linear) for IL-8 - WNT2B, respectively. WNT4 w.r.t IL family, IL-8/10RB show a synergy with WNT4. These are reflected with rankings of 1980 (laplace) and 2144 (linear) for IL-8 - WNT4 and rankings of 1828 (laplace), 2259 (linear) and 1993 (rbf) for IL-10RB - WNT4; respectively. WNT7B w.r.t IL family, IL-1A/1RN/6ST/17C show a synergy with WNT7B. These are reflected with rankings of 2134 (linear) and 2312 (rbf) for IL-1A - WNT7B; rankings of 1907 (laplace) and 2162 (linear) for IL-1RN - WNT7B; rankings of 1881 (linear) and 2020 (rbf) for IL-ST - WNT7B; and rankings of 1956 (laplace), 2388 (linear) and 1982 (rbf) for IL-17C - WNT7B, respectively. WNT9A w.r.t IL family, IL-1RAP/15RA/17REL show a synergy with WNT9A. These are reflected with rankings of 2003 (laplace) and 2179 (linear) for IL-1RAP - WNT9A; rankings of 2149 (laplace) and 2362 (linear) for IL-15RA - WNT9A; and rankings of 2101 (laplace) and 1940 (linear) for IL-17REL - WNT9A, respectively. One can also interpret the results of the Table 5 graphically, with the following influences - • IL w.r.t WNT with IL-6ST/8/17REL <- WNT-2B; IL-1B/1RAP/15RA/17C <- WNT-4; IL-1RN/17REL <- WNT-7B; IL-1RAP/15RA <- WNT-9A and • WNT w.r.t IL with IL-1A/1RAP/8 -> WNT-2B; IL-8/10RB -> WNT-4; IL-1A/1RN/6ST/17C -> WNT-7B and IL-1RAP/15RA/17REL -> WNT-9A.

3.1.4. UBE2 - WNT Cross Family Analysis

Mukai et al. [56] observed balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt. Family members belonging to each of the factors like UBE2, WNT etc, might be involved synergistically in pathological case or otherwise. UBE2 and WNT members were found to be up regulated after the treatment of ETC-159 in colorectal cancer cells. However, not much is known about interation between the UBE2 family members and WNTs. Here we present a range of synergies that were ranked highly for up regulation. Table 6 presents the rankings of UBE family VS WNT family. Following this, is the Table 7 which derives the necessary influences via majority voting of rankings in Table 6.
On the left half, w.r.t WNT family, UBE2A show a synergy with WNT4. These are reflected with rankings of 2314 (linear) and 2279 (rbf) for UBE2A - WNT4; UBE2B show a synergy with WNT4/7B. These are reflected with rankings of 2260 (laplace), 2008 (linear) and 2141 (rbf) for UBE2B - WNT4 and rankings of 2116 (laplace) and 2206 (rbf) for UBE2B - WNT7B, respectively; UBE2F show a synergy with WNT4/7B. These are reflected with rankings of 2135 (laplace) and 2505 (linear) for UBE2F - WNT4 and rankings of 2423 (laplace) and 2077 (rbf) for UBE2F - WNT7B, respectively; UBE2H show a synergy with WNT2B. These are reflected with rankings of 1841 (laplace) and 2178 (linear) for UBE2H - WNT2B; UBE2J1 show a synergy with WNT-7B/9A. These are reflected with rankings of 2349 (laplace) and 2183 (rbf) for UBE2J1 - WNT7B and rankings of 1835 (laplace) and 2053 (rbf) for UBE2J1 - WNT9A, respectively. UBE2Z show a synergy with WNT-2B/4/9A. These are reflected with rankings of 1756 (linear) and 1878 (rbf) for UBE2J1 - WNT2B, rankings of 2195 (laplace) and 2468 (rbf) for UBE2J1 - WNT4, and 2343 (laplace) and 1973 (rbf) for UBE2J1 - WNT9A, respectively.
Table 7. 2nd order combinatorial hypotheses between UBE2 and WNT family members.
Table 7. 2nd order combinatorial hypotheses between UBE2 and WNT family members.
Unexplored combinatorial hypotheses
UBE2 w.r.t WNT
WNT-4 UBE2-A
WNT-4/7 UBE2-B
WNT-4/7B UBE2-F
WNT-2B UBE2-H
WNT-7B/9B UBE2-J1
WNT-2B/4/7B UBE2-Z
WNT w.r.t UBE2
WNT-7B UBE2-A
WNT-7B/9A UBE2-B
WNT-7B/9A UBE2-F
WNT-4 UBE2-H
WNT-7B/9A UBE2-J1
WNT-7B UBE2-Z
On the right half, w.r.t UBE2, UBE2A shows a synergy with WNT4. These are reflected with rankings of 2345 (linear) and 2151 (rbf) for UBE2A - WNT7B; UBE2B shows a synergy with WNT-7B/9A. These are reflected with rankings of 2052 (linear) and 1903 (rbf) for UBE2B - WNT7B and rankings of 2300 (laplace), 2476 (linear) and 2326 (rbf) for UBE2B - WNT9A, respectively; UBE2F shows a synergy with WNT-7B/9A. These are reflected with rankings of 2236 (laplace) and 1751 (rbf) for UBE2F - WNT7B and rankings of 2251 (linear) and 2179 (rbf) for UBE2F - WNT9A, respectively; UBE2H shows a synergy with WNT4. These are reflected with rankings of 2248 (linear) and 2155 (rbf) for UBE2H - WNT4; UBE2J1 shows a synergy with WNT-7B/9A. These are reflected with rankings of 1877 (llinear) and 1846 (rbf) for UBE2J1 - WNT7B and rankings of 2471 (laplace), 2137 (linear) and 2469 (rbf) for UBE2J1 - WNT9A, respectively. UBE2Z shows a synergy with WNT-9A. These are reflected with rankings of 1972 (laplace) and 1800 (linear) for UBE2Z - WNT7B, respectively.
One can also interpret the results of the Table 7 graphically, with the following influences - • UBE2 w.r.t WNT with WNT-4 -> UBE2-A; WNT-4/7 -> UBE2-B; WNT-4/7B -> UBE2-F; WNT-2B -> UBE2-H; WNT-7B/9B -> UBE2-J1; WNT-2B/4/7B -> UBE2-Z and • WNT w.r.t UBE2 with WNT-7B <- UBE2-A; WNT-7B/9A <- UBE2-B; WNT-7B/9A <- UBE2-F; WNT-4 <- UBE2-H; WNT-7B/9A <- UBE2-J1; WNT-7B <- UBE2-Z;

3.1.5. EXOSC - WNT10B Cross Family Analysis

Recently, emerging role of exosome (EXOSC) has been studied in WNT secretion and transportation by Zhang and Wrana [57]. It has been found that exosomes play a critical role in morphogen signaling during embryonic development and cancer progression. In injured CNS, exosomes mediate mobilization of WNT10B to promote axonal regeneration as shown by Tassew et al. [58]. Koles and Budnik [59] show the importance of exsosomes in WNT transportation. Emerging on these lines, we conducted a small two-way analysis of EXOSC components and WNT10B which were found to be down regulated in CRC cells after administration of ETC-1922159. Note that here, the interpretation of the rankings changes as the low numerical valued ranks (nearing to 1) are considered of high importance as they point to the synergistic down regulation after the drug administration. In line with the experiments, as ETC-1922159 a PORCN-WNT inhibitor block the transportation of WNTs, it might be that the affects of EXOSC components are also down regulated. These were rightly allocated with the low numerical valued in-silico ranks by the engine, thus pointing to the experimental down regulation in cells also. This confirmatory results also helps us in exploring the unknown combinations that might be prevailing synergistically when the WNT-EXOSC were up regulated before the administration of ETC-1922159 in CRC cells.
Table 8 shows the rankings of EXOSC family w.r.t WNT10B and vice versa. Followed by this is the unexplored combinatorial hypotheses in Table 9 generated from two-way analysis of the ranks in Table 8. On the left half of the Table 8, except for EXOSC7 - WNT10B, all other combinations of EXOSC family show high synergy with WNT10B. This is depicted by the low numerical valued ranks allocated by the search engine for EXOSC-2/3/5/6/8/9 with WNT10B, via majority voting across the ranking methods using laplace, linear and rbf kernels. This shows that EXOSC-2/3/5/6/8/9 had a critical role in the transport of WNT10B. On the right half of the same table, EXOSC-2/5/6/7/9 show synergistic affiliation with respect to WNT10B, via low numerical valued ranks. These are translated to graphical influences in Table 9. One can also interpret the results of the Table 9 graphically, with the following influences - • EXOSC w.r.t WNT10B with EXOSC-2/5/6/7/9 <- WNT10B and • WNT10B w.r.t EXOSC with EXOSC-2/3/5/6/8/9 -> WNT10B. Further analyses of these combinations in wet lab might help biologists explore the deeper mechanism of exosome components and WNT10B in CRC cells.

3.1.6. CASP - WNT Cross Family Analysis

Wu et al. [60] show that a caspase-dependent pathway is involved in Wnt/β-catenin signaling promoted apoptosis in Bacillus Calmette-Guerin infected RAW264.7 macrophages. Abdul-Ghani et al. [61] have shown that WNT11 promotes cardiomyocyte development by caspase-mediated suppression of canonical WNT signals. Additionally, Bisson et al. [62] show that Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. These findings indicate probable interplay of Caspase and WNTs in various pathological cases. In mice, caspase-1 activation and IL-1βsecretion together have shown to contribute to inflammatory condition of acute arthritis (see Singh et al. [63]). Recently, Caspase-3 inhibition has been found to be a therapeutic approach in colorectal cancer as shown by Flanagan et al. [64]. Yao et al. [65] also show synergistic role of Caspase-8 and Caspase-3 expressions as biomarkers in colorectal cancer. Family members belonging to each of the factors like CASP, WNT etc, might be involved synergistically in pathological case or otherwise. CASP and WNT members were found to be up regulated after the treatment of colorectal cancer cells with ETC-1922159.
Table 10 shows the rankings of CASP family w.r.t WNTs and vice versa. Followed by this is the unexplored combinatorial hypotheses in Table 11 generated from two-way analysis of the ranks in Table 10. On the first three tabular rows of the Table 10 show rankings of CASP family w.r.t WNT family. Here we present the possible interdependent WNT-CASP combinations that might be working synergistically in CRC cells. Considering CASP5 w.r.t WNTs, CASP5 - WNT2B show up regulated synergy through rankings of 2171 (laplace) and 2366 (linear). Considering CASP9 w.r.t WNTs, CASP9 - WNT-4/7B/9A show up regulated synergy through rankings of 2472 (laplace) and 2200 (linear) for CASP9 - WNT4; 2196 (laplace) and 1935 (linear) for CASP9 - WNT7B; and 1863 (laplace) and 2002 (linear) for CASP9 - WNT9A, respectively. Finally, considering CASP16 w.r.t WNTs, CASP16 - WNT4 showed up regulated synergy with rankings of 2070 (laplace) and 1783 (linear).
The next three tabular rows show rankings of WNT family w.r.t CASP family. W.r.t CASP4, WNT-7B/9A show promise of up regulation. These are reflected with rankings of 2479 (linear) and 1739 (rbf) for WNT7B - CASP4 and rankings of 2278 (linear) and 1939 (rbf) for WNT9A - CASP4, respectively. W.r.t CASP5, WNT-7B shows promise of up regulation. This is reflected with rankings of 2112 (laplace), 1919 (linear) and 2440 (rbf) for WNT7B - CASP5. W.r.t CASP7, WNT-2B/4/9A show promise of up regulation. These are reflected with rankings of 2505 (laplace) and 1891 (linear) for WNT2B - CASP7; rankings of 2456 (linear) and 2455 (rbf) for WNT4 - CASP7; and rankings of 2183 (laplace) and 1941 (linear) for WNT9A - CASP7, respectively. W.r.t CASP9, WNT-9A shows promise of up regulation. This is reflected with rankings of 2378 (laplace), 2396 (linear) and 2058 (rbf) for WNT9A - CASP9. W.r.t CASP10, WNT-4/9A show promise of up regulation. These are reflected with rankings of 1830 (laplace), 2229 (linear) and 1847 (rbf) for WNT4 - CASP10; and rankings of 2185 (laplace) and 1977 (linear) for WNT9A - CASP10, respectively. Finally, w.r.t CASP16, WNT-2B/4/9A show promise of up regulation. These are reflected with rankings of 2197 (laplace), 2489 (linear) and 1775 (rbf) for WNT2B - CASP16; rankings of 2508 (laplace), 1820 (linear) and 1867 (rbf) for WNT7B - CASP16; and rankings of 1943 (laplace) and 1839 (linear) for WNT9A - CASP16, respectively.
Table 10. 2nd order interaction ranking between WNT VS CASP family members.
Table 10. 2nd order interaction ranking between WNT VS CASP family members.
Ranking CASP family VS WNT family
Ranking of CASP4 w.r.t WNTs family Ranking of CASP5 w.r.t WNTs family
laplace linear rbf laplace linear rbf
CASP4 - WNT2B 2265 320 1517 CASP5 - WNT2B 975 2171 2366
CASP4 - WNT4 1050 1081 558 CASP5 - WNT4 1788 1356 569
CASP4 - WNT7B 622 9 632 CASP5 - WNT7B 716 978 606
CASP4 - WNT9A 446 1413 583 CASP5 - WNT9A 383 808 147
Ranking of CASP7 w.r.t WNTs family Ranking of CASP9 w.r.t WNTs family
laplace linear rbf laplace linear rbf
CASP7 - WNT2B 1152 305 248 CASP9 - WNT2B 1345 1501 1328
CASP7 - WNT4 936 1260 1787 CASP9 - WNT4 1344 2472 2200
CASP7 - WNT7B 901 1403 1303 CASP9 - WNT7B 2196 1935 1713
CASP7 - WNT9A 1330 1527 2436 CASP9 - WNT9A 1863 428 2002
Ranking of CASP10 w.r.t WNTs family Ranking of CASP16 w.r.t WNTs family
laplace linear rbf laplace linear rbf
CASP10 - WNT2B 1607 1108 739 CASP16 - WNT2B 240 621 193
CASP10 - WNT4 432 689 132 CASP16 - WNT4 2070 1783 711
CASP10 - WNT7B 1906 1171 1165 CASP16 - WNT7B 411 713 103
CASP10 - WNT9A 1611 2152 1451 CASP16 - WNT9A 14 2512 181
Ranking of WNTs family w.r.t CASP4 Ranking of WNTs family w.r.t CASP5
laplace linear rbf laplace linear rbf
CASP4 - WNT2B 609 1317 2372 CASP5 - WNT2B 1849 1192 1590
CASP4 - WNT4 105 711 1062 CASP5 - WNT4 890 682 714
CASP4 - WNT7B 1093 2479 1739 CASP5 - WNT7B 2112 1919 2440
CASP4 - WNT9A 456 2278 1939 CASP5 - WNT9A 315 1880 1437
Ranking of WNTs family w.r.t CASP7 Ranking of WNTs family w.r.t CASP9
laplace linear rbf laplace linear rbf
CASP7 - WNT2B 2505 1891 1120 CASP9 - WNT2B 282 639 1414
CASP7 - WNT4 108 2456 2455 CASP9 - WNT4 572 1788 378
CASP7 - WNT7B 1380 1559 1681 CASP9 - WNT7B 979 901 676
CASP7 - WNT9A 2183 1941 1632 CASP9 - WNT9A 2378 2396 2058
Ranking of WNTs family w.r.t CASP10 Ranking of WNTs family w.r.t CASP16
laplace linear rbf laplace linear rbf
CASP10 - WNT2B 625 1471 81 CASP16 - WNT2B 2197 2489 1775
CASP10 - WNT4 1830 2229 1847 CASP16 - WNT4 1382 954 1017
CASP10 - WNT7B 1965 937 147 CASP16 - WNT7B 2508 1820 1867
CASP10 - WNT9A 2185 1977 1350 CASP16 - WNT9A 1943 1154 1839
One can also interpret the results of the Table 11 graphically, with the following influences - • CASP w.r.t WNT with CASP5 <- WNT2B; CASP9 <- WNT-4/7B/9A; CASP16 <- WNT4 and • WNT w.r.t CASP with. WNT-7B/9A <- CASP4; WNT7B <- CASP5; WNT-2B/4/9A <- CASP7; WNT9A <- CASP9; WNT-4/9A <- CASP10; WNT-2B/7B/9A <- CASP16.
Table 11. 2nd order combinatorial hypotheses between CASP and WNT family members.
Table 11. 2nd order combinatorial hypotheses between CASP and WNT family members.
Unexplored combinatorial hypotheses
CASP w.r.t WNT
CASP5 WNT2B
CASP9 WNT4/WNT7B/WNT9A
CASP16 WNT4
WNT w.r.t CASP
WNT7B/WNT9A CASP4
WNT7B CASP5
WNT2B/WNT4/WNT9A CASP7
WNT9A CASP9
WNT4/WNT9A CASP10
WNT2B/WNT7B/WNT9A CASP16

3.1.7. TP53 - WNT Cross Family Analysis

Sadot et al. [66] have shown that down regulation of β-catenin is activated by TP53. Wnt/β-catenin signaling is known to regulate the proliferation and differentiation of mesenchymal progenitor cells through the TP53 Pathway, as shown by Peng et al. [67]. Zhukova et al. [68] show that WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. In mouse cochlea, Liu et al. [69] show that WNT signaling activates TP53-induced glycolysis and apoptosis regulator and protects against cisplatin-induced spiral ganglion neuron damage. These range of interactions of TP53 with WNT points towards definite synergy. Okayama et al. [70] show that TP53 protein regulates Hsp90 ATPase activity and thereby Wnt signaling by modulating Aha1 expression. Family members belonging to each of the factors like TP53, WNT etc, might be involved synergistically in pathological case or otherwise. TP53 and WNT members were found to be up regulated after the treatment of ETC-159 in colorectal cancer cells.
Table 12 contains rankings of TP53 w.r.t WNTs and vice versa. Followed by this is the unexplored combinatorial hypotheses in Table 13 generated from two-way analysis of the ranks in Table 12. On the left half of Table 12 are rankings of TP53 w.r.t WNTs and on the right half are the rankings of WNTs w.r.t TP53 family. Beginning with the left half, TP53I3 - WNT2B shows synergistic up regulation with rankings of 2056 (laplace) and 1712 (linear); TP53INP1 - WNT2B shows synergistic up regulation with rankings of 1805 (linear) and 2056 (rbf) and TP53BP2 - WNT9A shows synergistic up regulation with rankings of 2232 (linear) and 2143 (rbf). On the right half the table, TP53INP1 - WNT2B shows synergistic up regulation with rankings of 1853 (laplace) and 2089 (linear); TP53INP2 - WNT2B shows synergistic up regulation with rankings of 1723 (linear) and 2335 (rbf); TP53INP1 - WNT4 shows synergistic up regulation with rankings of 2414 (linear) and 2493 (rbf); TP53I3 - WNT7B shows synergistic up regulation with rankings of 1988 (laplace) and 2393 (rbf) and finally, TP53INP1 - WNT9A shows synergistic up regulation with rankings of 2045 (linear) and 2437 (rbf).
One can also interpret the results of the Table 11 graphically, with the following influences - • TP53 family w.r.t WNTs with TP53I3 <- WNT2B; TP53INP1 <- WNT2B and TP53BP2 <- WNT9A; and • WNT family VS TP53 with TP53INP1 -> WNT2B; TP53INP2 -> WNT2B; TP53INP1 -> WNT4; TP53I3 -> WNT7B and TP53INP1 -> WNT9A.

3.1.8. BCL - WNT Cross Family Analysis

Wang et al. [71] observed that silencing Wnt2B by siRNA interference inhibits metastasis and enhances chemotherapy sensitivity in ovarian cancer. More specifically, Wang et al. [71] show that in the presence of Wnt2B siRNA treatment, the caspase-9/B-cell lymphoma 2 (BCL2)/B-cell lymphoma-xL (BCL-xL) pathway and the epithelial-mesenchymal transition/phosphorylated protein kinase B pathway were inhibited. Takada et al. [72] show that targeted disruption of the BCL9/β-catenin complex inhibits oncogenic WNT signaling. CDK1-mediated BCL9 phosphorylation inhibits clathrin to promote mitotic Wnt signaling as shown by Chen et al. [73]. These findings point to the existing synergy of BCL family with WNTs. Family members belonging to each of the factors like BCL, WNT etc, might be involved synergistically in pathological case or otherwise. BCL and WNT members were found to be up regulated after the treatment of ETC-159 in colorectal cancer cells.
Table 14 contains rankings of BCL w.r.t WNTs and vice versa. Followed by this is the unexplored combinatorial hypotheses in Table 15 generated from two-way analysis of the ranks in Table 14. On the left half of Table 14 are rankings of BCL w.r.t WNTs. WNT4 - BCL2L2 shows high ranking with 2364 (laplace) and 2042 (linear); WNT7B - BCL2L2 shows high ranking with 1877 (laplace) and 2456 (linear); WNT9A - BCL2L2 shows high ranking with 1877 (laplace) and 2447 (linear); WNT4 - BCL2L13 shows high ranking with 1938 (laplace), 2425 (linear) and 1900 (rbf); WNT7B - BCL2L13 shows high ranking with 1993 (linear) and 2284 (rbf) and WNT2B - BCL10 shows high ranking with 2321 (laplace) and 2023 (linear).
On the right side are rankings of WNTs w.r.t BCL. WNT7B - BCL2L1 shows high ranking with 2213 (laplace) and 2266 (linear); WNT7B - BCL2L2 shows high ranking with 2456 (laplace), 2512 (linear) and 2286 (rbf); WNT9A - BCL2L2 shows high ranking with 1868 (laplace) and 2333 (rbf); WNT9A - BCL2L13 shows high ranking with 1858 (laplace), 2422 (linear) and 1934 (rbf); WNT2B - BCL3 shows high ranking with 1846 (laplace), 2056 (linear) and 1896 (rbf); WNT4 - BCL6 shows high ranking with 2483 (laplace) and 2488 (linear); WNT7B - BCL6 shows high ranking with 1893 (laplace) and 2284 (linear); WNT9A - BCL6 shows high ranking with 2098 (linear) and 1905 (rbf); WNT2B - BCL9L shows high ranking with 1918 (laplace) and 1882 (rbf) and WNT4 - BCL9L shows high ranking with 2498 (linear) and 2509 (rbf);
Table 14. 2nd order interaction ranking between WNT VS BCL family members.
Table 14. 2nd order interaction ranking between WNT VS BCL family members.
Ranking BCL family VS WNT
Ranking of BCL2L1 w.r.t WNT family Ranking of WNT family w.r.t BCL2L1
laplace linear rbf laplace linear rbf
WNT2B - BCL2L1 1884 101 966 WNT2B - BCL2L1 1854 1666 1699
WNT4 - BCL2L1 98 1162 719 WNT4 - BCL2L1 21 107 16
WNT7B - BCL2L1 1434 1891 620 WNT7B - BCL2L1 2213 2266 1511
WNT9A - BCL2L1 1088 1020 1318 WNT9A - BCL2L1 1019 1462 1345
Ranking of BCL2L2 w.r.t WNT family Ranking of WNT family w.r.t BCL2L2
laplace linear rbf laplace linear rbf
WNT2B - BCL2L2 625 2204 1677 WNT2B - BCL2L2 1574 2206 955
WNT4 - BCL2L2 2364 2042 1610 WNT4 - BCL2L2 160 590 316
WNT7B - BCL2L2 843 1877 2456 WNT7B - BCL2L2 2456 2512 2286
WNT9A - BCL2L2 1877 538 2447 WNT9A - BCL2L2 1868 2333 990
Ranking of BCL2L13 w.r.t WNT family Ranking of WNT family w.r.t BCL2L13
laplace linear rbf laplace linear rbf
WNT2B - BCL2L13 201 1862 1353 WNT2B - BCL2L13 1256 1254 1490
WNT4 - BCL2L13 1938 2425 1900 WNT4 - BCL2L13 922 270 187
WNT7B - BCL2L13 1105 1993 2284 WNT7B - BCL2L13 1610 1319 954
WNT9A - BCL2L13 1855 268 2387 WNT9A - BCL2L13 1858 2422 1934
Ranking of BCL3 w.r.t WNT family Ranking of WNT family w.r.t BCL3
laplace linear rbf laplace linear rbf
WNT2B - BCL3 950 1328 2482 WNT2B - BCL3 1846 2056 1896
WNT4 - BCL3 1228 1562 1353 WNT4 - BCL3 591 359 1932
WNT7B - BCL3 591 615 553 WNT7B - BCL3 1687 2160 1428
WNT9A - BCL3 1037 1410 1102 WNT9A - BCL3 1539 1424 398
Ranking of BCL6 w.r.t WNT family Ranking of WNT family w.r.t BCL6
laplace linear rbf laplace linear rbf
WNT2B - BCL6 455 2426 1529 WNT2B - BCL6 52 107 170
WNT4 - BCL6 256 486 787 WNT4 - BCL6 2483 2488 1273
WNT7B - BCL6 2147 1466 1105 WNT7B - BCL6 975 1893 2284
WNT9A - BCL6 1547 734 2012 WNT9A - BCL6 1558 2098 1905
Ranking of BCL9L w.r.t WNT family Ranking of WNT family w.r.t BCL9L
laplace linear rbf laplace linear rbf
WNT2B - BCL9L 2348 804 1558 WNT2B - BCL9L 1918 700 1882
WNT4 - BCL9L 1446 657 309 WNT4 - BCL9L 303 2498 2509
WNT7B - BCL9L 1539 253 1279 WNT7B - BCL9L 1608 811 2168
WNT9A - BCL9L 1923 677 688 WNT9A - BCL9L 941 1843 1238
Ranking of BCL10 w.r.t WNT family Ranking of WNT family w.r.t BCL10
laplace linear rbf laplace linear rbf
WNT2B - BCL10 2321 69 2023 WNT2B - BCL10 1951 1101 1599
WNT4 - BCL10 285 1170 465 WNT4 - BCL10 2032 34 406
WNT7B - BCL10 1847 606 1252 WNT7B - BCL10 1297 74 2009
WNT9A - BCL10 217 798 1649 WNT9A - BCL10 1771 335 861
One can also interpret the results of the Table 15 graphically, with the following influences - • BCL family w.r.t WNTs with WNT4 -> BCL2L2; WNT7B -> BCL2L2; WNT9A -> BCL2L2; WNT4 -> BCL2L13; WNT7B -> BCL2L13; WNT2B -> BCL10 and • WNT family w.r.t BCL with WNT7B <- BCL2L1; WNT7B <- BCL2L2; WNT9A <- BCL2L2; WNT9A <- BCL2L13; WNT2B <- BCL3; WNT4 <- BCL6; WNT7B <- BCL6; WNT9A <- BCL6; WNT2B <- BCL9L; WNT4 <- BCL9L.
Table 15. 2nd order combinatorial hypotheses between TP53 and WNT family members.
Table 15. 2nd order combinatorial hypotheses between TP53 and WNT family members.
Unexplored combinatorial hypotheses
BCL w.r.t WNT family
WNT-4/7B/9A BCL2L2
WNT-4/7B BCL2L13
WNT-2B BCL10
WNT family w.r.t BCL
WNT-7B BCL2L1
WNT-7B/9A BCL2L2
WNT-9A BCL2L13
WNT-2B BCL3
WNT-4/7B/9A BCL6
WNT-2B/4 BCL9L

3.2. NF-κB Related Synergies

3.2.1. CASP - RIPK Cross Family Analysis

The caspase - receptor interacting protein kinases (RIPK) has an intricate mechanism which has not yet been discovered and many views exist about their synergistic interaction. Green et al. [74] presents a review of RIPK-dependent necrosis and its regulation by CASPs. Furthermore, Lin et al. [75] show that cleavage of the death domain RIPK by CASP-8 prompts TNF-induced apoptosis. RIPK1 is known to promote death receptor-independent CASP-8 mediated apoptosis under unresolved ER stress conditions, as shown by Estornes et al. [76]. Weng et al. [77] show that CASP-8 and RIPK regulate bacteria-induced innate immune responses and cell death. Also, Moriwaki et al. [78] show that RIPK3-CASP8 complex mediates atypical pro-IL-1β processing. Recent work by Declercq et al. [79] shows RIPK importance in cell death and survival along with CASP influence. These interactions point to a definite synergy between the CASP - RIPK. Chaudhary et al. [80] showed activation of NF-κB pathway via Caspase-8 (CASP-8) and its homologs. Additionally, Caspase-8 was found to interact with Receptor-interacting serine/threonine-protein kinase 1 (RIPK1). Family members belonging to each of the factors like CASP, RIPK etc, might be involved synergistically in pathological case or otherwise. CASP and RIPK members were found to be up regulated after the treatment of ETC-1922159 in colorectal cancer cells.
Table 16 and Table 17 show the rankings of CASP family w.r.t RIPK and vice versa, respectively. Followed by this is the derived influences between CASP and RIPK via two way analysis of majority voting of rankings in the two foregoing tables. These influences are tabulated in Table 18. In Table 16, only CASP9 - RIPK3 combination showed up regulation with rankings of 2133 (laplace), 2030 (linear) and 2295 (rbf). In Table 17, RIPK1 showed up regulation with CASP-4/10 with rankings of 2363 (laplace) and 1805 (rbf) for CASP4 - RIPK1; and 2438 (laplace) and 1915 (linear) for CASP10 - RIPK1, respectively. RIPK2 showed up regulation with CASP-5/9/16 with rankings of 1776 (linear) and 2247 (rbf) for CASP5 - RIPK2; 2000 (laplace), 2476 (linear) and 2138 (rbf) for CASP9 - RIPK2; and 2006 (linear) and 2046 (rbf) for CASP16 - RIPK2; Finally, RIPK4 showed up regulation with CASP-16 with rankings of 2273 (laplace) and 2023 (linear) for CASP16 - RIPK4.
One can also interpret the results of the Table 18 graphically, with the following influences - • CASP w.r.t RIKP family with CASP9 <- RIPK3 and • RIPK w.r.t CASP family with RIPK1 <- CASP-4/10; RIPK2 <- CASP-5/9/16 and RIPK4 <- CASP16.
Table 16. 2nd order interaction ranking between CASP w.r.t RIPK family members.
Table 16. 2nd order interaction ranking between CASP w.r.t RIPK family members.
Ranking CASP family w.r.t RIPK family
Ranking of CASP4 w.r.t RIPK family Ranking of CASP5 family w.r.t RIPK
laplace linear rbf laplace linear rbf
CASP4 - RIPK1 1154 1259 147 CASP5 - RIPK1 490 152 1818
CASP4 - RIPK2 559 2147 434 CASP5 - RIPK2 1274 2485 608
CASP4 - RIPK3 111 131 41 CASP5 - RIPK3 523 1047 317
CASP4 - RIPK4 187 1048 1039 CASP5 - RIPK4 1176 2361 1292
Ranking of CASP7 w.r.t RIPK family Ranking of CASP9 family w.r.t RIPK
laplace linear rbf laplace linear rbf
CASP7 - RIPK1 2445 1289 1253 CASP9 - RIPK1 1726 1304 1480
CASP7 - RIPK2 1584 406 155 CASP9 - RIPK2 2079 291 1647
CASP7 - RIPK3 1406 1057 2091 CASP9 - RIPK3 2133 2030 2295
CASP7 - RIPK4 1739 231 2332 CASP9 - RIPK4 2037 1627 363
Ranking of CASP10 w.r.t RIPK family Ranking of CASP16 family w.r.t RIPK
laplace linear rbf laplace linear rbf
CASP10 - RIPK1 758 846 1405 CASP16 - RIPK1 73 1046 1887
CASP10 - RIPK2 1535 2312 884 CASP16 - RIPK2 20 932 1189
CASP10 - RIPK3 1530 250 2181 CASP16 - RIPK3 30 359 717
CASP10 - RIPK4 954 415 1547 CASP16 - RIPK4 493 2507 519
Table 17. 2nd order interaction ranking between RIPK w.r.t CASP family members.
Table 17. 2nd order interaction ranking between RIPK w.r.t CASP family members.
Ranking RIPK family w.r.t CASP family
Ranking of RIPK family w.r.t CASP4 Ranking of RIPK family w.r.t CASP5
laplace linear rbf laplace linear rbf
CASP4 - RIPK1 2363 1374 1805 CASP5 - RIPK1 7 82 131
CASP4 - RIPK2 1713 2349 1261 CASP5 - RIPK2 1577 1776 2247
CASP4 - RIPK3 1397 768 1008 CASP5 - RIPK3 574 14 30
CASP4 - RIPK4 2215 1334 1425 CASP5 - RIPK4 2448 1178 810
Ranking of RIPK family w.r.t CASP7 Ranking of RIPK family w.r.t CASP9
laplace linear rbf laplace linear rbf
CASP7 - RIPK1 1341 2005 1131 CASP9 - RIPK1 820 140 611
CASP7 - RIPK2 1287 727 1143 CASP9 - RIPK2 2000 2476 2138
CASP7 - RIPK3 579 595 775 CASP9 - RIPK3 1550 430 97
CASP7 - RIPK4 852 1586 595 CASP9 - RIPK4 1565 862 209
Ranking of RIPK family w.r.t CASP10 Ranking of RIPK family w.r.t CASP16
laplace linear rbf laplace linear rbf
CASP10 - RIPK1 2438 1915 1039 CASP16 - RIPK1 924 686 587
CASP10 - RIPK2 1526 1800 1228 CASP16 - RIPK2 1613 2006 2046
CASP10 - RIPK3 419 1481 2001 CASP16 - RIPK3 827 494 328
CASP10 - RIPK4 1303 947 785 CASP16 - RIPK4 2273 2023 1698
Table 18. 2nd order combinatorial hypotheses between CASP and RIPK.
Table 18. 2nd order combinatorial hypotheses between CASP and RIPK.
Unexplored combinatorial hypotheses
CASP w.r.t RIKP family
CASP9 RIPK3
RIPK w.r.t CASP family
RIPK1 CASP4/CASP10
RIPK2 CASP5/CASP9/CASP16
RIPK4 CASP16

3.2.2. MUC - RIPK Cross Family Analysis

In a recent work Sheng et al. [81] show that MUC13 promoted tumor necrosis factro (TNF)-induced NF-κB activation by interacting with TNFR1 and the E3 ligase, cIAP1, to increase ubiquitination of Receptor-interacting serine/threonine-protein kinase 1 (RIPK1). Family members belonging to each of the factors like MUC, RIPK etc, might be involved synergistically in pathological case or otherwise. MUC and RIPK members were found to be up regulated after the treatment of ETC-1922159 in colorectal cancer cells.
Table 19 and Table 20 show the rankings of MUC family w.r.t RIPK family and vice versa, respectively. Followed by this is the derived influences between MUC and RIPK. In Table 19, MUC1 was found to be highly upregulated with RIPK1. This is reflected in the rankings of 2027 (linear) and 2249 (rbf) for MUC1 - RIPK1. MUC3A was found to be highly upregulated with RIPK3. This is reflected in the rankings of 2208 (laplace) and 2017 (rbf) for MUC3A - RIPK3. MUC12 was found to be highly upregulated with RIPK4. This is reflected in the rankings of 2249 (linear) and 2130 (rbf), for MUC12 - RIPK4. MUC20 was found to be highly upregulated with RIPK3. This is reflected in the rankings of 2192 (laplace), 2288 (linear) and 1796 (rbf) for MUC20 - RIPK3.
In Table 20, RIPK-1/2 was found to be highly upregulated with MUC1. This is reflected in the rankings of 1839 (laplace) and 2421 (rbf) for MUC1 - RIPK1; and 1913 (laplace) and 2091 (linear) for MUC1 - RIPK2. RIPK4 was found to be highly upregulated with MUC4. This is reflected in the rankings of 1981 (laplace), 1949 (linear) and 2028 for MUC4 - RIPK4. RIPK4 was found to be highly up regulated with MUC17. This is reflected in the rankings of 2225 (linear) and 2048 (rbf) for MUC17 - RIPK4. RIPK2 was found to be highly up regulated with MUC20. This is reflected in the rankings of 1751 (linear) and 1950 (rbf) for MUC20 - RIPK2.
Table 19. 2nd order interaction ranking between MUC w.r.t RIPK family members.
Table 19. 2nd order interaction ranking between MUC w.r.t RIPK family members.
Ranking MUC family w.r.t RIPK family
Ranking of MUC1 w.r.t RIPK family Ranking of MUCA3 w.r.t MUC3A
laplace linear rbf laplace linear rbf
MUC1 - RIPK1 2027 2249 218 MUC3A - RIPK1 945 186 1508
MUC1 - RIPK2 248 1802 389 MUC3A - RIPK2 840 2390 1653
MUC1 - RIPK3 342 410 342 MUC3A - RIPK3 2208 2017 689
MUC1 - RIPK4 176 162 853 MUC3A - RIPK4 714 1494 797
Ranking of MUC4 w.r.t RIPK family Ranking of MUC12 w.r.t RIPK family
laplace linear rbf laplace linear rbf
MUC4 - RIPK1 358 2384 690 MUC12 - RIPK1 317 2437 167
MUC4 - RIPK2 371 500 408 MUC12 - RIPK2 286 2178 76
MUC4 - RIPK3 809 371 1096 MUC12 - RIPK3 747 366 136
MUC4 - RIPK4 652 1863 1248 MUC12 - RIPK4 176 2249 2130
Ranking of MUC13 w.r.t RIPK family Ranking of MUC17 w.r.t RIPK family
laplace linear rbf laplace linear rbf
MUC13 - RIPK1 379 2241 227 MUC17 - RIPK1 858 932 1503
MUC13 - RIPK2 824 2483 227 MUC17 - RIPK2 248 934 37
MUC13 - RIPK3 1687 19 24 MUC17 - RIPK3 342 64 329
MUC13 - RIPK4 562 532 184 MUC17 - RIPK4 209 2335 1080
Ranking of MUC20 w.r.t RIPK family
laplace linear rbf
MUC20 - RIPK1 1419 760 1794
MUC20 - RIPK2 948 2482 137
MUC20 - RIPK3 2192 2288 1796
MUC20 - RIPK4 1564 1619 2179
Table 20. 2nd order interaction ranking between RIPK w.r.t MUC family members.
Table 20. 2nd order interaction ranking between RIPK w.r.t MUC family members.
Ranking RIPK family w.r.t MUC family
Ranking of RIPK family w.r.t MUC1 Ranking of RIPK family w.r.t MUC3A
laplace linear rbf laplace linear rbf
MUC1 - RIPK1 1839 58 2421 MUC3A - RIPK1 783 1668 1842
MUC1 - RIPK2 1913 2091 954 MUC3A - RIPK2 758 2301 459
MUC1 - RIPK3 1038 268 295 MUC3A - RIPK3 268 1595 1893
MUC1 - RIPK4 1385 2246 1298 MUC3A - RIPK4 1770 1109 1461
Ranking of RIPK family w.r.t MUC4 Ranking of RIPK family w.r.t MUC12
laplace linear rbf laplace linear rbf
MUC4 - RIPK1 562 1621 2216 MUC12 - RIPK1 1462 682 2351
MUC4 - RIPK2 383 924 494 MUC12 - RIPK2 989 597 1798
MUC4 - RIPK3 541 43 129 MUC12 - RIPK3 2158 1286 1636
MUC4 - RIPK4 1981 1949 2028 MUC12 - RIPK4 1577 975 976
Ranking of RIPK family w.r.t MUC13 Ranking of RIPK family w.r.t MUC17
laplace linear rbf laplace linear rbf
MUC13 - RIPK1 1961 1535 32 MUC17 - RIPK1 260 446 260
MUC13 - RIPK2 784 494 1467 MUC17 - RIPK2 1021 1114 2355
MUC13 - RIPK3 860 1514 1425 MUC17 - RIPK3 427 223 128
MUC13 - RIPK4 107 1387 1972 MUC17 - RIPK4 1567 2225 2048
Ranking of RIPK family w.r.t MUC20
laplace linear rbf
MUC20 - RIPK1 514 2042 420
MUC20 - RIPK2 1039 1751 1950
MUC20 - RIPK3 303 2504 280
MUC20 - RIPK4 794 1193 989
One can also interpret the results of the Table 21 graphically, with the following influences - • MUC w.r.t RIKP family with MUC1 <- RIPK1; MUC3A <- RIPK3; MUC12 <- RIPK4; MUC20 <- RIPK3 and • RIPK w.r.t MUC family with MUC1 -> RIPK-1/2; MUC4 -> RIPK4; MUC17 -> RIPK4; MUC20 -> RIPK2.

3.2.3. TNF - NF-κB-2/I Cross Family Analysis

The NF-κB family and NF-κB-Inhibitor i.e NF-κB-I play a significant role in immune response to infection. Problems in its functioning leads to cancer, infections, inflammatory and autoimmune diseases. The discovery and seminal work by Sen and Baltimore [82] on NF-κB lead to range of research on immune responses and study of related pathological cases. Tanaka and Nakano [83] have shown that NF-κB2 limits TNF-α induced osteoclastogenesis. Recently, in Japanese population, Imamura et al. [84] show that the impaired NF-κBIE gene function decreases cellular uptake of methotrexate by down-regulating SLC19A1 expression in a human rheumatoid arthritis cell line. They postulate that NF-κBIE could be closely related to NF-κB activity. Also, Lee et al. [85] show through deep study of fold-change analysis of the inter-relation between NF-κB and TNFs. However, the synergy between these members has yet not been explored completely. We found some interesting combinations that were allocated high numerical ranking (in silico) to indicate synergistic up regulation in CRC cells after ETC-1922159 treatment, apart from the individual up regulation that was observed in wet experiements.
Table 22 and Table 23 depict the rankings of TNF family w.r.t to NF-κB-2/I and vice versa, respectively. Followed by this is Table 24 that contains the derived influences via majority voting of the rankings in the tables containing two-way cross family rankings.
In Table 22 we find TNF-RSF10A/RSF12A up regulated with NFkB2. These are reflected in rankings of 2095 (laplace) and 2509 (rbf) for NFkB2 - TNFRSF10A; and 1813 (laplace) and 1893 (rbf) for NFkB2 - TNFRSF12A. TNF-AIP1/RSF10A/RSF10D/RSF14/SF10 were found to be up regulated with NFkBI-A. These are reflected in rankings of 1779 (laplace) and 1904 (linear) for NFkBI-A - TNF-AIP1; 2499 (laplace) and 2191 (rbf) for NFkBI-A - TNFRSF10A; 2498 (laplace), 2344 (linear) and 2501 (rbf) for NFkBI-A - TNFRSF10D; 1974 (laplace) and 2045 (linear) for NFkBI-A - TNFRSF14; and 2185 (laplace) and 2316 (rbf) for NFkBI-A - TNFSF10, respectively. TNF-AIP2/RSF14 were found to be up regulated with NFkBI-E. These are reflected in rankings of 2347 (laplace) and 1863 (linear) for NFkBI-E - TNFAIP2; and 1877 (laplace) and 2282 (linear) for NFkBI-E - TNFRSF14, respectively. Finally, TNF-RSF10B/RSF10D/RSF12A were found to be up regulated with NFkBI-Z. These are reflected in rankings of 2204 (laplace) and 1991 (rbf) for NFkBI-Z - TNFRSF10B; 2214 (laplace), 2033 (linear) and 2514 (rbf) for NFkBI-Z - TNFRSF10D; and 2370 (linear) and 1841 (rbf) for NFkBI-Z - TNFRSF12A, respectively. In Table 23 we find NFkB-2 to be up regulated along with TNF-AIP1/AIP2/AIP3. These are reflected in rankings of 2027 (linear) and 1807 (rbf) for NFkB2 - TNFAIP1; 2077 (laplace) and 2224 (rbf) for NFkB2 - TNFAIP2; and 2336 (linear) and 2130 (rbf) for NFkB2 - TNFAIP3, respectively. Finally, NFkBI-E was found to be up regulated with TNFRSF10D. These are reflected in rankings of 2136 (laplace) and 1811 (rbf) for NFkBI-E - TNFRSF10D.
One can also interpret the results of the Table 24 graphically, with the following influences - • TNF w.r.t NFkB family with NFkB2 -> TNF-RSF10A/RSF12A; NFkBI-A -> TNF-AIP1/RSF10A/RSF10D/RSF14/SF10; NFkBI-E -> TNF-AIP2/RSF14; NFkBI-Z -> TNF-RSF10B/RSF10D/RSF12A; and • NFkB w.r.t TNF family with NFkB-2 <- TNF-AIP1/AIP2/AIP3 and NFkBI-E <- TNF-RSF10D.
Table 24. 2nd order combinatorial hypotheses between NFkB-2/I and TNF.
Table 24. 2nd order combinatorial hypotheses between NFkB-2/I and TNF.
Unexplored combinatorial hypotheses
TNF w.r.t NFkB-2/I
NFkB2 TNF-RSF10A/RSF12A
NFkBI-A TNF-AIP1/RSF10A/RSF10D/RSF14/SF10
NFkBI-E TNF-AIP2/RSF14
NFkBI-Z TNF-RSF10B/RSF10D/RSF12A
NFkB-2/I w.r.t TNF
NFkB-2 TNF-AIP1/AIP2/AIP3
NFkBI-E TNF-RSF10D

3.2.4. NFkB-2/I - STAT Cross Family Analysis

Grivennikov and Karin [86] show the potent collaboration and cross talk of STAT3 and NF-κB in cancer. In chronic lymphocytic leukemia cells, Liu et al. [87] observe that STAT-3 activates NF-κB. Co-opertion between STAT3 and NF-κB pathways has been observed in subtypes of diffuse large B Cell Lymphoma by Lam et al. [88]. Lee et al. [89] also shows a signal network involving coactivated NF-κB and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. These observations show a definite, concommitent functioning of the two pathways and we further found that some of them were up regulated synergistically in CRC cells after ETC-1922159 treatment, via in silico ranking of the combinations. Table 25 and Table 26 show ranking of STAT family w.r.t NFkB-2/I and vice versa, respectively. Followed by this is the derived influences from majority voting of rankings in the two foregoing tables, which is shown in Table 27.
Table 25 and Table 26 show the rankings of STAT family w.r.t NFkB-2/I and vice versa, respectively. Followed by this is the influence between the components in Table 27, via majority voting of the rankings. In the drug treated CRC cells, we found members of the STAT family to be up regulated with NFkB-2/I. These are reflected with rankings of 2211 (laplace) and 2402 (rbf) for NFkBIA -> STAT2; 2121 (linear) and 1862 (rbf) for NFkBIZ -> STAT2; and 1969 (linear) and 2485 (rbf) for NFkBIE -> STAT5A, respectively. One can also interpret the results of the Table 27 graphically, with the following influences - • STAT w.r.t NFkB-2/I with NFkBIA -> STAT2; NFkBIZ -> STAT2; and NFkBIE -> STAT5A;
Table 25. 2nd order interaction ranking between STAT w.r.t NFkB-2/I family members.
Table 25. 2nd order interaction ranking between STAT w.r.t NFkB-2/I family members.
Ranking STAT family w.r.t NFkB-2/I family
Ranking of STAT2 w.r.t NFkB-2/I family Ranking of STAT3 w.r.t NFkB-2/I family
laplace linear rbf laplace linear rbf
NFkB2 - STAT2 2220 1068 1207 NFkB2 - STAT3 2125 252 1453
NFkBIA - STAT2 2211 1253 2402 NFkBIA - STAT3 1614 702 1333
NFkBIE - STAT2 1809 512 1207 NFkBIE - STAT3 1493 211 1850
NFkBIZ - STAT2 802 2121 1862 NFkBIZ - STAT3 1633 1679 2122
Ranking of NFkB-2/I family w.r.t STAT5A
laplace linear rbf
NFkB2 - STAT5A 2034 1321 1502
NFkBIA - STAT5A 490 2215 283
NFkBIE - STAT5A 578 1969 2485
NFkBIZ - STAT5A 2286 473 1409
Table 26. 2nd order interaction ranking between NFkB-2/I family w.r.t STAT members.
Table 26. 2nd order interaction ranking between NFkB-2/I family w.r.t STAT members.
Ranking NFkB-2/I family w.r.t STAT family
Ranking of NFkB-2/I family w.r.t STAT2 Ranking of NFkB-2/I family w.r.t STAT3
laplace linear rbf laplace linear rbf
NFkB2 - STAT2 935 952 86 NFkB2 - STAT3 858 606 162
NFkBIA - STAT2 543 36 1180 NFkBIA - STAT3 1547 88 476
NFkBIE - STAT2 1449 1861 1262 NFkBIE - STAT3 1731 1063 509
NFkBIZ - STAT2 483 1150 262 NFkBIZ - STAT3 1262 489 1145
Ranking of NFkB-2/I family w.r.t STAT3
laplace linear rbf
NFkB2 - STAT5A 558 1070 670
NFkBIA - STAT5A 1509 1020 81
NFkBIE - STAT5A 18 854 1052
NFkBIZ - STAT5A 83 1208 240
Table 27. 2nd order combinatorial hypotheses between NFkB-2/I and TNF.
Table 27. 2nd order combinatorial hypotheses between NFkB-2/I and TNF.
Unexplored combinatorial hypotheses
STAT w.r.t NFkB-2/I
NFkBIA STAT2
NFkBIZ STAT2
NFkBIE STAT5A

3.2.5. IKBKE and STAT Cross Family Analysis

Ng et al. [90] show that phosphorylation of STAT1 by IκB kinase ε (IKBKE) inhibits STAT1 homodimerization, and thus assembly of GAF, but does not disrupt ISGF3 formation. Furthermore, Guo et al. [91] show that IKBKE is induced by STAT3 and tobacco carcinogen and determines chemosensitivity in non-small cell lung cancer. It has already been established in some cases that IKBKE has a confirmed role with one of the STAT members. Here we found that both IKBKE and STAT were up regulated after ETC-1922159 treatment of CRC cells. Table 28 shows ranking of STAT family vs IKBKE and vice versa. Table 29 shows the dervied influences from majority voting of the rankings. On the left half of Table 28 we find STAT2 to be up regulated w.r.t IKBKE. This is reflected with the rankings of 2033 (linear) and 1892 (rbf) for STAT2 - IKBKE. On the right half of the same Table we find IKBKE being up regulated w.r.t STAT-3/5A. These are reflected in rankings of 2179 (linear) and 1976 (rbf) for STAT3 - IKBKE; and 2085 (laplace), 2409 (linear) and 2277 (rbf) for STAT5A - IKBKE, respectively. One can also interpret the results of the Table 29 graphically, with the following influences - • STAT w.r.t IKBKE with STAT2 <- IKBKE; and • IKBKE w.r.t STAT with STAT3 -> IKBKE and STAT5A -> IKBKE;

3.2.6. IKBKE - TRAF Cross Family Analysis

Shen et al. [92] show interaction of IKBKE with TRAF2, by observing that IκB kinase ε phosphorylates TRAF2 to promote mammary epithelial cell transformation. Zhou et al. [93] observe IKKε-mediated tumorigenesis requires K63-linked polyubiquitination by a cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex. Also, Nakanishi and Akira [94] show NF-κB activation through IKK-i-dependent I-TRAF/TANK phosphorylation. These findings suggest interaction between IKBKE - TRAF family members. IKBKE and TRAF members were found to be up regulated in CRC cells treated with ETC-1922159. Their combinations were allocated with high numerical ranks indicating synergistic up regulation. Table 30 rankings between TRAF and IKBKE, both ways. TRAF4 was found to up regulated with IKBKE and the rankings reflect the same with 2158 (linear) and 2416 (rbf). Also IKBKE was found to be up regulated with TRAF6 and the rankings reflect the same with 2105 (laplace) and 1819 (rbf). Table 31 reflects the derived influences graphically for - • TRAF w.r.t IKBKE with TRAF6 <- IKBKE and • IKBKE w.r.t TRAF with TRAF4 -> IKBKE.

3.2.7. ABC Transporters - NFkB Cross Family Analysis

Gerbod-Giannone et al. [95] observe that TNFα induces ABCA1 through NF-κB in macrophages and in phagocytes ingesting apoptotic cells. ABCA1 has also been found to be a key regulator in cholesterol related problems. Van Eck et al. [96] report leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor, as shown by Tang et al. [97]. Furthermore, macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol, as shown by Zhu et al. [98]. These findings suggest the intricate role of NFκB family components play with ABC transporters. Both were up regulated in CRC cells after treatment with ETC-1922159. Our search engine allocated numerically high rank to several of the combinations in silico. These have been tabulated in Table 32 and Table 33, i.e rankings of ABC transporters w.r.t NFkB members and vice versa, respectively. Table 34 shows the un explored hypotheses between the two in the form of the derived influences after majority voting of the two-way cross family the rankings.
In Table 32, we find ABC-C13/ABC-D1 to be up regulated w.r.t. NFkBIE. These are reflected in rankings of 2048 (linear) and 1735 (rbf) for ABC-C13 - NFkBIE and 2380 (laplace) and 1795 (linear) for ABC-D1 - NFkBIE, respectively. In Table 33, we find NFkB2 to be up regulated w.r.t ABC-A5/ABC-B11. These are reflected in rankings of 2097 (laplace), 1772 (linear) and 2086 (rbf) for NFkB2 - ABC-A5; and 1916 (linear) and 1955 (rbf) for NFkB2 - ABC-B11, respectively. NFkBIE was up regulated with ABC-C13 and the rankings for the same are reflected in 2318 (laplace) and 2513 (rbf). Also, NFkBIZ was up regulated with ABC-C13 and the rankings for the same are reflected in 1799 (laplace) and 2175 (linear). NFkB2 was up regulated with ABC-G1 and the rankings for the same are reflected in 1951 (laplace), 2240 (linear) and 2215 (rbf).
Finally, Table 34 shows derived influences which can be represented graphically, with the following influences - • ABC w.r.t NFkB-2/I family with NFkIBE -> ABC-C13/ABC-D1 and • NFkB-2/I w.r.t ABC family with NFkB2 <- ABC-A5/ABC-B11; NFkBIE <- ABC-C13; NFkBIZ <- ABC-C13 and NFkB2 <- ABC-G1;
Table 32. 2nd order interaction ranking between ABC w.r.t NFkB-2/I family members.
Table 32. 2nd order interaction ranking between ABC w.r.t NFkB-2/I family members.
Ranking ABC family w.r.t NFkB-2/I family
Ranking of ABC family w.r.t NFkB2 Ranking of ABC family w.r.t NFkBI-A
laplace linear rbf laplace linear rbf
NFkB2 - ABC-A5 851 1517 350 ABC-A5 - NFkBIA 398 365 1660
ABC-B11 - NFkB2 1684 400 412 ABC-B11 - NFkBIA 1079 566 104
NFkB2 - ABC-C3 127 2031 6 ABC-C3 - NFkBIA 601 1048 1760
NFkB2 - ABC-C5 1035 1431 889 NFkBIA - ABC-C5 1683 2404 1341
NFkB2 - ABC-C13 1399 1951 747 NFkBIA - ABC-C13 200 886 1275
NFkB2 - ABC-D1 1317 1133 1773 ABC-D1 - NFkBIA 1361 1361 1432
NFkB2 - ABC-G1 1983 1343 1140 ABC-G1 - NFkBIA 21 313 461
NFkB2 - ABC-G2 1322 955 1292 ABC-G2 - NFkBIA 809 613 48
Ranking of ABC family w.r.t NFkBI-E Ranking of ABC family w.r.t NFkBI-Z
laplace linear rbf laplace linear rbf
ABC-A5 - NFkBIE 1445 1662 679 ABC-A5 - NFkBIZ 699 1806 1290
ABC-B11 - NFkBIE 2285 1154 54 ABC-B11 - NFkBIZ 1240 37 803
ABC-C3 - NFkBIE 1547 2168 355 ABC-C3 - NFkBIZ 468 1366 1571
NFkBIE - ABC-C5 876 2048 1735 ABC-C5 - NFkBIZ 1278 1714 1065
NFkBIE - ABC-C13 623 1992 2351 ABC-C13 - NFkBIZ 1083 1063 1386
ABC-D1 - NFkBIE 2380 1795 861 ABC-D1 - NFkBIZ 1677 1688 794
ABC-G1 - NFkBIE 2193 251 208 ABC-G1 - NFkBIZ 979 2373 590
ABC-G2 - NFkBIE 2124 383 766 ABC-G2 - NFkBIZ 86 77 845
Table 33. 2nd order interaction ranking between NFkB-2/I w.r.t ABC family members.
Table 33. 2nd order interaction ranking between NFkB-2/I w.r.t ABC family members.
Ranking NFkB-2/I family w.r.t ABC family
Ranking of NFkB-2/I family w.r.t ABC-A5 Ranking of NFkB-2/I family w.r.t ABC-B11
laplace linear rbf laplace linear rbf
ABC-A5 - NFkB2 2097 1772 2086 NFkB2 - ABC-B11 1916 1955 1020
ABC-A5 - NFkBIA 827 1142 379 NFkBIA - ABC-B11 365 1702 602
ABC-A5 - NFkBIE 1276 1749 1795 NFkBIE - ABC-B11 893 1285 1173
ABC-A5 - NFkBIZ 778 272 930 NFkBIZ - ABC-B11 683 254 421
Ranking of NFkB-2/I family w.r.t ABC-C3 Ranking of NFkB-2/I family w.r.t ABC-C5
laplace linear rbf laplace linear rbf
ABC-C3 - NFkB2 1225 936 281 NFkB2 - ABC-C5 1510 1712 939
ABC-C3 - NFkBIA 782 271 1996 NFkBIA - ABC-C5 2017 953 1649
ABC-C3 - NFkBIE 1071 1094 308 NFkBIE - ABC-C5 567 615 1600
ABC-C3 - NFkBIZ 546 653 841 ABC-C5 - NFkBIZ 1978 943 160
Ranking of NFkB-2/I family w.r.t ABC-C13 Ranking of NFkB-2/I family w.r.t TNF-ABC-D1
laplace linear rbf laplace linear rbf
NFkB2 - ABC-C13 618 1423 1550 NFkB2 - ABC-D1 2094 1655 318
NFkBIA - ABC-C13 1499 1092 456 NFkBIA - ABC-D1 613 1812 1581
NFkBIE - ABC-C13 2318 586 2513 NFkBIE - ABC-D1 806 2204 410
NFkBIZ - ABC-C13 1799 2175 1068 NFkBIZ - ABC-D1 16 1723 955
Ranking of NFkB-2/I family w.r.t ABC-G1 Ranking of NFkB-2/I family w.r.t ABC-G2
laplace linear rbf laplace linear rbf
NFkB2 - ABC-G1 1951 2240 2215 NFkB2 - ABC-G2 957 1427 788
NFkBIA - ABC-G1 1155 258 238 NFKBIA - ABC-G2 508 417 686
NFkBIE - ABC-G1 2034 612 490 NFKBIE - ABC-G2 2223 806 685
NFkBIZ - ABC-G1 1146 324 900 NFkBIZ - ABC-G2 229 221 1196
Table 34. 2nd order combinatorial hypotheses between NFkB-2/I and ABC
Table 34. 2nd order combinatorial hypotheses between NFkB-2/I and ABC
Unexplored combinatorial hypotheses
ABC w.r.t NFkB-2/I family
NFkIBE ABC-C13/ABC-D1
NFkB-2/I w.r.t ABC family
NFkB2 ABC-A5/ABC-B11
NFkBIE ABC-C13
NFkBIZ ABC-C13
NFkB2 ABC-G1

3.2.8. IKBKE - UBA/UBE Cross Family Analysis

Not much is known about IKBKE and Ubiquitination modifier enzyme and ubiquitination conjugating enzymes interaction. They were found them to be up regulated in CRC cells after ETC-1922159 treatment. Our search engine allocated high ranks to some of the combinations between IKBKE and UBA/UBE family members. These combinations might be worth exploring if it is of interest. Table 35 shows the rankings of UBE/A w.r.t to IKBKE and vice versa. We find IKBKE to be up regulated w.r.t UBA/E2 family. These are reflected with rankings of 2327 (laplace), 1807 (linear) and 2066 (rbf) for IKBKE - UBA-1; 2326 (linear) and 2456 (rbf) IKBKE - UBA-7; 2162 (laplace) and 1817 (linear) for IKBKE - UBA-P1; 2422 (laplace) and 2328 (rbf) for IKBKE - UBE2-A; 2367 (linear) and 2427 (rbf) for IKBKE - UBE2-B; and finally 2366 (laplace) and 1909 (rbf) for IKBKE - UBE2-Z; We also find UBA/E2 family to be up regulated w.r.t IKBKE also. This is reflected in rankings of 2189 (laplace) and 2271 (linear) for IKBKE - UBA-7; 2262 (laplace), 1901 (linear) and 2341 (rbf) for IKBKE - UBA-P1; 2293 (laplace), 2319 (linear) and 2396 (rbf) for IKBKE - UBE2-A; 2129 (laplace) and 1795 (linear) for IKBKE - UBE2-B; 2494 (laplace), 2233 (linear) and 1896 (rbf) for IKBKE - UBE2-F; 2016 (laplace) and 2103 (linear) for IKBKE - UBE2-Z;
Table 35. 2nd order interaction ranking between UBA/E2 family w.r.t IKBKE.
Table 35. 2nd order interaction ranking between UBA/E2 family w.r.t IKBKE.
Ranking UBA/E2 family vs IKBKE
Ranking of UBA/E2 family w.r.t IKBKE Ranking of IKBKE w.r.t UBA/E2 family
laplace linear rbf laplace linear rbf
IKBKE - UBA-1 1752 785 966 UBA-1 - IKBKE 2327 1807 2066
IKBKE - UBA-7 2189 2271 1335 IKBKE - UBA-7 1134 2326 2456
IKBKE - UBA-P1 2262 1901 2341 IKBKE - UBA-P1 2162 1817 1407
IKBKE - UBA-LD2 2034 1773 1409 IKBKE - UBA-LD2 1381 1647 556
IKBKE - UBE2-A 2293 2319 2396 IKBKE - UBE2-A 2422 536 2328
IKBKE - UBE2-B 2129 1516 1795 IKBKE - UBE2-B 680 2367 2427
IKBKE - UBE2-F 2494 2233 1896 IKBKE - UBE2-F 2309 181 24
IKBKE - UBE2-H 1265 1666 1257 IKBKE - UBE2-H 385 710 746
IKBKE - UBE2-J1 905 1936 1046 IKBKE - UBE2-J1 903 1729 2215
IKBKE - UBE2-Z 2016 2103 481 IKBKE - UBE2-Z 783 2366 1909
Table 36. 2nd order combinatorial hypotheses between NFkB-2/I and TNF
Table 36. 2nd order combinatorial hypotheses between NFkB-2/I and TNF
Unexplored combinatorial hypotheses
UBA/E2 w.r.t IKBKE
IKBKE UBA-1/7/P1
IKBKE UBE2-A/B/Z
IKBKE w.r.t UBE/A2
IKBKE UBA-7/P1/LD2
IKBKE UBE2-A/B/F/Z
Table 36 shows the derived influences which can be represented graphically, with the following influences - • UBA/E2 w.r.t IKBKE with IKBKE -> UBA-1; IKBKE -> UBA-7; IKBKE -> UBA-P1; and IKBKE -> UBE2-A; IKBKE -> UBE2-B; IKBKE -> UBE2-Z •; IKBKE w.r.t UBE/A2 with IKBKE <- UBA-7; IKBKE <- UBA-P1; IKBKE <- UBA-LD2; and IKBKE <- UBE2-A; IKBKE <- UBE2-B; IKBKE <- UBE2-F; IKBKE <- UBE2-Z;

3.2.9. REL-A/B - NF-kB Cross Family Analysis

Table 37. 2nd order interaction ranking between NFkB-2/I VS REL-A family members.
Table 37. 2nd order interaction ranking between NFkB-2/I VS REL-A family members.
Ranking NFkB-2/I VS REL-A
Ranking of NFkB-2/I family w.r.t REL-A Ranking of REL-A w.r.t NFkB-2/I family
laplace linear rbf laplace linear rbf
NFkB2 - RELA 664 420 271 NFkB2 - RELA 2454 794 2307
NFKBIA - RELA 198 205 190 NFKBIA - RELA 2106 2305 1153
NFKBIE - RELA 1503 2321 331 NFKBIE - RELA 1664 456 1926
NFKBIZ - RELA 323 1714 619 NFKBIZ - RELA 1924 1687 1584
Table 38. 2nd order interaction ranking between NFkB-2/I VS REL-B family members.
Table 38. 2nd order interaction ranking between NFkB-2/I VS REL-B family members.
Ranking REL-B VS NFkB-2/I family
Ranking of NFKB-2/I w.r.t REL-B Ranking of REL-B w.r.t NFKB-2/I
laplace linear rbf laplace linear rbf
NFkB2 - RELB 503 2146 1788 NFkB2 - RELB 1156 1346 2184
NFKBIA - RELB 239 1576 924 NFKBIA - RELB 968 424 1725
NFKBIE - RELB 1203 714 2200 NFKBIE - RELB 1414 2228 800
NFKBIZ - RELB 1776 2244 1869 NFKBIZ - RELB 746 1281 1055
REL-A is known to be associated with NF-κB and most deeply studied member of the NF-κB. Tian et al. [99] observe that the NFkB subunit RELA is a master transcriptional regulator of the committed epithelial-mesenchymal transition in airway epithelial cells. Ke et al. [100] observe that inactivation of NF-κB p65 (RelA) in liver improves insulin sensitivity and inhibits cAMP/PKA pathway. Weichert et al. [101] observe that high expression of RelA/p65 is associated with activation of NF-κB-dependent signaling in pancreatic cancer. These findings and many others not cited here show the deep interaction between REL and NF-κB members. Table 37 shows rankings of RELA w.r.t NFkB members and vice versa. Table 38 shows rankings of RELB w.r.t NFkB members and vice versa. Finally, Table 39 shows the hypotheses generated from majority voting of the ranks. In Table 37 we find RELA to be up regulated w.r.t NFKB2. This is reflected in rankings of 2454 (laplace) and 2307 (rbf) for NFkB2 - RELA. Similarly, NFKBIA was found to be up regulated w.r.t RELA. This is reflected in rankings of 2106 (laplace) and 2305 (linear) for NFKBIA - RELA. In Table 38 we find NFkB2 to be up regulated RELB. This is reflected in 2146 (laplace) and 1788 (rbf) for NFkB2 - RELB. Similarly, we find NFKBIZ to be 1776 (laplace), 2244 (linear) and 1869 (rbf) for NFKBIZ - RELB. Table 39 shows the derived influences which can be represented graphically, with the following influences - • NFkB-2/I family w.r.t REL-B with NFkB2 <- REL-B and NFKBIZ <- RELB and • REL-A w.r.t NFkB-2/I family with NFkB2 -> RELA and NFKBIA -> RELA.

3.3. Tumor Necrosis Factor Related Synergies

3.3.1. TNF - WNT Cross Family Analysis

Brooks et al. [102] observed TNF-α induced alterations in the Wnt signaling cascade as a potential mechanism for obesity-associated colorectal tumorigenesis. Effects of TNF inhibitors on parathyroid hormone and Wnt signaling antagonists in rheumatoid arthritis have been studies in Adami et al. [103]. A complex interaction between Wnt signaling and TNF-α in nucleus pulposus cells has been studied by Hiyama et al. [104]. Ma and Hottiger [49] study the crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Roubert et al. [105] study the influence of tumor necrosis factor-α on the tumorigenic Wnt-signaling pathway in human mammary tissue from obese women. Jang et al. [106] observe that WNT/β-catenin pathway modulates the TNF-α-induced inflammatory response in bronchial epithelial cells. These studies suggest already existing synergistic roles of WNTs and TNFs. In CRC cells affected with ETC-1922159, members of TNF and WNT family were found to be up regulated. Our search engine alloted high numerical valued ranks to some of the combinations between WNTs and TNFs. Table 40 shows rankings of TNF w.r.t to WNTs on the left half and vice verse on the right half.
On the left half, we found TNF-RSF1A/RSF10A/RSF10B/SF15 to be up regulated w.r.t WNT2B. These were reflected in rankings of 2170 (laplace) and 2127 (linear) for TNFRSF1A - WNT2B; 1861 (laplace), 2367 (linear) and 1800 (rbf) for TNFRSF10A - WNT2B; 2020 (laplace) and 1881 (rbf) for TNFRSF10B - WNT2B and 2476 (laplace) and 2073 (rbf) for TNFSF15 - WNT2B. TNF-RSF10A/RSF10D/RSF12A/SF10 were found to be up regulated w.r.t WNT4. These were reflected in rankings of 2509 (laplace) and 2460 (linear) for TNFRSF10A - WNT4; 2233 (linear) and 2126 (rbf) for TNFRSF10D - WNT4; 2294 (linear), 1775 (linear) and 2384 (rbf) for TNFRSF12A - WNT4 and 2451 (linear) and 1782 (rbf) for TNFSF10 - WNT4. TNF-RSF12A/SF10 were found to be up regulated w.r.t WNT7B. These were reflected in rankings of 2100 (laplace) and 1983 (rbf) for TNFRSF12A - WNT7B and 2462 (laplace) and 2179 (rbf) for TNFSF10 - WNT7B. TNFRSF21 were found to be up regulated w.r.t WNT9A. These were reflected in rankings of 1805 (laplace) and 1999 (linear) for TNFRSF21 - WNT9A.
On the left half, we found WNT2B to be up regulated w.r.t TNF-RSF10B/RSF10D/RSF14. These were reflected in rankings of 1797 (laplace) and 2056 (rbf) for TNFRSF10B - WNT2B; 1989 (linear) and 2130 (rbf) for TNFRSF10D - WNT2B and 1932 (laplace) and 2399 (rbf) for TNFRSF14 - WNT2B. WNT4 was upregulated w.r.t TNF-AIP3/RSF10B. These are refliected in rankings of 2336 (laplace), 2511 (linear) and 2342 (rbf) for TNFAIP3 - WNT4 and 2105 (linear) and 2264 (rbf) for TNFRSF10B - WNT4. WNT7B was upregulated w.r.t TNF, TNF-RSF1A/RSF14. These are reflected in rankings of 2511 (linear) and 2210 (rbf) for TNF - WNT7B; 2084 (laplace), 1975 (linear) and 2154 (rbf) for TNFRSF1A - WNT7B and 2079 (laplace) and 1928 (rbf) for TNFRSF14 - WNT7B. WNT9A was upregulated w.r.t TNF-AIP2/AIP3/RSF10A/RSF12A/SF10. These are reflected in rankings of 2125 (laplace) and 2437 (linear) for TNFAIP2 - WNT9A; 1764 (laplace) and 2460 (linear) for TNFAIP3 - WNT9A; 2259 (laplace) and 2413 (linear) for TNFRSF10A - WNT9A; 2345 (laplace) and 2466 (rbf) for TNFRSF12A - WNT9A and 2054 (laplace) and 2338 (linear) for TNFSF10 - WNT9A.
Table 40. 2nd order combinatorial hypotheses between ABC and IL
Table 40. 2nd order combinatorial hypotheses between ABC and IL
Ranking TNF family vs WNT family
Ranking of TNF family w.r.t WNT2B Ranking of WNT2B w.r.t IL family
laplace linear rbf laplace linear rbf
TNF - WNT2B 503 893 1656 TNF - WNT2B 1341 808 1366
TNFAIP1 - WNT2B 235 156 1811 TNFAIP1 - WNT2B 1671 1434 1404
TNFAIP2 - WNT2B 868 527 2439 TNFAIP2 - WNT2B 1130 218 1105
TNFAIP3 - WNT2B 1135 2381 1688 TNFAIP3 - WNT2B 997 1280 1902
TNFRSF1A - WNT2B 2170 2127 1628 TNFRSF1A - WNT2B 1747 1857 1550
TNFRSF10A - WNT2B 1861 2367 1800 TNFRSF10A - WNT2B 100 464 1162
TNFRSF10B - WNT2B 2020 615 1881 TNFRSF10B - WNT2B 1797 120 2056
TNFRSF10D - WNT2B 29 2515 1174 TNFRSF10D - WNT2B 1348 1989 2130
TNFRSF12A - WNT2B 1072 2061 1109 TNFRSF12A - WNT2B 1595 298 1432
TNFRSF14 - WNT2B 333 1585 1247 TNFRSF14 - WNT2B 1932 277 2399
TNFRSF21 - WNT2B 1275 648 1114 TNFRSF21 - WNT2B 1396 620 2136
TNFSF10 - WNT2B 1204 2287 1396 TNFSF10 - WNT2B 1732 738 1751
TNFSF15 - WNT2B 2476 359 2073 TNFSF15 - WNT2B 402 128 1875
Ranking of TNF family w.r.t WNT4 Ranking of WNT4 w.r.t IL family
laplace linear rbf laplace linear rbf
TNF - WNT4 1982 1301 928 TNF - WNT4 1021 420 864
TNFAIP1 - WNT4 1434 1078 804 TNFAIP1 - WNT4 1114 337 1015
TNFAIP2 - WNT4 1810 1047 330 TNFAIP2 - WNT4 1611 1341 423
TNFAIP3 - WNT4 646 1955 1534 TNFAIP3 - WNT4 2336 2511 2342
TNFRSF1A - WNT4 915 545 829 TNFRSF1A - WNT4 132 333 1321
TNFRSF10A - WNT4 2509 2460 897 TNFRSF10A - WNT4 535 202 582
TNFRSF10B - WNT4 517 875 1365 TNFRSF10B - WNT4 320 2105 2264
TNFRSF10D - WNT4 1719 2233 2126 TNFRSF10D - WNT4 660 49 341
TNFRSF12A - WNT4 2294 1775 2384 TNFRSF12A - WNT4 649 1756 780
TNFRSF14 - WNT4 1608 2284 1436 TNFRSF14 - WNT4 61 519 1542
TNFRSF21 - WNT4 1915 1596 93 TNFRSF21 - WNT4 201 533 657
TNFSF10 - WNT4 1747 2451 1782 TNFSF10 - WNT4 904 1511 2280
TNFSF15 - WNT4 1542 806 2439 TNFSF15 - WNT4 64 709 793
Ranking of TNF family w.r.t WNT7 Ranking of WNT7 w.r.t IL family
laplace linear rbf laplace linear rbf
TNF - WNT7B 815 381 47 TNF - WNT7B 1530 2511 2210
TNFAIP1 - WNT7B 313 1438 992 TNFAIP1 - WNT7B 2196 519 1058
TNFAIP2 - WNT7B 1897 85 631 TNFAIP2 - WNT7B 2121 599 1313
TNFAIP3 - WNT7B 577 1807 1251 TNFAIP3 - WNT7B 1901 1357 830
TNFRSF1A - WNT7B 165 844 353 TNFRSF1A - WNT7B 2084 1975 2154
TNFRSF10A - WNT7B 1084 1341 2119 TNFRSF10A - WNT7B 1301 1120 1663
TNFRSF10B - WNT7B 1274 1980 744 TNFRSF10B - WNT7B 1209 908 1075
TNFRSF10D - WNT7B 1314 774 1928 TNFRSF10D - WNT7B 1252 2301 1250
TNFRSF12A - WNT7B 2100 1332 1983 TNFRSF12A - WNT7B 1104 22 1879
TNFRSF14 - WNT7B 1576 981 1811 TNFRSF14 - WNT7B 2079 1028 1928
TNFRSF21 - WNT7B 1565 798 720 TNFRSF21 - WNT7B 2114 1219 737
TNFSF10 - WNT7B 1598 2462 2179 TNFSF10 - WNT7B 2129 763 204
TNFSF15 - WNT7B 1026 756 621 TNFSF15 - WNT7B 130 1599 2504
Ranking of TNF family w.r.t WNT9A Ranking of WNT9A w.r.t IL family
laplace linear rbf laplace linear rbf
TNF - WNT9A 1624 2025 799 TNF - WNT9A 1121 1930 1400
TNFAIP1 - WNT9A 1433 839 465 TNFAIP1 - WNT9A 1254 569 394
TNFAIP2 - WNT9A 40 2167 397 TNFAIP2 - WNT9A 2125 2437 1605
TNFAIP3 - WNT9A 1427 1109 2040 TNFAIP3 - WNT9A 1764 2460 1032
TNFRSF1A - WNT9A 1470 719 1933 TNFRSF1A - WNT9A 1645 58 1419
TNFRSF10A - WNT9A 2272 1234 918 TNFRSF10A - WNT9A 2259 2413 1204
TNFRSF10B - WNT9A 2249 1222 1071 TNFRSF10B - WNT9A 882 566 813
TNFRSF10D - WNT9A 410 2132 968 TNFRSF10D - WNT9A 1808 1055 568
TNFRSF12A - WNT9A 1080 373 1120 TNFRSF12A - WNT9A 2345 1211 2466
TNFRSF14 - WNT9A 1106 2166 198 TNFRSF14 - WNT9A 1127 1147 1191
TNFRSF21 - WNT9A 1805 1999 986 TNFRSF21 - WNT9A 1265 832 1098
TNFSF10 - WNT9A 1258 864 1839 TNFSF10 - WNT9A 2054 2338 1523
TNFSF15 - WNT9A 1621 1129 1139 TNFSF15 - WNT9A 37 1105 1076
Table 41 shows the derived influences which can be represented graphically, with the following influences - • TNF w.r.t WNT with TNF-RSF1A/RSF10A/RSF10B/SF15 <- WNT2B; TNF-RSF10A/RSF10D/RSF12A/SF10 <- WNT4; TNF-RSF12A/SF10 <- WNT7B and TNF-RSF21 <- WNT9A; and • WNT w.r.t TNF with TNF-RSF10B/RSF10D/RSF14 -> WNT2B; TNF-AIP3/RSF10B -> WNT4; TNF, TNF-RSF1A/RSF14 -> WNT7B; and TNF-AIP2/AIP3/RSF10A/RSF12A/SF10 -> WNT9A.

3.3.2. MUC - TNF Cross Family Analysis

In a recent development in Sheng et al. [81] MUC13 promoted tumor necrosis factro (TNF)-induced NFkB activation by interacting with TNFR1 and the E3 ligase, cIAP1, to increase ubiquitination of RIPK1. Dharmani et al. [107] show that TNF-α and MUC2 (Mucin 2) play major roles in disease onset and progression in dextran sodium sulphate-induced colitis. TNF-α is also shown to induce mucin hypersecretion and MUC2 gene expression by human airway epithelial cells by Levine et al. [108]. Also, inhibition of TNF-α induced MUC5AC expression and production by wogonin through the inactivation of NF-κB signaling in airway epithelial cells, as shown by Sikder et al. [109]. Similarly, neutrophil elastase induces MUC5AC production in human airway epithelial cells via a cascade involving protein kinase-C, reactive oxygen species, and TNF-α-converting enzyme, as shown by Shao and Nadel [110]. TNF-α or transforming growth factor-α stimulation of human epithelial cells resulted in mucus secretion as measured by MUC5AC mRNA and protein (Lora et al. [111]). In earlier experiments by Fischer et al. [112], TNF-α was found to stimulate mucin secretion and cyclic GMP production by guinea pig tracheal epithelial cells in vitro. Similar earlier experiments by Lin et al. [113], induction of mucin gene expression in middle ear of rats by TNF-α was the potential cause for mucoid otitis media. Effects of TNF-α and IL-1β on mucin, lysozyme, IL-6 and IL-8 in passage-2 normal human nasal epithelial cells have been stuided by Yoon et al. [114]. Also, Mercogliano et al. [115] show that TNF-α induced MUC4 expression elicits trastuzumab resistance in HER2-+ive breast cancer. These findings suggest deep synergy between Mucin family and TNF family members. However, not all synergies might have been explored till now. A set of family members of MUC and TNFs were found to be UP regulated after ETC-1922159 treatment in CRC cells.
Table 42 and Table 43 show the additional range of TNFs and MUCs that might be engaged in CRC through the NFkB pathway, in the light of the recent findings of MUC13 and TNFRSF1A in Sheng et al. [81]. Table 42 shows the rankings of the TNF family w.r.t to MUCIN family and Table 43 shows the rankings of the MUCIN family w.r.t to TNF family. Followed by this are the derived influences from the majority votings of the rankings in the foregoing tables, which are depicted in Table 44.
Considering Table 42, TNF family w.r.t MUC1, we find TNFAIP3, TNFRSF-10D/12A/14 to be highly up regulated. These are reflected in the rankings of 2115 (laplace) and 1882 (rbf) for MUC1 - TNFAIP3; 2303 (laplace) and 2154 (linear) for MUC1 - TNFRSF10D; 2019 (laplace) and 2009 (linear) for MUC1 - TNFRSF12A; and 1955 (laplace) and 1899 (linear) for MUC1 - TNFRSF14. TNF family w.r.t MUC3A, we find TNFRSF-10A/10D to be highly up regulated. These are reflected in the rankings of 2237 (laplace) and 1910 (linear) for MUC3 - TNFRSF10A; 1678 (laplace) and 2049 (linear) for MUC3 - TNFRSF10D. TNF family w.r.t MUC4 we find TNFRSF10D/TNFSF10 to be highly up regulated. These are reflected in the rankings of 2503 (laplace), 2403 (linear) and 2356 (rbf) for MUC4 - TNFRSF10D and 2134 (laplace) and 1957 (linear) for MUC4 - TNFSF10. TNF family w.r.t MUC12 we find TNFRSF21/TNFSF10 to be highly up regulated. These are reflected in the rankings of 1795 (laplace) and 2438 (linear) for MUC12 - TNFRSF21 and 1795 (linear) 2435 (rbf) for MUC12 - TNFSF10. TNF family w.rt MUC13 we find TNFRSF10A/TNFRSF10D to be highly up regulated. These are reflected in the rankings of 2500 (laplace) and 1844 (rbf) for MUC13 - TNFRSF10A and 2263 (linear) and 2294 (rbf) for MUC13 - TNFRSF10D. TNF family w.r.t MUC17 we find TNFRSF-10A/10D/12A to be highly up regulated. These are reflected in the rankings of 2269 (laplace) 2364 (linear) and 2005 (rbf) for MUC17 - TNFRSF10A; 1798 (laplace) and 2302 (rbf) for MUC17 - TNFRSF10D and 2041 (laplace) and 2303 (linear) for MUC17 - TNFRSF12A. TNF family w.r.t MUC20 we find TNFAIP3/TNFSF15 to be highly up regulated. These are reflected in the rankings of 2205 (laplace) and 2136 (rbf) for MUC20 - TNFAIP3 and 2493 (laplace) and 2108 (rbf) for MUC20 - TNFSF15.
Considering Table 43, MUC1 w.r.t TNF family, we find TNFRSF1A to be highly up regulated. These are reflected in the rankings of 2344 (linear) and 2312 (rbf) for MUC1 - TNFRSF1A. MUC4 w.r.t TNF family, we find TNFAIP2 to be highly up regulated. These are reflected in the rankings of 1875 (laplace) and 1792 (linear) for MUC4 - TNFAIP2. MUC12 w.r.t TNF family we find TNFAIP1/TNFAIP2/TNFRSF21/TNFSF10 to be highly up regulated. These are reflected in the rankings of 2321 (laplace) and 2457 (rbf) for MUC12 - TNFAIP1; 1829 (linear) and 1913 (rbf) for MUC12 - TNFAIP2; 1975 (linear) and 1769 (rbf) for MUC12 - TNFRSF21; 2135 (linear) and 2255 (rbf) for MUC12 - TNFSF10. MUC12 w.r.t TNF family we find TNFRSF21/TNFSF10 to be highly up regulated. These are reflected in the rankings of 1795 (laplace) and 2438 (linear) for MUC12 - TNFRSF21 and 1795 (linear) and 2435 (rbf) for MUC12 - TNFSF10. MUC20 w.r.t TNF family we find TNFAIP1/TNFAIP2 to be highly up regulated. These are reflected in the rankings of 2266 (laplace) and 2057 (rbf) for MUC20 - TNFAIP1 and 2404 (linear) and 2157 (rbf) for MUC20 - TNFAIP2.
One can also interpret the results of the Table 44 graphically, with the following influences - • TNF family w.r.t MUC family with MUC1 -> TNFAIP3/TNFRSF-10D/12A/14; MUC3A -> TNFRSF-10A/10D; MUC4 -> TNFRSF10D/TNFSF10; MUC12 -> TNFRSF21/TNFSF10; MUC13 -> TNFRSF-10A/10D; MUC17 -> TNFRSF-10A/10D/12A; MUC20 -> TNFAIP3/TNFSF15 and • MUC family w.r.t TNF family with MUC1 <- TNFRSF1A; MUC4 <- TNFAIP2; MUC12 <- TNFAIP1/TNFAIP2/TNFRSF21/ TNFSF10 and MUC13 <- TNFAIP1/TNFAIP2.

3.3.3. STEAP4 - TNF Cross Family Analysis

STEAP4 or six transmembrane epithelial antigen of prostate 4, resides in the golgi apparatus and functions as a metalloreductase with the capacity to reduce insoluble ferric ions Fe3+ to soluble ferrous ions Fe2+. Emerging role of STEAP4 in metabolism and homeostasis of cellular iron and copper in metabolism and homeostasis of cellular iron and copper has been studied in Scarl et al. [116]. STEAP4 was first identified as a novel gene induced by TNF-α during adipose differentiation by Moldes et al. [117]. Zhang et al. [118] observe that STEAP4 was up-regulated by LPS at a very early time point, consistent with reports that STEAP4 could be up-regulated by tumor necrosis factor-alpha. Tanaka et al. [119] show that STEAP4 is expressed on monocytes/neutrophils, and is regulated by TNF antagonist in patients with rheumatoid arthritis. Also, Tanaka et al. [120] show STEAP4 is a tumor necrosis factor alpha-induced protein that regulates IL-6, IL-8, and cell proliferation in synovium from patients with rheumatoid arthritis. Gauss et al. [121] observe that the STEAP4 expression in adipocytes is normally induced by nutritional stress, leptin, and proinflammatory cytokines, including TNF-α, interleukin-1β, and interleukin-6. ZHANG et al. [122] show that the downregulation of STEAP4, a highly-expressed TNF-α-inducible gene in adipose tissue, is associated with obesity in humans 1. Liang et al. [123] show that STEAP comprises a novel inflammatory nexus in patients with pustular skin disorders. They show that in primary human keratinocytes STEAP4 expression was induced by TNF-α, IL-1β, IL-36α, IL-36γ, IL-17A, and IL-17A combined with TNF-α or IL-22. Gomes et al. [124] further show the TNF STEAP interactions while studying the structure of STEAP proteins and its applications to cancer therapy. Such interactions point to the existing synergy between STEAP4 and TNF-α. In CRC cells treated with ETC-1922159, both TNF members and STEAP4 were found to be up regulated. Our search engine alloted the dual combinations with numerically high ranked values thus pointing to the possible synergies that might be existing in the cells and may not have been explored. Table 45 shows the rankings of each with the other. On the left we found, TNF, TNF-AIP1/AIP2/AIP3/RSF10B/RSF10D/SF10 to be up regulated w.r.t STEAP4. These are reflected in rankings of 1914 (linear) and 2130 (rbf) for TNF - STEAP4; 2189 (laplace) and 1910 (rbf) for TNFAIP1 - STEAP4; 2002 (linear) and 1840 (rbf) for TNFAIP2 - STEAP4; 1882 (linear) and 2197 (rbf) for TNFAIP3 - STEAP4; 2210 (laplace), 1717 (linear) and 1827 (rbf) for TNFRSF10B - STEAP4; 2192 (linear) and 1797 (rbf) for TNFRSF10D - STEAP4; and 2083 (laplace) and 1773 (rbf) for TNFSF10 - STEAP4. On the right we found, STEAP4 to be up regulated w.r.t TNF-RSF10A/RSF10D/RSF14. These are reflected in rankings of 1796 (linear) and 2026 (rbf) for TNFRSF10A - STEAP4; 2339 (linear) and 2405 (rbf) for TNFRSF10D - STEAP4; and 1956 (linear) and 2256 (rbf) for TNFRSF14 - STEAP4.
One can also interpret the results of the Table 44 graphically, with the following influences - • TNF w.r.t STEAP4 with TNF, TNF-AIP1/AIP2/AIP3/RSF10B/RSF10D/SF10 <- STEAP4 and • STEAP4 w.r.t TNF with TNF-RSF10A/RSF10D/RSF14 -> STEAP4.
Table 46. 2nd order combinatorial hypotheses between TNF and STEAP4 family.
Table 46. 2nd order combinatorial hypotheses between TNF and STEAP4 family.
Unexplored combinatorial hypotheses
TNF w.r.t STEAP4
TNF, TNF-AIP1/AIP2/AIP3/RSF10B/RSF10D/SF10 STEAP4
STEAP4 w.r.t TNF
TNF-RSF10A/RSF10D/RSF14 STEAP4

3.3.4. TNF - UBE2 Cross Family Analysis

Fu et al. [125] show that the ubiquitin conjugating enzyme UBE2L3 regulates TNFα-induced linear ubiquitination. They show by western blotting of HOIL-1L immunoprecipitates demonstrates that endogenous HOIL-1L interacts with endogenous UBE2L3 in vivo and these associations are stable following TNFα stimulation. Through various hypotheses, the authors show the interaction of UBE2L3 with TNF. In conclusion, the authours state that increased UBE2L3 expression enhances NF-κB activation, and increased levels of NF-κB activity are linked to inflammatory and autoimmune diseases. Li et al. [126] show that TNF-α increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UBCH2/E220k. Shembade et al. [127] show that IL-1β or TNF induce late depletion of UBE2D3 (UBCH5C) and UBE2N (UBC13) in mouse embryonic fibroblasts. These studies show a definite synergy between UBE family and TNFs. In CRC cells treated with ETC-1922159, both TNF members and UBE2 were found to be up regulated. Our search engine alloted the dual combinations with numerically high ranked values thus pointing to the possible synergies that might be existing in the cells and may not have been explored. Table 47 and Table 48 shows the rankings of each with the other.
Table 47. 2nd order combinatorial hypotheses between UBE2 and TNF
Table 47. 2nd order combinatorial hypotheses between UBE2 and TNF
Ranking TNF family vs UBE2 family
Ranking of UBE2A w.r.t TNF family Ranking of TNF family w.r.t UBE2A
laplace linear rbf laplace linear rbf
TNF - UBE2A 1360 2307 1720 TNF - UBE2A 499 1379 750
TNFAIP1 - UBE2A 498 2357 2455 TNFAIP1 - UBE2A 1340 2494 578
TNFAIP2 - UBE2A 524 1161 2385 TNFAIP2 - UBE2A 441 1852 691
TNFAIP3 - UBE2A 855 1642 812 TNFAIP3 - UBE2A 1157 1048 207
TNFRSF1A - UBE2A 2457 1087 2020 TNFRSF1A - UBE2A 1066 655 1701
TNFRSF10A - UBE2A 2164 2126 621 TNFRSF10A - UBE2A 2116 858 2376
TNFRSF10B - UBE2A 2284 1901 1203 TNFRSF10B - UBE2A 362 1083 756
TNFRSF10D - UBE2A 1989 2291 677 TNFRSF10D - UBE2A 1848 1336 903
TNFRSF12A - UBE2A 2484 2427 339 TNFRSF12A - UBE2A 1537 1304 629
TNFRSF14 - UBE2A 2301 2180 2323 TNFRSF14 - UBE2A 908 1519 1945
TNFRSF21 - UBE2A 2419 2035 1169 TNFRSF21 - UBE2A 605 2245 60
TNFSF10 - UBE2A 832 2202 1036 TNFSF10 - UBE2A 1520 44 2125
TNFSF15 - UBE2A 1768 1184 1942 TNFSF15 - UBE2A 545 580 1448
Ranking of UBE2B w.r.t TNF family Ranking of TNF family w.r.t UBE2B
laplace linear rbf laplace linear rbf
TNF - UBE2B 1072 2046 1316 TNF - UBE2B 1719 218 346
TNFAIP1 - UBE2B 1097 744 1295 TNFAIP1 - UBE2B 920 90 1028
TNFAIP2 - UBE2B 669 1158 2407 TNFAIP2 - UBE2B 1680 147 45
TNFAIP3 - UBE2B 470 1528 1388 TNFAIP3 - UBE2B 2259 742 1610
TNFRSF1A - UBE2B 937 1473 2390 TNFRSF1A - UBE2B 1277 1454 1258
TNFRSF10A - UBE2B 2132 1128 2184 TNFRSF10A - UBE2B 551 2318 2265
TNFRSF10B - UBE2B 2399 2000 402 TNFRSF10B - UBE2B 2272 1268 1080
TNFRSF10D - UBE2B 1959 1562 2232 TNFRSF10D - UBE2B 1157 207 1729
TNFRSF12A - UBE2B 1632 12 2259 TNFRSF12A - UBE2B 1940 1868 1758
TNFRSF14 - UBE2B 1137 2297 2373 TNFRSF14 - UBE2B 1143 1657 1507
TNFRSF21 - UBE2B 1986 1439 1754 TNFRSF21 - UBE2B 1291 569 17
TNFSF10 - UBE2B 2265 1488 769 TNFSF10 - UBE2B 2208 2326 2470
TNFSF15 - UBE2B 1432 2460 1655 TNFSF15 - UBE2B 2055 1964 183
Ranking of UBE2F w.r.t TNF family Ranking of TNF family w.r.t UBE2F
laplace linear rbf laplace linear rbf
TNF - UBE2F 2162 2484 2500 TNF - UBE2F 638 435 1471
TNFAIP1 - UBE2F 1732 2239 2003 TNFAIP1 - UBE2F 447 1376 1357
TNFAIP2 - UBE2F 693 1446 1706 TNFAIP2 - UBE2F 900 208 883
TNFAIP3 - UBE2F 498 2265 1264 TNFAIP3 - UBE2F 1881 113 1185
TNFRSF1A - UBE2F 1980 2255 1872 TNFRSF1A - UBE2F 368 1756 266
TNFRSF10A - UBE2F 2085 2218 179 TNFRSF10A - UBE2F 1767 1599 781
TNFRSF10B - UBE2F 2432 2011 2144 TNFRSF10B - UBE2F 1413 1157 1510
TNFRSF10D - UBE2F 1164 1400 2150 TNFRSF10D - UBE2F 389 206 2481
TNFRSF12A - UBE2F 2458 2336 531 TNFRSF12A - UBE2F 581 2022 630
TNFRSF14 - UBE2F 1757 574 1070 TNFRSF14 - UBE2F 2324 1924 1954
TNFRSF21 - UBE2F 1056 2498 1418 TNFRSF21 - UBE2F 718 2123 1022
TNFSF10 - UBE2F 1710 2365 1691 TNFSF10 - UBE2F 1656 1584 810
TNFSF15 - UBE2F 1910 1171 2353 TNFSF15 - UBE2F 1224 1637 394
Table 48. 2nd order combinatorial hypotheses between UBE2 and TNF
Table 48. 2nd order combinatorial hypotheses between UBE2 and TNF
Ranking TNF family vs UBE2 family
Ranking of UBE2H w.r.t TNF family Ranking of TNF family w.r.t UBE2H
laplace linear rbf laplace linear rbf
TNF - UBE2H 967 1966 1018 TNF - UBE2H 2277 770 640
TNFAIP1 - UBE2H 1235 1484 817 TNFAIP1 - UBE2H 883 2396 608
TNFAIP2 - UBE2H 1251 978 2517 TNFAIP2 - UBE2H 762 1362 593
TNFAIP3 - UBE2H 889 1055 1837 TNFAIP3 - UBE2H 1942 1421 1467
TNFRSF1A - UBE2H 589 1498 1428 TNFRSF1A - UBE2H 1134 2154 182
TNFRSF10A - UBE2H 1317 905 2229 TNFRSF10A - UBE2H 1139 202 1061
TNFRSF10B - UBE2H 33 2128 1725 TNFRSF10B - UBE2H 1053 539 1207
TNFRSF10D - UBE2H 1326 1814 1657 TNFRSF10D - UBE2H 2227 926 791
TNFRSF12A - UBE2H 1950 1793 1851 TNFRSF12A - UBE2H 1347 776 1899
TNFRSF14 - UBE2H 2297 1601 2385 TNFRSF14 - UBE2H 2244 703 1208
TNFRSF21 - UBE2H 2022 1131 2231 TNFRSF21 - UBE2H 827 880 672
TNFSF10 - UBE2H 2387 7 760 TNFSF10 - UBE2H 1313 1169 2002
TNFSF15 - UBE2H 125 58 96 TNFSF15 - UBE2H 350 2416 1960
Ranking of UBE2J1 w.r.t TNF family Ranking of TNF family w.r.t UBE2J1
laplace linear rbf laplace linear rbf
TNF - UBE2J1 1289 2308 2336 TNF - UBE2J1 1101 1549 105
TNFAIP1 - UBE2J1 1109 2292 1756 TNFAIP1 - UBE2J1 329 1971 252
TNFAIP2 - UBE2J1 1379 1516 1696 TNFAIP2 - UBE2J1 112 22 969
TNFAIP3 - UBE2J1 187 1261 1065 TNFAIP3 - UBE2J1 289 891 1202
TNFRSF1A - UBE2J1 1992 326 2268 TNFRSF1A - UBE2J1 1422 624 73
TNFRSF10A - UBE2J1 1893 2090 2363 TNFRSF10A - UBE2J1 2379 2213 2135
TNFRSF10B - UBE2J1 1913 1299 1838 TNFRSF10B - UBE2J1 807 1793 1231
TNFRSF10D - UBE2J1 325 1500 588 TNFRSF10D - UBE2J1 2393 1360 2102
TNFRSF12A - UBE2J1 2401 1901 437 TNFRSF12A - UBE2J1 380 1284 650
TNFRSF14 - UBE2J1 2277 2347 1943 TNFRSF14 - UBE2J1 1614 2133 2313
TNFRSF21 - UBE2J1 1976 2333 1681 TNFRSF21 - UBE2J1 1315 1266 1070
TNFSF10 - UBE2J1 511 2508 506 TNFSF10 - UBE2J1 1322 203 1148
TNFSF15 - UBE2J1 2021 2013 2515 TNFSF15 - UBE2J1 678 886 1128
Ranking of UBE2Z w.r.t TNF family Ranking of TNF family w.r.t UBE2Z
laplace linear rbf laplace linear rbf
TNF - UBE2Z 2264 2505 2479 TNF - UBE2Z 739 701 1241
TNFAIP1 - UBE2Z 1283 2055 2332 TNFAIP1 - UBE2Z 1198 1213 226
TNFAIP2 - UBE2Z 2404 1625 2139 TNFAIP2 - UBE2Z 1281 1431 492
TNFAIP3 - UBE2Z 1066 1152 1627 TNFAIP3 - UBE2Z 530 51 972
TNFRSF1A - UBE2Z 2473 2194 2405 TNFRSF1A - UBE2Z 692 43 1382
TNFRSF10A - UBE2Z 2234 2152 713 TNFRSF10A - UBE2Z 2410 2103 1513
TNFRSF10B - UBE2Z 1501 451 2081 TNFRSF10B - UBE2Z 948 1369 403
TNFRSF10D - UBE2Z 2264 2360 2278 TNFRSF10D - UBE2Z 1786 661 1746
TNFRSF12A - UBE2Z 2207 2149 353 TNFRSF12A - UBE2Z 1621 2010 1448
TNFRSF14 - UBE2Z 1683 1983 705 TNFRSF14 - UBE2Z 1779 1360 2100
TNFRSF21 - UBE2Z 994 604 219 TNFRSF21 - UBE2Z 459 1030 584
TNFSF10 - UBE2Z 516 2374 2235 TNFSF10 - UBE2Z 1100 2047 168
TNFSF15 - UBE2Z 2081 1037 2102 TNFSF15 - UBE2Z 1342 1180 536
Table 49. 2nd order combinatorial hypotheses between TNF and UBE2 family.
Table 49. 2nd order combinatorial hypotheses between TNF and UBE2 family.
Unexplored combinatorial hypotheses
UBE2 w.r.t TNF
TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF10D/RSF12A/RSF14/RSF21/SF15 UBE2A
TNF-RSF10A/RSF10B/RSF10D/RSF14/RSF21 UBE2B
TNF, TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF12A/SF15 UBE2F
TNF-RSF12A/RSF14/RSF21 UBE2H
TNF, TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF12A/RSF14/RSF21/SF15 UBE2J1
TNF, TNF-AIP1/AIP2/RSF1A/RSF10A/RSF10D/RSF12A/SF10/SF15 UBE2Z
TNF w.r.t UBE2
TNF-RSF10A UBE2A
TNF-RSF10A/RSF12A/SF10/SF15 UBE2B
TNF-RSF14 UBE2F
TNF-SF15 UBE2H
TNF-RSF10A/RSF10D/RSF14 UBE2J1
TNF-RSF10A/RSF14 UBE2Z
On the left side is the ranking of UBE2 family w.r.t TNF family. We found UBE2A to be up regulated w.r.t TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF10D/RSF12A/RSF14/ RSF21/SF15. These are reflected in rankings of 2357 (linear) and 2455 (rbf) for TNFAIP1 - UBE2A; 2457 (laplace) and 2020 (rbf) for TNFRSF1A - UBE2A; 2164 (laplace) and 2126 (linear) for TNFRSF10A - UBE2A; 2284 (laplace) and 1901 (linear) for TNFRSF10B - UBE2A; 1989 (laplace) and 2291 (linear) for TNFRSF10D - UBE2A; 2484 (laplace) and 2427 (linear) for TNFRSF12A - UBE2A; 2301 (laplace), 2180 (linear) and 2323 (rbf) for TNFRSF14 - UBE2A; 2419 (laplace) and 2035 (linear) for TNFRSF21 - UBE2A; 1768 (laplace) and 1942 (rbf) for TNFSF15 - UBE2A. UBE2B to be up regulated w.r.t TNF-RSF10A/RSF10B/RSF10D/RSF14/RSF21. These are reflected in rankings of 2132 (laplace) and 2184 (rbf) for TNFRSF10A - UBE2B; 2399 (laplace) and 2000 (linear) for TNFRSF10B - UBE2B; 1959 (laplace) and 2232 (rbf) for TNFRSF10D - UBE2B; 2297 (linear) and 2373 (rbf) for TNFRSF14 - UBE2B; and 1986 (laplace) and 1754 (rbf) for TNFRSF21 - UBE2B. UBE2F to be up regulated w.r.t TNF, TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF12A/SF15. These are reflected in rankings of 2162 (laplace), 2484 (linear) and 2500 (rbf) for TNF - UBE2F; 1732 (laplace), 2239 (linear) and 2003 (rbf) for TNFAIP1 - UBE2F; 1980 (laplace), 2255 (linear) and 1872 (rbf) for TNFRSF1A - UBE2F; 2085 (laplace), 2218 (linear) for TNFRSF10A - UBE2F; 2432 (laplace), 2011 (linear) and 2144 (rbf) for TNFRSF10B - UBE2F; 2458 (laplace) and 2336 (linear) for TNFRSF12A - UBE2F; 1910 (laplace) and 2353 (rbf) for TNFSF15 - UBE2F; UBE2H to be up regulated w.r.t TNF-RSF12A/RSF14/RSF21. These are reflected in rankings of 1950 (laplace), 1793 (linear) and 1851 (rbf) for TNFRSF12A - UBE2H; 2297 (laplace) and 2385 (rbf) for TNFRSF14 - UBE2H; and 2022 (laplace) and 2231 (rbf) for TNFRSF21 - UBE2H; UBE2J1 to be up regulated w.r.t TNF, TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF12A/RSF14/RSF21/SF15. These are reflected in rankings of 2308 (linear) and 2336 (rbf) for TNF - UBE2J1; 2292 (linear) and 1756 (rbf) for TNFAIP1 - UBE2J1; 1992 (laplace) and 2268 (rbf) for TNFRSF1A - UBE2J1; 1893 (laplace), 2090 (linear) and 2363 (rbf) for TNFRSF10A - UBE2J1; 1913 (laplace) and 1838 (rbf) for TNFRSF10B - UBE2J1; 2401 (laplace) and 1901 (linear) for TNFRSF12A - UBE2J1; 2277 (laplace), 2347 (linear) and 1943 (rbf) for TNFRSF14 - UBE2J1; 1976 (laplace), 2333 (linear) for TNFRSF21 - UBE2J1; and 2021 (laplace), 2013 (linear) and 2515 (rbf) for TNFSF15 - UBE2J1; UBE2Z to be up regulated w.r.t TNF, TNF-AIP1/AIP2/RSF1A/RSF10A/RSF10D/RSF12A/SF10/SF15. These are reflected in rankings of 2264 (laplace), 2505 (linear) and 2479 (rbf) for TNF - UBE2Z; 2055 (linear) and 2332 (rbf) for TNFAIP1 - UBE2Z; 2404 (laplace) and 2139 (rbf) for TNFAIP2 - UBE2Z; 2473 (laplace), 2194 (linear) and 2405 (rbf) for TNFRSF1A - UBE2Z; 2234 (laplace) and 2152 (linear) for TNFRSF10A - UBE2Z; 2264 (laplace), 2360 (linear) and 2278 (rbf) for TNFRSF10D - UBE2Z; 2207 (laplace) and 2149 (linear) for TNFRSF12A - UBE2Z; 2374 (linear) and 2235 (rbf) for TNFSF10 - UBE2Z; and 2081 (laplace) and 2102 (rbf) for TNFSF15 - UBE2Z;
One the right side is the ranking of TNF family w.r.t UBE2 family. We found TNF-RSF10A to be up regulated w.r.t UBE2A. This is reflected in rankings of 2116 (laplace) and 2376 (rbf) for TNFRSF10A - UBE2A. TNF-RSF10A/RSF12A/SF10/SF15 were up regulated w.r.t UBE2B. These are reflected in rankings of 2318 (linear) and 2265 (linear) for TNFRSF10A - UBE2B; 1940 (laplace); 1868 (linear) and 1758 (linear) for TNFRSF12A - UBE2B; 2208 (laplace); 2326 (linear) and 2470 (linear) for TNFSF10 - UBE2B; and 2055 (laplace) and 1964 (linear) for TNFSF15 - UBE2B. TNF-RSF14 were up regulated w.r.t UBE2F. These is reflected in rankings of 2324 (laplace) and 1924 (linear) for TNF-RSF14 - UBE2F. TNF-SF15 were up regulated w.r.t UBE2H. These is reflected in rankings of 2416 (linear) and 1960 (rbf) for TNF-SF15 - UBE2H. TNF-RSF10A/RSF10D/RSF14 were up regulated w.r.t UBE2J1. These are reflected in rankings of 2379 (laplace), 2213 (linear) and 2135 (rbf) for TNFRSF10A - UBE2J1; 2393 (laplace) and 2102 (rbf) for TNFRSF10D - UBE2J1; and 2133 (linear) and 2313 (rbf) for TNFRSF14 - UBE2J1. TNF-RSF10A/RSF14 were up regulated w.r.t UBE2Z. These are reflected in rankings of 2410 (laplace) and 2103 (laplace) for TNFRSF10A - UBE2Z and 1779 (laplace) and 2100 (rbf) for TNFRSF14 - UBE2Z.
One can also interpret the results of the Table 49 graphically, with the following influences - • UBE2 w.r.t TNF with TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF10D/RSF12A/RSF14/RSF21/SF15 -> UBE2A; TNF-RSF10A/RSF10B/RSF10D/RSF14/RSF21 -> UBE2B; TNF, TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF12A/SF15 -> UBE2F; TNF-RSF12A/RSF14/RSF21 -> UBE2H; TNF, TNF-AIP1/RSF1A/RSF10A/RSF10B/RSF12A/RSF14/RSF21/SF15 -> UBE2J1; and TNF, TNF-AIP1/AIP2/RSF1A/RSF10A/RSF10D/RSF12A/SF10/SF15 -> UBE2Z • TNF w.r.t UBE2 with TNF-RSF10A <- UBE2A; TNF-RSF10A/RSF12A/SF10/SF15 <- UBE2B; TNF-RSF14 <- UBE2F; TNF-SF15 <- UBE2H; TNF-RSF10A/RSF10D/RSF14 <- UBE2J1; TNF-RSF10A/RSF14 <- UBE2Z.

3.3.5. TNF - BCL Cross Family Analysis

Tamatani et al. [128] observe that tumor necrosis factor induces BCL-2 and BCL-x expression through NFκB activation in primary hippocampal neurons. The role of Bcl-2 Expression in EGF Inhibition of TNF-α/IFN-γ-induced Villous Trophoblast Apoptosis has been studied by Ho et al. [129]. Genestier et al. [130] show that tumor necrosis factor-α up-regulates BCL-2 expression and decreases calcium-dependent apoptosis in human B cell lines. In breast carcinoma cells, Bcl-x and Bcl-2 inhibit TNF and FAS-induced apoptosis and activation of phospholipase A2 (Jäättelä et al. [131]). Kim et al. [132] show that TNF-α-induced ROS production triggering apoptosis is directly linked to Romo1 and BCL-XL. Kuwata et al. [133] showed that IL-10-inducible BCL-3 negatively regulates LPS-induced TNF-α production in macrophages. Esche et al. [134] showed that tumor necrosis factor-α-promoted expression of BCL-2 and inhibition of mitochondrial cytochrome c release mediate resistance of mature dendritic cells to melanoma-induced apoptosis. These studies show a definite synergy between BCL family and TNFs. In CRC cells treated with ETC-1922159, both TNF members and BCL were found to be up regulated. Our search engine alloted the dual combinations with numerically high ranked values thus pointing to the possible synergies that might be existing in the cells and may not have been explored. Table 50 and Table 51 show the rankings of each with the other.
On the left side is the ranking of BCL family w.r.t TNF family. We found BCL2L2 to be up regulated w.r.t TNF, TNF-AIP1/RSF1A/RSF10B/RSF10D/RSF12A/RSF14/RSF21/SF10/SF15. These are reflected in rankings of 1822 (laplace), 1926 (linear) and 2359 (rbf) for TNF - BCL2L2; 2266 (laplace), 2478 (linear) and 1847 (rbf) for TNFAIP1 - BCL2L2; 2311 (linear) and 1920 (rbf) for TNFRSF1A - BCL2L2; 2478 (laplace) and 2239 (rbf) for TNFRSF10B - BCL2L2; 2278 (linear) and 2237 (rbf) for TNFRSF10D - BCL2L2; 1945 (laplace) and 2484 (rbf) for TNFRSF12A - BCL2L2; 2358 (laplace) and 2310 (rbf) for TNFRSF14 - BCL2L2; 2292 (laplace) and 1850 (linear) for TNFRSF21 - BCL2L2; 2438 (laplace) and 2013 (rbf) for TNFSF10 - BCL2L2 and 2443 (linear) and 2350 (rbf) for TNFSF15 - BCL2L2; BCL2L3 was up regulated w.r.t TNF, TNF-AIP1/RSF1A/RSF10A/RSF10D/RSF12A/RSF14/RSF21/SF10/SF15. These are reflected in rankings of 2437 (laplace), 2482 (linear) and 2482 (rbf) for TNF - BCL2L13; 1863 (laplace) and 2386 (linear) for TNFAIP1 - BCL2L13; 1962 (linear) and 2489 (rbf) for TNFRSF1A - BCL2L13; 2055 (linear) and 2499 (rbf) for TNFRSF10A - BCL2L13; 2204 (laplace), 2159 (linear) and 2343 (rbf) for TNFRSF10D - BCL2L13; 2183 (laplace), 2509 (linear) for TNFRSF12A - BCL2L13; 1852 (laplace), 1974 (linear) and 2339 (rbf) for TNFRSF14 - BCL2L13; 2280 (laplace), 2424 (linear) and 2301 (rbf) for TNFRSF21 - BCL2L13; 2429 (linear) and 1803 (rbf) for TNFSF10 - BCL2L13; and 2438 (linear) and 2252 (rbf) for TNFSF15 - BCL2L13; BCL3 was up regulated w.r.t TNFRSF10B. This is reflected in rankings of 2427 (laplace) and 1868 (rbf). BCL6 was up regulated w.r.t TNF, TNF-AIP1/AIP2/RSF1A/RSF10A/RSF10D/RSF21. These are reflected in rankings of 2271 (laplace), 2071 (linear) and 1810 (rbf) for TNF - BCL6; 2135 (laplace) and 2158 (linear) for TNFAIP1 - BCL6; 2340 (laplace) 1808 (rbf) for TNFAIP2 - BCL6; 1771 (linear) and 2503 (rbf) for TNFRSF1A - BCL6; and 1831 (linear) and 2096 (rbf) for TNFRSF10A - BCL6; and 2213 (laplace) and 2188 (rbf) for TNFRSF10D - BCL6; and 2071 (linear) and 2335 (rbf) for TNFRSF21 - BCL6; BCL10 was up regulated w.r.t TNF-RSF10D/RSF12A. These are reflected in rankings of 1831 (laplace) and 2040 (rbf) for TNFRSF10D - BCL10; and 2015 (laplace) and 1883 (rbf) for TNFRSF12A - BCL10;
On the right side is the ranking of TNF family w.r.t BCL family. We found TNF-RSF10A/RSF10B/RSF10D/RSF12A/RSF14/SF10 to be up regulated w.r.t BCL2L1. These are reflected in rankings of 2273 (laplace) and 1928 (linear) for TNFRSF10A - BCL2L1; 2252 (linear) and 2217 (rbf) for TNFRSF10B - BCL2L1; 1868 (laplace), 2420 (linear) and 2392 (rbf) for TNFRSF10D - BCL2L1; 1923 (laplace) and 1936 (rbf) for TNFRSF12A - BCL2L1; 2350 (linear) and 2414 (rbf) for TNFRSF14 - BCL2L1 and 2115 (laplace) and 2299 (linear) for TNFSF10 - BCL2L1; TNFRSF10B was up regulated w.r.t BCL2L2. This is reflected in rankings of 2153 (laplace) and 1983 (rbf) for TNFRSF10B - BCL2L2; TNFRSF14 was up regulated w.r.t BCL2L13. This is reflected in rankings of 2459 (laplace) and 2381 (linear) for TNFRSF14 - BCL2L13; TNF-RSF10A/SF10D/SF10 were up regulated w.r.t BCL3. These are reflected in rankings of 2388 (laplace) and 2493 (linear) for TNFRSF10A - BCL3; 2213 (laplace) and 1972 (rbf) for TNFRSF10D - BCL3 and 1926 (laplace) and 2107 (rbf) for TNFSF10 - BCL3; TNFRSF12A was up regulated w.r.t BCL6. This is reflected in rankings of 2200 (linear) and 1910 (rbf) for TNFRSF12A - BCL6; TNF-AIP1/SF10/SF15 was up regulated w.r.t BCL9L. This is reflected in rankings of 2470 (linear) and 1802 (rbf) for TNFAIP1 - BCL9L; 1812 (laplace), 1796 (linear) and 2095 (rbf) for TNFSF10 - BCL9L; and 1939 (laplace), 2114 (linear) and 2405 (rbf) for TNFSF15 - BCL9L; TNFRSF14 was up regulated w.r.t BCL10. This is reflected in rankings of 1894 (linear) and 2227 (rbf) for TNFRSF14 - BCL10;
Table 52. 2nd order combinatorial hypotheses between TNF and BCL family.
Table 52. 2nd order combinatorial hypotheses between TNF and BCL family.
Unexplored combinatorial hypotheses
BCL w.r.t TNF
TNF, TNF-AIP1/RSF1A/RSF10B/RSF10D/RSF12A/RSF14/RSF21/SF10/SF15 BCL2L2
TNF, TNF-AIP1/RSF1A/RSF10A/RSF10D/RSF12A/RSF14/RSF21/SF10/SF15 BCL2L13
TNFRSF10B BCL3
TNF, TNF-AIP1/AIP2/RSF1A/RSF10A/RSF10D/RSF21 BCL6
TNF-RSF10D/RSF12A BCL10
TNF w.r.t BCL
TNF-RSF10A/RSF10B/RSF10D/RSF12A/RSF14/SF10 BCL2L1
TNF-RSF10B BCL2L2
TNF-RSF14 BCL2L13
TNF-RSF10A/SF10D/SF10 BCL3
TNF-RSF12A BCL6
TNF-AIP1 BCL9L
TNF-SF10/SF15 BCL9L
TNF-RSF14 BCL10
One can also interpret the results of the Table 111 graphically, with the following influences - • BCL w.r.t TNF with TNF, TNF-AIP1/RSF1A/RSF10B/RSF10D/RSF12A/RSF14/RSF21/SF10/SF15 -> BCL2L2; TNF, TNF-AIP1/RSF1A/RSF10A/RSF10D/RSF12A/RSF14/RSF21/SF10/SF15 -> BCL2L13; TNFRSF10B -> BCL3; TNF, TNF-AIP1/AIP2/RSF1A/RSF10A/RSF10D/RSF21 -> BCL6; TNF-RSF10D/RSF12A -> BCL10; • TNF w.r.t BCL with TNF-RSF10A/RSF10B/RSF10D/RSF12A/RSF14/SF10 <- BCL2L1; TNF-RSF10B <- BCL2L2; TNF-RSF14 <- BCL2L13; TNF-RSF10A/SF10D/SF10 <- BCL3; TNF-RSF12A <- BCL6; TNF-AIP1 <- BCL9L; TNF-SF10/SF15 <- BCL9L and TNF-RSF14 <- BCL10.

3.4. DNA Repair Related Synergies

3.4.1. XRCC - RAD Cross Family Analysis

X-ray repair cross-complementing protein (XRCC) plays major role in DNA repair process, especially in Double Strand Repair (DBS) Thacker and Zdzienicka [135] and Thacker and Zdzienicka [136]. Sultana et al. [137] observe that ataxia telangiectasia mutated and RAD3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. Della-Maria et al. [138] observe that human Mre11/human RAD50/Nbs1 and DNA ligase IIIα/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. These findings along with multiple published work indicate the joint synergy of XRCC - RAD family. In colorectal cancer cell lines treated with ETC-1922159, both XRCC and RAD members were found to be down regulated. The search engine gave the 2nd order synergies between XRCC - RAD families, low numerical valued ranks to signify plausible synergistic down regulations that might not have been explored. Table 53 shows the rankings of RAD family w.r.t XRCC family and Table 54 shows the rankings of the XRCC family w.r.t RAD family. In Table 53 we found RAD-18/51/51AP1/51C/54B/54L to be down regulated w.r.t XRCC1. These are reflected with rankings of 1027 (laplace), 456 (linear) and 1355 (rbf) for RAD-18 - XRCC1; 282 (laplace), 365 (linear) and 1003 (rbf) for RAD51 - XRCC1; 753 (laplace), 5 (linear) and 27 (rbf) for RAD51AP1 - XRCC1; 337 (laplace), 111 (linear) and 968 (rbf) for RAD51C - XRCC1; 175 (laplace), 224 (linear) and 78 (rbf) for RAD54B - XRCC1; and 327 (laplace), 889 (linear) and 709 (rbf) for RAD54L - XRCC1. RAD-18/51/51AP1/51C/54B/54L were also found to be down regulated w.r.t XRCC2. These are reflected in 1388 (laplace), 847 (linear) and 765 (rbf) for XRCC2 - RAD18; 1247 (laplace), 1033 (linear) and 629 (rbf) for XRCC2 - RAD51; 302 (laplace); 247 (linear) and 42 (rbf) for XRCC2 - RAD51AP1; 1079 (laplace), 674 (linear) and 323 (rbf) for XRCC2 - RAD51C; 387 (laplace), 566 (linear) and 506 (rbf) for XRCC2 - RAD54B; and 976 (laplace), 918 (linear) and 847 (rbf) for XRCC2 - RAD54L. RAD-18/51/51AP1/51C/54B/54L were found to be down regulated with w.r.t XRCC6. These are reflected in 541 (laplace), 25 (linear) and 1068 (rbf) for RAD18 - XRCC6; 608 (laplace), 425 (linear) and 900 (rbf) for RAD51 - XRCC6; 216 (laplace), 67 (linear) and 83 (rbf) for RAD51AP1 - XRCC6; 426 (laplace), 865 (linear) and 503 (rbf) for RAD51C - XRCC6; 3 (laplace), 610 (linear) and 112 (rbf) for RAD54B - XRCC6; and 85 (laplace), 252 (linear) and 432 (rbf) for RAD54L - XRCC6. RAD-1/18/50/51/51AP1/51C/54B/54L were found to be down regulated w.r.t XRCC6BP1. These are reflected in 1167 (laplace) and 308 (rbf) for RAD1 - XRCC6BP1; 656 (linear) and 1612 (rbf) for RAD18 - XRCC6BP1; 1302 (laplace) and 328 (rbf) for XRCC6BP1 - RAD50; 435 (laplace), 495 (linear) and 1275 (rbf) for RAD51 - XRCC6BP1; 81 (laplace), 177 (linear) and 73 (rbf) for RAD51AP1 - XRCC6BP1; 645 (laplace), 1366 (linear) and 1414 (rbf) for RAD51C - XRCC6BP1; 154 (laplace), 693 (linear) and 1398 (rbf) for RAD54B - XRCC6BP1; and 420 (linear) and 1060 (rbf) for RAD54L - XRCC6BP1;
In Table 54 we found XRCC-2/6BP1 to be down regulated w.r.t RAD1. These are reflected in 62 (laplace), 498 (linear) and 1231 (rbf) for RAD1 - XRCC2; and 764 (laplace) and 1325 (rbf) for RAD1 - XRCC6BP1. XRCC-1/2/6 were found to be down regulated with w.r.t RAD18. These are reflected in 927 (laplace) and 200 (rbf) for RAD18 - XRCC1; 506 (laplace) and 1517 (rbf) for RAD18 - XRCC2; and 279 (laplace) and 804 (rbf) for RAD18 - XRCC6; XRCC-2/6BP1 were found to be down regulated w.r.t RAD50. These are reflected in rankings of 53 (laplace), 244 (linear) and 147 (rbf) for XRCC-2 - RAD50; and 1375 (linear) and 1366 (rbf) for RAD50 - XRCC6BP1. XRCC-6/6BP1 were found to be down regulated w.r.t RAD51; These are reflected in rankings of 80 (laplace) and 1244 (linear) for XRCC6 - RAD51; and 792 (laplace), 951 (linear) and 1595 (rbf) for XRCC6BP1 - RAD51. XRCC-2/6BP1 were found to be down regulated w.r.t RAD51AP1. These were reflected in 78 (laplace), 112 (linear) and 351 (rbf) for XRCC2 - RAD51AP1; and 936 (linear) and 974 (rbf) for XRCC6BP1 - RAD51AP1; XRCC2 was found to be down regulated w.r.t RAD51C. This are reflected in 1695 (laplace), 932 (linear) and 520 (rbf) for XRCC2 - RAD51C. XRCC2 was found to be down regulated w.r.t RAD54B. This is reflected in rankings of 1554 (laplace), 744 (linear) and 620 (rbf) for XRCC2 - RAD54B. XRCC-1/2/6/6BP1 were found to be down regulated w.r.t RAD54L. These are reflected in rankings of 657 (linear) and 525 (rbf) for XRCC1 - RAD54L; 167 (laplace) and 565 (rbf) for XRCC2 - RAD54L; 496 (linear) and 1247 (rbf) for XRCC6 - RAD54L; and 1389 (laplace), 1227 (linear) and 1454 (rbf) for RAD54L - XRCC6BP1;
Table 54. 2nd order interaction ranking between XRCC w.r.t RAD family members.
Table 54. 2nd order interaction ranking between XRCC w.r.t RAD family members.
Ranking XRCC family w.r.t RAD family
Ranking of XRCC w.r.t RAD1 Ranking of XRCC w.r.t RAD18
laplace linear rbf laplace linear rbf
RAD1 - XRCC1 1751 1808 793 RAD18 - XRCC1 927 2669 200
XRCC2 - RAD1 62 498 1231 XRCC2 - RAD18 506 1844 1517
XRCC6 - RAD1 2736 2511 1284 RAD18 - XRCC6 279 2193 804
RAD1 - XRCC6BP1 764 2108 1325 RAD18 - XRCC6BP1 819 1954 1976
Ranking of XRCC w.r.t RAD50 Ranking of XRCC w.r.t RAD51
laplace linear rbf laplace linear rbf
XRCC1 - RAD50 2573 2374 2497 RAD51 - XRCC1 1673 1818 2611
XRCC2 - RAD50 53 244 147 XRCC2 - RAD51 472 2348 1973
XRCC6 - RAD50 2615 2568 2582 RAD51 - XRCC6 80 1244 2595
RAD50 - XRCC6BP1 1962 1375 1366 RAD51 - XRCC6BP1 792 951 1595
Ranking of XRCC w.r.t RAD51AP1 Ranking of XRCC w.r.t RAD51C
laplace linear rbf laplace linear rbf
XRCC1 - RAD51AP1 1802 2732 801 RAD51C - XRCC1 2282 1846 2026
XRCC2 - RAD51AP1 78 112 351 XRCC2 - RAD51C 1695 932 520
XRCC6 - RAD51AP1 2653 2439 347 RAD51C - XRCC6 2545 1848 1858
RAD51AP1 - XRCC6BP1 1790 936 974 RAD51C - XRCC6BP1 2325 1070 1844
Ranking of XRCC w.r.t RAD54B Ranking of XRCC w.r.t RAD54L
laplace linear rbf laplace linear rbf
XRCC1 - RAD54B 2475 2670 1824 RAD54L - XRCC1 1834 657 525
XRCC2 - RAD54B 1554 744 620 XRCC2 - RAD54L 2564 167 565
XRCC6 - RAD54B 2505 2709 2604 RAD54L - XRCC6 2597 496 1247
RAD54B - XRCC6BP1 1932 2504 2170 RAD54L - XRCC6BP1 1389 1227 1454
Table 55 shows the derived influences which can be represented graphically, with the following influences - • RAD w.r.t XRCC with RAD-18/51/51AP1/51C/54B/54L <- XRCC1; RAD-18/51/51AP1/51C/54B/54L <- XRCC2; RAD-18/51/51AP1/51C/54B/54L <- XRCC6 and RAD-1/18/50/51/51AP1/51C/54B/54L <- XRCC6BP1; •; XRCC w.r.t RAD with RAD1 -> XRCC-2/6BP1; RAD18 -> XRCC-1/2/6; RAD50 -> XRCC-2/6BP1; RAD51 -> XRCC-6/6BP1; RAD51AP1 -> XRCC-2/6BP1; RAD51C -> XRCC-2; RAD54B -> XRCC-2; RAD54L -> XRCC-1/2/6/6BP1;
Table 55. 2nd order combinatorial hypotheses between RAD and XRCC.
Table 55. 2nd order combinatorial hypotheses between RAD and XRCC.
Unexplored combinatorial hypotheses
RAD w.r.t XRCC family
RAD-18/51/51AP1/51C/54B/54L XRCC1
RAD-18/51/51AP1/51C/54B/54L XRCC2
RAD-18/51/51AP1/51C/54B/54L XRCC6
RAD-1/18/50/51/51AP1/51C/54B/54L XRCC6BP1
XRCC w.r.t RAD family
RAD1 XRCC-2/6BP1
RAD18 XRCC-1/2/6
RAD50 XRCC-2/6BP1
RAD51 XRCC-6/6BP1
RAD51AP1 XRCC-2/6BP1
RAD51C XRCC-2
RAD54B XRCC-2
RAD54L XRCC-1/2/6/6BP1

3.4.2. XRN2 - RAD Cross Family Analysis

XRN2 (5’-3’ exoribonuclease 2) is involved in RNA synthesis/trafficking and termination. Morales et al. [139] observe that XRN2 links transcription termination to DNA damage and replication stress. They found an increase in the amount of RAD51 foci in shXRN2 cells compared to controls, suggesting that cells depleted of XRN2 are subjected to an increased level of basal DNA damage and show that loss of XRN2 also leads to the focal accumulation of several factors required for homologous recombination, such as ATM, BRCA1 and RAD51. This definitely shows that there is synergy between the XRN2 and RAD51. We found that both the XRN2 and RAD families were down regulated in CRC cell after ETC-1922159 treatment. The search engine gave rankings to the combinations of the XRN2 and RAD family members with low numerical valued in silico ranks. Table 56 shows the rankings of XRN2 w.r.t RAD family and vice versa. Following this is the derived influences in Table 57. We find RAD-51AP1/51/54L/51C/18/54B to be down regulated w.r.t XRN2. These are reflected in rankings of 340 (laplace), 545 (linear) and 290 (rbf) for RAD51AP1 - XRN2; 387 (laplace), 560 (linear) and 605 (rbf) for XRN2 - RAD51; 594 (laplace), 827 (linear) and 879 (rbf) for XRN2 - RAD54L; 639 (laplace), 1236 (linear) and 745 (rbf) for XRN2 - RAD51C; 794 (laplace), 688 (linear) and 804 (rbf) for XRN2 - RAD18; 255 (linear) and 122 (rbf) for XRN2 - RAD1 and 951 (laplace), 165 (linear) and 34 (rbf) for XRN2 - RAD54B; On the other hand, XRN2 was found to be down regulated w.r.t RAD family. These are reflected in rankings of 255 (laplace) and 122 (rbf) for XRN2 - RAD1; 1256 (linear) and 852 (rbf) for XRN2 - RAD51AP1; 1541 (laplace) and 1246 (linear) for XRN2 - RAD54L and 1037 (laplace) and 1777 (linear) for XRN2 - RAD51C. Graphical depiction of XRN2 and RAD family dependencies is shown as • RAD w.r.t XRN2 with XRN2 -> RAD-51AP1/51/54L/51C/18/54B and • XRN2 w.r.t RAD with XRN2 <- RAD1; XRN2 <- RAD51AP1; XRN2 <- RAD54L; XRN2 <- RAD51C;
Table 57 shows the derived influences which can be represented graphically, with the following influences - • RAD w.r.t XRN2 with XRN2 -> RAD-51AP1/51/54L/51C/18/54B; and • XRN2 w.r.t RAD with XRN2 <- RAD-1/51AP1/54L/51C.
Table 57. 2nd order combinatorial hypotheses between RAD and XRN2.
Table 57. 2nd order combinatorial hypotheses between RAD and XRN2.
Unexplored combinatorial hypotheses
RAD w.r.t XRN2
XRN2 RAD-51AP1/51/54L/51C/18/54B
XRN2 w.r.t RAD
XRN2 RAD1
XRN2 RAD51AP1
XRN2 RAD54L
XRN2 RAD51C

3.4.3. NKRF - RAD Cross Family Analysis

Not much is known about the NKRF (NF-κB-repressing factor) and RAD members. We found the combinations to be down regulated by the search engine between NKRF and RAD family. Table 58 shows the rankings of NKRF and RAD family. We found NKRF down regulated w.r.t RAD family. These are reflected in rankings of 1724 (laplace), 1642 (linear) and 649 (rbf) for RAD51AP1 <- NKRF; 982 (laplace), 1724 (linear) and 1352 (rbf) RAD51 <- NKRF; 1727 (laplace), 1387 (linear) and 1120 (rbf) for RAD54L <- NKRF; 1568 (laplace), 472 (linear) and 1505 (rbf) for RAD51C <- NKRF; 1508 (laplace), 615 (linear) and 405 (rbf) for RAD18 <- NKRF; and 1476 (laplace), 1189 (linear) and 1534 (rbf) for RAD54B <- NKRF;
Also, we found RAD family to be down regulated w.r.t NKRF. These are reflected in rankings of 157 (laplace) and 553 (linear) for RAD51AP1 - NKRF; 439 (laplace), 1441 (linear) and 1606 (rbf) for RAD51 - NKRF; 117 (laplace), 1175 (linear) and 1415 (rbf) for RAD54L - NKRF; 418 (laplace), and 1653 (rbf) for RAD51C - NKRF; 164 (laplace) and 1509 (rbf) for RAD18 - NKRF; 1391 (laplace), 1115 (linear) and 735 (rbf) NKRF - RAD1; 1354 (laplace), 851 (linear) and 824 (rbf) for NKRF - RAD50;
Table 58. 2nd order interaction ranking between RAD family vs NKRF.
Table 58. 2nd order interaction ranking between RAD family vs NKRF.
Ranking NKRF w.r.t RAD family
Ranking of NFRK w.r.t RAD family Ranking of RAD family w.r.t NKRF
laplace linear rbf laplace linear rbf
RAD51AP1 - NKRF 1724 1642 649 RAD51AP1 - NKRF 157 553 2561
RAD51 - NKRF 982 1724 1352 RAD51 - NKRF 439 1441 1606
RAD54L - NKRF 1727 1387 1120 RAD54L - NKRF 117 1175 1415
RAD51C - NKRF 1568 472 1505 RAD51C - NKRF 418 2178 1653
RAD18 - NKRF 1508 615 405 RAD18 - NKRF 164 2306 1509
RAD1 - NKRF 2667 2222 1181 NKRF - RAD1 1391 1115 735
RAD54B - NKRF 1476 1189 1534 RAD54B - NKRF 207 1869 2244
RAD50 - NKRF 2003 2343 2511 NKRF - RAD50 1354 851 824
Table 59 shows the derived influences which can be represented graphically, with the following influences - • RAD w.r.t NKRF with RAD51AP1 <- NKRF; RAD51 <- NKRF; RAD54L <- NKRF; RAD51C <- NKRF; RAD18 <- NKRF; RAD1 <- NKRF; RAD54B <- NKRF and • NKRF w.r.t RAD with RAD51AP1 -> NKRF; RAD51 -> NKRF; RAD54L -> NKRF; RAD51C -> NKRF; RAD18 -> NKRF; NKRF -> RAD1; NKRF -> RAD50.

3.4.4. RAD - BCL Cross Family Analysis

Saintigny et al. [140] show a specific role of BCL2 in suppression of the RAD51 recombination pathway. They observe that BCL2 consistently inhibits recombination stimulated by RAD51 overexpression and alters RAD51 protein by post-translation modification. Based on the findings that CARD9 and BCL10 acted together to activate NF-κB following cytosolic DNA sensing, Meng et al. [141] demonstrated that BCL10 was recruited to the dsDNA–RAD50 complexes in a CARD9-dependent manner. These mechanisms point to a synergy between BCL and RAD family. In CRC cells treated with ETC-1922159, BCL and RAD family members were found to be down regulated. The search engine alloted the combinations of RAD and BCL low numerical valued ranks pointing to possible synergistic down regulations. Table 60 shows rankings of BCL and RAD w.r.t to each other. The left half of the Table points to rankings of BCL family w.r.t RAD family. The right half of the Table points to rankings of RAD family w.r.t BCL family.
On the left side, BCL2L12 was found to be down regulated w.r.t RAD-1/18/50/51/51C/54B/54L. These are reflected in rankings of 1530 (linear) and 1401 (rbf) for RAD1 - BCL2L12; 675 (laplace) and 1312 (rbf) for RAD18 - BCL2L12; 1151 (linear) and 929 (rbf) for RAD50 - BCL2L12; 1234 (laplace) and 1334 (linear) for RAD51 - BCL2L12; 1561 (laplace) and 1647 (rbf) for RAD51C - BCL2L12; 1329 (linear) and 1625 (rbf) for RAD54B - BCL2L12, and 821 (linear) and 210 (rbf) for RAD54L - BCL2L12; BCL6B was found to be down regulated w.r.t RAD-1/18/50/51/51AP1/51C/54B/54L. 194 (laplace), 481 (linear) and 102 (rbf) for RAD1 - BCL6B; 176 (linear) and 929 (rbf) for RAD18 - BCL6B; 860 (laplace), 87 (linear) and 74 (rbf) for RAD50 - BCL6B; 263 (linear) and 58 (rbf) for RAD51 - BCL6B; 723 (laplace), 428 (linear) and 579 (rbf) for RAD51AP1 - BCL6B; 660 (laplace), 521 (linear) and 1609 (rbf) for RAD51C - BCL6B; 708 (laplace), 596 (linear) and 647 (rbf) for RAD54B - BCL6B; and 108 (laplace) and 1326 (rbf) for RAD54L - BCL6B; BCL7A was found to be down regulated w.r.t RAD-1/18/50/51/54L. These are reflected in rankings of 690 (laplace) and 1202 (rbf) for BCL7A - RAD1; 385 (laplace) and 185 (rbf) for BCL7A - RAD18; 137 (laplace), 601 (linear) and 41 (rbf) for RAD50 - BCL7A; 514 (laplace) and 1694 (linear) for BCL7A - RAD51; 1519 (laplace), 418 (linear) and 842 (rbf) for RAD54L - BCL7A; BCL9 was found to be down regulated w.r.t RAD-18/51/51C/54L. These are reflected in rankings for 461 (laplace) and 1453 (linear) for RAD18 - BCL9; 1143 (linear) and 95 (rbf) for RAD51 - BCL9; 956 (laplace) and 376 (rbf) for RAD51C - BCL9; 1450 (laplace), 1096 (linear) and 400 (rbf) for RAD54L - BCL9; BCL11A was found to be down regulated w.r.t RAD-1/18/50/51/51AP1/51C/54B. These are reflected in rankings of 1069 (laplace), 507 (linear) and 1267 (rbf) for RAD1 - BCL11A; 1561 (laplace), 169 (linear) and 692 (rbf) for RAD18 - BCL11A; 582 (laplace), 1144 (linear) and 1047 (rbf) for RAD50 - BCL11A; 1120 (laplace), 752 (linear) and 645 (rbf) for RAD51AP1 - BCL11A; 1024 (laplace), 199 (linear) and 899 (rbf) for RAD51C - BCL11A; and 1037 (laplace), 917 (linear) and 867 (rbf) for RAD54B - BCL11A. BCL11B was found to be down regulated w.r.t RAD-50/51/51AP1/54B/54L. These are reflected in rankings of 1198 (linear) and 903 (rbf) for RAD50 - BCL11B; 449 (linear) and 971 (rbf) for RAD51 - BCL11B; 1247 (laplace), 908 (linear) and 1671 (rbf) for RAD51AP1 - BCL11B; 1193 (laplace), 1192 (linear) and 832 (rbf) for RAD54B - BCL11B and 1421 (laplace) and 1385 (linear) for RAD54L - BCL11B.
Table 60. 2nd order interaction ranking between RAD and BCL family members.
Table 60. 2nd order interaction ranking between RAD and BCL family members.
Ranking RAD family VS BCL family
Ranking of BCL2L12 w.r.t RAD family Ranking of RAD family w.r.t BCL2L12
laplace linear rbf laplace linear rbf
RAD1 - BCL2L12 1797 1530 1401 RAD1 - BCL2L12 1958 2120 1957
RAD18 - BCL2L12 675 2437 1312 RAD18 - BCL2L12 779 652 1388
RAD50 - BCL2L12 2080 1151 929 RAD50 - BCL2L12 1668 2566 1703
RAD51 - BCL2L12 1234 1334 2350 RAD51 - BCL2L12 1164 365 1213
RAD51AP1 - BCL2L12 2267 2500 2265 RAD51AP1 - BCL2L12 306 57 28
RAD51C - BCL2L12 1561 2384 1647 RAD51C - BCL2L12 495 1191 429
RAD54B - BCL2L12 1979 1329 1625 RAD54B - BCL2L12 678 432 787
RAD54L - BCL2L12 2446 821 210 RAD54L - BCL2L12 901 1128 263
Ranking of BCL6B w.r.t RAD family Ranking of RAD family w.r.t BCL6B
laplace linear rbf laplace linear rbf
RAD1 - BCL6B 194 481 102 RAD1 - BCL6B 2110 2151 2059
RAD18 - BCL6B 1790 176 929 RAD18 - BCL6B 1113 640 482
RAD50 - BCL6B 860 87 74 RAD50 - BCL6B 2164 2412 2581
RAD51 - BCL6B 2324 263 58 RAD51 - BCL6B 287 681 497
RAD51AP1 - BCL6B 723 428 579 RAD51AP1 - BCL6B 1607 1638 916
RAD51C - BCL6B 660 521 1609 RAD51C - BCL6B 43 871 999
RAD54B - BCL6B 708 596 647 RAD54B - BCL6B 1212 1392 1170
RAD54L - BCL6B 108 2684 1326 RAD54L - BCL6B 1867 1009 785
Ranking of BCL7A w.r.t RAD family Ranking of RAD family w.r.t BCL7A
laplace linear rbf laplace linear rbf
RAD1 - BCL7A 690 1791 1202 RAD1 - BCL7A 1989 2101 1804
RAD18 - BCL7A 385 2366 185 RAD18 - BCL7A 1514 1515 783
RAD50 - BCL7A 137 601 417 RAD50 - BCL7A 2123 1771 2085
RAD51 - BCL7A 514 1694 2361 RAD51 - BCL7A 879 274 639
RAD51AP1 - BCL7A 2440 2609 774 RAD51AP1 - BCL7A 412 416 4
RAD51C - BCL7A 2726 2448 983 RAD51C - BCL7A 215 394 461
RAD54B - BCL7A 2729 1830 2743 RAD54B - BCL7A 809 1407 213
RAD54L - BCL7A 1519 418 842 RAD54L - BCL7A 435 783 1499
Ranking of BCL9 w.r.t RAD family Ranking of RAD family w.r.t BCL9
laplace linear rbf laplace linear rbf
RAD1 - BCL9 1296 2418 1775 RAD1 - BCL9 1749 2528 1391
RAD18 - BCL9 461 1952 1453 RAD18 - BCL9 656 1194 482
RAD50 - BCL9 2338 2653 2559 RAD50 - BCL9 2220 1441 1098
RAD51 - BCL9 1748 1143 952 RAD51 - BCL9 622 929 860
RAD51AP1 - BCL9 1861 2280 786 RAD51AP1 - BCL9 331 61 102
RAD51C - BCL9 956 2741 376 RAD51C - BCL9 1113 417 1154
RAD54B - BCL9 2063 2375 1050 RAD54B - BCL9 1045 53 650
RAD54L - BCL9 1450 1096 400 RAD54L - BCL9 636 602 934
Ranking of BCL11A w.r.t RAD family Ranking of RAD family w.r.t BCL11A
laplace linear rbf laplace linear rbf
RAD1 - BCL11A 1069 507 1267 RAD1 - BCL11A 1430 1475 1584
RAD18 - BCL11A 1561 169 692 RAD18 - BCL11A 465 164 1952
RAD50 - BCL11A 582 1144 1047 RAD50 - BCL11A 2649 875 1226
RAD51 - BCL11A 1722 2073 339 RAD51 - BCL11A 255 2064 2461
RAD51AP1 - BCL11A 1120 752 645 RAD51AP1 - BCL11A 659 388 496
RAD51C - BCL11A 1024 199 899 RAD51C - BCL11A 363 1673 97
RAD54B - BCL11A 1037 917 867 RAD54B - BCL11A 581 2743 799
RAD54L - BCL11A 172 2193 2318 RAD54L - BCL11A 846 2733 209
Ranking of BCL11B w.r.t RAD family Ranking of RAD family w.r.t BCL11B
laplace linear rbf laplace linear rbf
RAD1 - BCL11B 2371 2360 43 RAD1 - BCL11B 2571 230 1373
RAD18 - BCL11B 1741 993 2677 RAD18 - BCL11B 1747 2028 14
RAD50 - BCL11B 2010 1198 903 RAD50 - BCL11B 919 860 2263
RAD51 - BCL11B 2067 449 971 RAD51 - BCL11B 1095 1238 2373
RAD51AP1 - BCL11B 1247 908 1671 RAD51AP1 - BCL11B 196 2646 987
RAD51C - BCL11B 1736 1234 2282 RAD51C - BCL11B 1122 1844 1161
RAD54B - BCL11B 1193 1192 832 RAD54B - BCL11B 363 2150 1561
RAD54L - BCL11B 1421 1385 1854 RAD54L - BCL11B 579 2543 159
On the right side, w.r.t BCL2L12, RAD-18/50/51/51AP1/51C/54B/54L were found to be down regulated. These are found in the rankings of 779 (laplace), 652 (linear) and 1388 (rbf) for RAD18 - BCL2L12; 1668 (laplace), 2566 (linear) and 1703 (rbf) for RAD50 - BCL2L12; 1164 (laplace), 365 (linear), 1213 (rbf) for RAD51 - BCL2L12; 306 (laplace), 57 (linear) and 28 (rbf) for RAD51AP1 - BCL2L12; 495 (laplace), 1191 (linear) and 429 (rbf) for RAD51C - BCL2L12; 678 (laplace), 432 (linear) and 787 (rbf) for RAD54B - BCL2L12; and 901 (laplace), 1128 (linear) and 263 (rbf) for RAD54L - BCL2L12; w.r.t BCL6B, RAD-18/51/51AP1/51C/54B/54L were found to be down regulated. These are reflected in rankings of 1113 (laplace), 640 (linear) and 482 (rbf) for RAD18 - BCL6B; 287 (laplace), 681 (linear) and 497 (rbf) for RAD51 - BCL6B; 1607 (laplace), 1638 (linear) and 916 (rbf) for RAD51AP1 - BCL6B; 43 (laplace), 871 (linear) and 999 (rbf) for RAD51C - BCL6B; 1212 (laplace), 1392 (linear) and 1170 (rbf) for RAD54B - BCL6B; and 1009 (linear) and 785 (rbf) for RAD54L - BCL6B; w.r.t BCL7A, RAD-18/51/51AP1/51C/54B/54L were found to be down regulated. These are reflected in rankings of 1514 (laplace), 1515 (linear), 783 (rbf) for RAD18 - BCL7A; 879 (laplace), 274 (linear) and 639 (rbf) for RAD51 - BCL7A; 412 (laplace), 416 (linear) and 4 (rbf) for RAD51AP1 - BCL7A; 215 (laplace), 394 (linear) and 461 (rbf) for RAD51C - BCL7A; 809 (laplace), 1407 (linear) and 213 (rbf) for RAD54B - BCL7A and 435 (laplace), 783 (linear) and 1499 (rbf) for RAD54L - BCL7A. w.r.t BCL9, RAD-18/50/51/51AP1/51C/54B/54L were found to be down regulated. These are reflected in the rankings of 656 (laplace), 1194 (linear) and 482 (rbf) for RAD18 - BCL9; 1441 (linear) and 1098 (rbf) for RAD50 - BCL9; 622 (laplace), 929 (linear), 860 (rbf) for RAD51 - BCL9; 331 (laplace), 61 (linear) and 102 (rbf) for RAD51AP1 - BCL9; 1113 (laplace), 417 (linear) and 1154 (rbf) for RAD51C - BCL9; 1045 (laplace), 53 (linear) and 650 (rbf) for RAD54B - BCL9 and 636 (laplace), 602 (linear) and 934 (rbf) for RAD54L - BCL9. w.r.t BCL11A, RAD-1/18/50/51/51AP1/51C/54B/54L were found to be down regulated. These are reflected in 1430 (laplace), 1475 (linear) and 1584 (rbf) for RAD1 - BCL11A; 465 (laplace) and 164 (linear) for RAD18 - BCL11A; 875 (linear) and 1226 (rbf) for RAD50 - BCL11A; 659 (laplace), 388 (linear) and 496 (rbf) for RAD51AP1 - BCL11A; 363 (laplace), 1673 (linear) and 97 (rbf) for RAD51C - BCL11A; 581 (laplace) and 799 (rbf) for RAD54B - BCL11A; and 846 (laplace) and 209 (rbf) for RAD54L - BCL11A; w.r.t BCL11B, RAD-1/50/51/51AP1/51C/54B/54L were found to be down regulated. These are reflected in rankings of 230 (linear) and 1373 (rbf) RAD1 - BCL11B; 919 (laplace) and 860 (linear) for RAD50 - BCL11B; 1095 (laplace) and 1238 (linear) RAD51 - BCL11B; 196 (laplace) and 987 (rbf) for RAD51AP1 - BCL11B; 1122 (laplace) and 1161 (rbf) for RAD51C - BCL11Bl; 363 (laplace) and 1561 (rbf) for RAD54B - BCL11B; 579 (laplace), 2543 (linear) and 159 (rbf) for RAD54L - BCL11B.
Table 61 shows the derived influences which can be represented graphically, with the following influences - • RAD w.r.t BCL with RAD-18/50/51/51AP1/51C/54B/54L <- BCL-2L12; RAD-18/51/51AP1/51C/54B/54L <- BCL-6B; RAD-18/51/51AP1/51C/54B/54L <- BCL-7A; RAD-18/50/51/51AP1/51C/54B/54L <- BCL-9; RAD-1/18/50/51/51AP1/51C/54B/54L <- BCL-11A; RAD-1/50/51/51AP1/51C/ 54B/54L <- BCL-11B; and • BCL w.r.t RAD with RAD-1/18/50/51/51C/54B/54L -> BCL-2L12; RAD-1/18/50/51/51AP1/51C/54B/54L -> BCL-6B; RAD-1/18/50/51/54L -> BCL-7A; RAD-18/51/51C/54L -> BCL-9; RAD-1/18/50/51/51AP1/51C/54B -> BCL-11A; and RAD-50/51/51AP1/54B/54L -> BCL-11B.

3.4.5. RAD - EXOSC Cross Family Analysis

Marin-Vicente et al. [142] show that RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination. The authors results suggest that ribonucleolytic activity of RRP6/EXOSC10 is required for the recruitment of RAD51 to DSBs. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated in vitro by the strong knockdown of RAD51, a prospective therapeutic target for cancer cells (Shtam et al. [143]). These findings point to the synergy between EXOSC and RAD family. In CRC cells treated with ETC-1922159, they were down regulated and the search engine allocated low numerical rankings for combinations, thus pointing to possible synergistic down regulation. Table 62 shows the rankings of the EXOSC and RAD family w.r.t to each other. On the left half of the Table is the rankings of EXOSC w.r.t RAD family. EXOSC2 was found to be down regulated w.r.t RAD-1/18/50/51/51AP1/51C/54B/54L. These are reflected in rankings of 1033 (laplace), 1311 (linear) and 1207 (rbf) for EXOSC2 - RAD1; 1210 (laplace) and 995 (linear) for EXOSC2 - RAD18; 1124 (laplace), 698 (linear) and 629 (rbf) for EXOSC2 - RAD50; 1754 (laplace), 191 (linear) and 633 (rbf) and for EXOSC2 - RAD51; 198 (laplace) and 1462 (linear) for EXOSC2 - RAD51AP1; 87 (laplace), 463 (linear) and 1130 (rbf) for EXOSC2 - RAD51C; 351 (laplace), 135 (linear) and 142 (rbf) for EXOSC2 - RAD54B; and 1131 (laplace), 1652 (linear) and 320 (rbf) for EXOSC2 - RAD54L. EXOSC3 was found to be down regulated w.r.t RAD-1/18/51/51AP1/54L. These are reflected in rankings of 1677 (linear) and 549 (rbf) for EXOSC3 - RAD1; 1676 (laplace) and 184 (rbf) for EXOSC3 - RAD18; 894 (laplace) and 1066 (linear) for EXOSC3 - RAD51; 1037 (linear) and 804 (rbf) for EXOSC3 - RAD51AP1, and 469 (linear) and 736 (rbf) for EXOSC3 - RAD54L. EXOSC5 was found to be down regulated w.r.t RAD-1/18/50/51/51AP1/51C/54B/54L. These are reflected in rankings of 568 (laplace), 1169 (linear) and 1699 (rbf) for EXOSC5 - RAD1; 219 (linear) and 1652 (rbf) for EXOSC5 - RAD18; 447 (laplace), 195 (linear) and 475 (rbf) for EXOSC5 - RAD50; 431 (linear) and 1121 (rbf) for EXOSC5 - RAD51; 1290 (laplace), 487 (linear) and 430 (rbf) for EXOSC5 - RAD51AP1; 1284 (laplace) and 1264 (linear) for EXOSC5 - RAD51C; 940 (laplace), 812 (linear) and 1036 (rbf) for EXOSC5 - RAD54B; and 408 (laplace) and 1407 (rbf) for EXOSC5 - RAD54L; EXOSC6 was found to be down regulated w.r.t RAD-18/51/54L. These were reflected in rankings of 1637 (laplace), 1599 (linear) and 2254 (rbf) for EXOSC6 - RAD18; 1056 (laplace), 1482 (linear) and 1007 (rbf) for EXOSC6 - RAD51; and 987 (laplace) and 1642 (rbf) for EXOSC6 - RAD54L; EXOSC7 was found to be down regulated w.r.t RAD-1/18/51C/54B/54L. These are reflected in rankings of 1735 (linear) and 1210 (rbf) for EXOSC7 - RAD1; 490 (laplace), 1688 (linear) and 1331 (rbf) for EXOSC7 - RAD18; 1113 (laplace), 1623 (linear) and 530 (rbf) for EXOSC7 - RAD51C; 1612 (linear) and 1191 (rbf) for EXOSC7 - RAD54B; and 1550 (laplace), 1754 (linear) and 1728 (rbf) for EXOSC7 - RAD54L; EXOSC8 was found to be down regulated w.r.t RAD-18/51/51AP1/54B/54L. These are reflected in 805 (laplace) and 1564 (rbf) for EXOSC8 - RAD18; 404 (laplace) and 1630 (linear) for EXOSC8 - RAD51; 1567 (linear) and 1701 (rbf) for EXOSC8 - RAD51AP1; 1562 (laplace) and 1736 (rbf) for EXOSC8 - RAD54B; and 1248 (laplace), 622 (linear) and 239 (rbf) for EXOSC8 - RAD54L; EXOSC9 was found to be down regulated w.r.t RAD-1/18/50/51/51C/54B/54L. These are reflected in rankings of 175 (linear) and 1648 (rbf) for EXOSC9 - RAD1; 1533 (laplace), 774 (linear) and 1180 (rbf) for EXOSC9 - RAD18; 545 (laplace), 183 (linear) and 467 (rbf) for EXOSC9 - RAD50; 866 (laplace), 106 (linear) and 99 (rbf) for EXOSC9 - RAD51; 110 (laplace), 742 (linear) and 200 (rbf) for EXOSC9 - RAD51C; 179 (laplace), 178 (linear) and 84 (rbf) for EXOSC9 - RAD54B and 1113 (laplace) and 22 (rbf) for EXOSC9 - RAD54L;
On the right half of the Table is the rankings of RAD family w.r.t EXOSC. RAD-18/51/51C/54B/54L was found to be down regulated w.r.t EXOSC2. These are reflected in rankings of 1115 (laplace), 979 (linear) and 654 (rbf) for EXOSC2 - RAD18; 795 (laplace), 1332 (linear) and 441 (rbf) for EXOSC2 - RAD51; 636 (laplace), 564 (linear) and 152 (rbf) for EXOSC2 - RAD51C; 278 (laplace), 132 (linear) and 282 (rbf) for EXOSC2 - RAD54B and 125 (laplace), 888 (linear) and 545 (rbf) for EXOSC2 - RAD54L. RAD-18/50/51/51AP1/51C/54B/54L was found to be down regulated w.r.t EXOSC3. These are reflected in rankings of 1468 (linear) and 767 (rbf) for EXOSC3 - RAD18; 1062 (laplace) and 596 (linear) for EXOSC3 - RAD50; 727 (laplace), 583 (linear) and 963 (rbf) for EXOSC3 - RAD51; 100 (laplace), 49 (linear) and 219 (rbf) for EXOSC3 - RAD51AP1; 663 (laplace), 869 (linear) and 887 (rbf) for EXOSC3 - RAD51C; 384 (laplace), 277 (linear) and 310 (rbf) for EXOSC3 - RAD54B and 546 (laplace), 1117 (linear) and 808 (rbf) for EXOSC3 - RAD54L; RAD-1/18/51/51AP1/51C/54B/54L was found to be down regulated w.r.t EXOSC5. These are reflected in rankings of 1716 (linear) and 1718 (rbf) for EXOSC5 - RAD1; 1026 (laplace), 550 (linear) and 253 (rbf) for EXOSC5 - RAD18; 260 (laplace), 1095 (linear) and 137 (rbf) for EXOSC5 - RAD51; 1555 (laplace) and 976 (rbf) for EXOSC5 - RAD51AP1; 233 (laplace), 1003 (linear) and 359 (rbf) for EXOSC5 - RAD51C; 834 (laplace), 1825 (linear) and 335 (rbf) for EXOSC5 - RAD54B; and 248 (laplace), 197 (linear) and 39 (rbf) for EXOSC5 - RAD54L. RAD-1/18/50/51AP1/51C/54L was found to be down regulated w.r.t EXOSC6. These are reflected in rankings of 142 (linear) and 639 (rbf) for EXOSC6 - RAD1; 1118 (laplace), 1313 (linear) and 1549 (rbf) for EXOSC6 - RAD18; 1722 (linear) and 575 (rbf) for EXOSC6 - RAD50; 149 (laplace) and 1060 (linear) for EXOSC6 - RAD51AP1; 500 (laplace) and 1628 (linear) for EXOSC6 - RAD51C; and 885 (laplace), 271 (linear) and 1224 (rbf) for EXOSC6 - RAD54L; RAD-18/51/51AP1/51C/54B/54L was found to be down regulated w.r.t EXOSC7. These were reflected in rankings of 441 (laplace), 385 (linear) and 1542 (rbf) for EXOSC7 - RAD18; 376 (laplace), 1180 (linear) and 550 (rbf) for EXOSC7 - RAD51; 35 (laplace), 97 (linear) and 786 (rbf) for EXOSC7 - RAD51AP1; 854 (laplace), 671 (linear) and 1459 (rbf) for EXOSC7 - RAD51C; 458 (laplace), 260 (linear) and 646 (rbf) for EXOSC7 - RAD54B; and 464 (laplace), 528 (linear) and 790 (rbf) for EXOSC7 - RAD54L; RAD-1/18/51/51AP1/51C/54B/54L was found to be down regulated w.r.t EXOSC8. These were reflected in rankings of 151 (linear) and 1563 (rbf) for EXOSC8 - RAD1; 764 (laplace), 523 (linear) and 29 (rbf) for EXOSC8 - RAD18; 98 (laplace), 1161 (linear) and 902 (rbf) for EXOSC8 - RAD51; 408 (laplace) and 541 (rbf) for EXOSC8 - RAD51AP1; 906 (laplace), 738 (linear) and 1052 (rbf) for EXOSC8 - RAD51C; 23 (laplace), 1578 (linear) and 130 (rbf) for EXOSC8 - RAD54B; and 651 (laplace), 1384 (linear) and 1047 (rbf) for EXOSC8 - RAD54L; RAD-1/18/50/51/51AP1/51C/54B/54L was found to be down regulated w.r.t EXOSC9. These were reflected in rankings of 1335 (laplace) and 978 (rbf) for EXOSC9 - RAD1; 54 (linear) and 540 (rbf) for EXOSC9 - RAD18; 211 (laplace) and 1377 (rbf) for EXOSC9 - RAD50; 807 (laplace), 74 (linear) and 429 (rbf) for EXOSC9 - RAD51; 103 (linear), 1210 (rbf) for EXOSC9 - RAD51AP1; 399 (laplace), 844 (linear) and 69 (rbf) for EXOSC9 - RAD51C; 466 (linear), 1286 (rbf) for EXOSC9 - RAD54B; and 536 (laplace), 724 (linear) and 414 (rbf) for EXOSC9 - RAD54L;
Table 63 shows the derived influences which can be represented graphically, with the following influences - • RAD w.r.t EXOSC with EXOSC-2 -> RAD-18/51/51C/54B/54L; EXOSC-3 -> RAD-18/50/51/51AP1/51C/54B/54L; EXOSC-5 -> RAD-1/18/51/51AP1/51C/54B/54L; EXOSC-6 -> RAD-1/18/50/51AP1/51C/54L; EXOSC-7 -> RAD-18/51/51AP1/51C/54B/54L; EXOSC-8 -> RAD-1/18/51/51AP1/51C/54B/54L; EXOSC-9 -> RAD-1/18/50/51/51AP1/51C/54B/54L; and • EXOSC w.r.t RAD with EXOSC-2 <- RAD-1/18/50/51/51AP1/51C/54B/54L; EXOSC-3 <- RAD-1/18/51/51AP1/54L; EXOSC-5 <- RAD-1/18/50/51/51AP1/51C/54B/54L; EXOSC-6 <- RAD-18/51/54L; EXOSC-7 <- RAD-1/18/51C/54B/54L; EXOSC-8 <- RAD-18/51/51AP1/54B/54L; and EXOSC-9 <- RAD-1/18/50/51/51C/54B/54L.

3.4.6. XRCC - EXOSC Cross Family Analysis

Not much is known about XRCC - EXOSC synergy, however both were found to be down regulated in CRC cells after treatment with ETC-1922159. The search engine also allocated rankings of low numerical values to several combinations thus indicating plausible synergistic down regulations. Table 64 shows the rankings of XRCC vs EXOSC family members.
Table 64. 2nd order interaction ranking between RAD and EXOSC family members.
Table 64. 2nd order interaction ranking between RAD and EXOSC family members.
Ranking XRCC family VS EXOSC family
Ranking of EXOSC2 w.r.t XRCC family Ranking of XRCC family w.r.t EXOSC2
laplace linear rbf laplace linear rbf
EXOSC2 - XRCC1 277 176 423 EXOSC2 - XRCC1 2708 2386 2634
EXOSC2 - XRCC2 8 38 100 EXOSC2 - XRCC2 166 417 56
EXOSC2 - XRCC6 1252 398 623 EXOSC2 - XRCC6 2678 2504 2576
EXOSC2 - XRCC6BP1 935 905 1755 EXOSC2 - XRCC6BP1 1740 1842 2177
Ranking of EXOSC3 w.r.t XRCC family Ranking of XRCC family w.r.t EXOSC3
laplace linear rbf laplace linear rbf
EXOSC3 - XRCC1 1551 2256 1974 EXOSC3 - XRCC1 2217 1418 2041
EXOSC3 - XRCC2 2462 2553 2329 EXOSC3 - XRCC2 125 15 194
EXOSC3 - XRCC6 1720 1716 2398 EXOSC3 - XRCC6 2742 2608 2193
EXOSC3 - XRCC6BP1 2506 1523 1356 EXOSC3 - XRCC6BP1 2561 2154 2406
Ranking of EXOSC5 w.r.t XRCC family Ranking of XRCC family w.r.t EXOSC5
laplace linear rbf laplace linear rbf
EXOSC5 - XRCC1 741 291 8 EXOSC5 - XRCC1 2578 2568 1910
EXOSC5 - XRCC2 1244 791 702 EXOSC5 - XRCC2 1559 1857 866
EXOSC5 - XRCC6 65 1064 322 EXOSC5 - XRCC6 2410 2465 2190
EXOSC5 - XRCC6BP1 416 880 1434 EXOSC5 - XRCC6BP1 1907 2029 1394
Ranking of EXOSC6 w.r.t XRCC family Ranking of XRCC family w.r.t EXOSC6
laplace linear rbf laplace linear rbf
EXOSC6 - XRCC1 1890 985 1163 EXOSC6 - XRCC1 509 2373 1046
EXOSC6 - XRCC2 1512 648 1458 EXOSC6 - XRCC2 486 2564 1901
EXOSC6 - XRCC6 2304 1719 2690 EXOSC6 - XRCC6 2576 35 188
EXOSC6 - XRCC6BP1 2428 492 2112 EXOSC6 - XRCC6BP1 1753 1295 366
Ranking of EXOSC7 w.r.t XRCC family Ranking of XRCC family w.r.t EXOSC7
laplace linear rbf laplace linear rbf
EXOSC7 - XRCC1 1907 1510 1603 EXOSC7 - XRCC1 1844 1229 987
EXOSC7 - XRCC2 1369 2555 2124 EXOSC7 - XRCC2 176 436 788
EXOSC7 - XRCC6 584 1523 1018 EXOSC7 - XRCC6 1074 242 288
EXOSC7 - XRCC6BP1 1419 1944 876 EXOSC7 - XRCC6BP1 2144 1577 2038
Ranking of EXOSC8 w.r.t XRCC family Ranking of XRCC family w.r.t EXOSC8
laplace linear rbf laplace linear rbf
EXOSC8 - XRCC1 1373 1515 2103 EXOSC8 - XRCC1 1769 2151 1435
EXOSC8 - XRCC2 1086 2309 2435 EXOSC8 - XRCC2 13 1932 6
EXOSC8 - XRCC6 1820 2542 2693 EXOSC8 - XRCC6 1869 1233 2625
EXOSC8 - XRCC6BP1 2112 1994 2699 EXOSC8 - XRCC6BP1 2305 2461 2319
Ranking of EXOSC9 w.r.t XRCC family Ranking of XRCC family w.r.t EXOSC9
laplace linear rbf laplace linear rbf
EXOSC9 - XRCC1 44 1214 1410 EXOSC9 - XRCC1 1804 2696 1629
EXOSC9 - XRCC2 496 672 840 EXOSC9 - XRCC2 1793 655 1526
EXOSC9 - XRCC6 1121 151 689 EXOSC9 - XRCC6 1882 2188 2404
EXOSC9 - XRCC6BP1 362 463 1741 EXOSC9 - XRCC6BP1 1206 1776 1626
Table 65. 2nd order combinatorial hypotheses between XRCC and EXOSC members.
Table 65. 2nd order combinatorial hypotheses between XRCC and EXOSC members.
Unexplored combinatorial hypotheses
XRCC w.r.t EXOSC
EXOSC-2 XRCC-2
EXOSC-3 XRCC-2
EXOSC-5 XRCC-2
EXOSC-6 XRCC-6
EXOSC-7 XRCC-1/2/6
EXOSC-8 XRCC-2
EXOSC-9 XRCC-2/6BP1
EXOSC w.r.t XRCC
EXOSC-2 XRCC-1/2/6/6BP1
EXOSC-3 XRCC-6/6BP1
EXOSC-5 XRCC-1/2/6/6BP1
EXOSC-6 XRCC-1/2
EXOSC-7 XRCC-1/6/6BP1
EXOSC-8 XRCC-1
EXOSC-9 XRCC-1/2/6/6BP1
On the left half of the Table is the rankings of EXOSC w.r.t XRCC family. EXOSC2 was found to be down regulated w.r.t XRCC-1/2/6/6BP1. These are reflected in rankings of 277 (laplace), 176 (linear) and 423 (rbf) for EXOSC2 - XRCC1; 8 (laplace), 38 (linear) and 100 (rbf) for EXOSC2 - XRCC2; 1252 (laplace), 398 (linear) and 623 (rbf) for EXOSC2 - XRCC6; and 935 (laplace) and 905 (linear) for EXOSC2 - XRCC6BP1; EXOSC3 was found to be down regulated w.r.t XRCC-6BP1. These are reflected in rankings of 1523 (linear) and 1356 (rbf) for EXOSC3 - XRCC6BP1; EXOSC5 was found to be down regulated w.r.t XRCC-1/2/6/6BP1. These are reflected in rankings of 741 (laplace), 291 (linear) and 8 (rbf) for EXOSC5 - XRCC1; 1244 (laplace), 791 (linear) and 702 (rbf) for EXOSC5 - XRCC2; 65 (laplace), 1064 (linear) and 322 (rbf) for EXOSC5 - XRCC6; and 416 (laplace), 880 (linear) and 1434 (rbf) for EXOSC5 - XRCC6BP1. EXOSC6 was found to be down regulated w.r.t XRCC-1/2. These are reflected in rankings of 985 (linear) and 1163 (rbf) for EXOSC6 - XRCC1 and 1512 (laplace), 648 (linear) and 1458 (rbf) for EXOSC6 - XRCC2; EXOSC7 was found to be down regulated w.r.t XRCC-1/6/6BP1. These are reflected in rankings of 1510 (linear) and 1603 (rbf) for EXOSC7 - XRCC1; 584 (laplace), 1523 (linear) and 1018 (rbf) for EXOSC7 - XRCC6; and 1419 (laplace) and 876 (rbf) for EXOSC7 - XRCC6BP1. EXOSC8 was found to be down regulated w.r.t XRCC-1. These are reflected in rankings of 1373 (laplace) and 1515 (linear) for EXOSC8 - XRCC1; EXOSC9 was found to be down regulated w.r.t XRCC-1/2/6/6BP1. These are reflected in rankings of 44 (laplace), 1214 (linear) and 1410 (rbf) for EXOSC9 - XRCC1; 496 (laplace), 672 (linear) and 840 (rbf) for EXOSC9 - XRCC2; 1121 (laplace), 151 (linear) and 689 (rbf) for EXOSC9 - XRCC6 and 362 (laplace), 463 (linear) and 1741 (rbf) for EXOSC9 - XRCC6BP1.
On the right half of the Table is the rankings of XRCC w.r.t EXOSC family. W.r.t EXOSC2, XRCC-2 was found to be down regulated. These are reflected in rankings of 166 (laplace), 417 (linear) and 56 (rbf) for EXOSC2 - XRCC2. W.r.t W.r.t EXOSC3, XRCC-2 was found to be down regulated. These are reflected in rankings of 166 (laplace), 417 (linear) and 56 (rbf) for EXOSC3 - XRCC2. W.r.t EXOSC5, XRCC-2 was found to be down regulated. These are reflected in rankings of 1559 (laplace) and 56 (rbf) for EXOSC5 - XRCC2. W.r.t EXOSC6, XRCC-1/2/6/6BP1 were found to be down regulated. These are reflected in rankings of 509 (laplace) and 1046 (rbf) for EXOSC6 - XRCC1; 486 (laplace) and 1901 (rbf) for EXOSC6 - XRCC2; 35 (linear) and 188 (rbf) for EXOSC6 - XRCC6; 1295 (linear) and 366 (rbf) for EXOSC6 - XRCC6BP1. W.r.t EXOSC7, XRCC-6 was found to be down regulated. These are reflected in rankings of 1229 (linear) and 987 (rbf) for EXOSC7 - XRCC1; 176 (laplace), 436 (linear) and 788 (rbf) for EXOSC7 - XRCC2; and 1074 (laplace), 242 (linear) and 288 (rbf) for EXOSC7 - XRCC6. W.r.t EXOSC8, XRCC-2 was found to be down regulated. These are reflected in rankings of 13 (laplace) and 6 (rbf) for EXOSC8 - XRCC2. W.r.t EXOSC9, XRCC-2 was found to be down regulated. These are reflected in rankings of 655 (linear) and 1526 (rbf) for EXOSC9 - XRCC2 and 1206 (laplace) and 1626 (rbf) for EXOSC9 - XRCC6BP1;
Table 65 shows the derived influences which can be represented graphically, with the following influences - • XRCC w.r.t EXOSC with EXOSC-2 -> XRCC-2; EXOSC-3 -> XRCC-2; EXOSC-5 -> XRCC-2; EXOSC-6 -> XRCC-6; EXOSC-7 -> XRCC-1/2/6; EXOSC-8 -> XRCC-2; EXOSC-9 -> XRCC-2/6BP1; and • EXOSC w.r.t XRCC with EXOSC-2 <- XRCC-1/2/6/6BP1; EXOSC-3 <- XRCC-6/6BP1; EXOSC-5 <- XRCC-1/2/6/6BP1; EXOSC-6 <- XRCC-1/2; EXOSC-7 <- XRCC-1/6/6BP1; EXOSC-8 <- XRCC-1; and EXOSC-9 <- XRCC-1/2/6/6BP1.

3.4.7. RAD - FANC Cross Family Analysis

Fanconi Anemia (FA) is rare genetic disorder that happens mainly due to defects in proteins responsible for DNA repair via homologous recombination (Walden and Deans [144]). Cohn and D’Andrea [145] provides a review on the recent discoveries in the Fanconi Anemia and DNA double-strand break (DSB) repair pathways, which underscore the importance of regulated chromatin loading in the DNA damage response. Romick-Rosendale et al. [146] study the role Fanconi anemia pathway in squamous Cell Carcinoma. A review of the interplay between Fanconi anemia and homologous recombination pathways in genome integrity has been conducted by Michl et al. [147]. Liang et al. [148] observe the role of trimeric RAD51 and RAD51AP1-UAF1 complex in FANCD2. Taniguchi et al. [149] observe S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Zadorozhny et al. [150] show Fanconi anemia associated mutations destabilize RAD51 filaments and impair replication fork protection. Geng et al. [151] find RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network. Rad18 E3 ubiquitin ligase activity mediates Fanconi anemia pathway activation and cell survival following DNA topoisomerase 1 inhibition as shown by Palle and Vaziri [152]. García-Luis and Machín [153] observe that Fanconi anaemia-like Mph1 helicase backs up RAD54 and RAD5 to circumvent replication stress-driven chromosome bridges. These findings suggest deep interactive role between the RAD and FA family. In colorectal cancer cell treated with ETC-1922159 these were found to both families were found to be down regulated. Our search engine alloted low laved numerical ranks to many of the 2nd order combinations between the RAD - FANC family. This signifies possible synergistic mechanism between the two in CRC cells. Table 67 shows the rankings of each, with respect to the other. On the left half is the rankings of RAD family w.r.t FANC family and vice versa on the right half.
On the left half, we find, RAD-18/51/51AP1/51C/54B/54L were found to be down regulated w.r.t FANCB. These are reflected in rankings of 10 (laplace), 2219 (linear) and 625 (rbf) for RAD18 - FANCB; 247 (laplace), 73 (linear) and 610 (rbf) for RAD51 - FANCB; 479 (laplace), 1667 (linear) and 663 (rbf) for RAD51AP1 - FANCB; 769 (laplace), 536 (linear) and 887 (rbf) for RAD51C - FANCB; 468 (laplace), 133 (linear) and 438 (rbf) for RAD54B - FANCB; and 583 (laplace), 2131 (linear) and 160 (rbf) for RAD54L - FANCB. RAD-18/51/51AP1/54B/54L were found to be down regulated w.r.t FANCD2. These are reflected in rankings of 1035 (laplace), 1271 (linear) and 405 (rbf) for RAD18 - FANCD2; 885 (laplace) and 1383 (rbf) for RAD51 - FANCD2; 1734 (laplace), 644 (linear) and 1291 (rbf) for RAD51AP1 - FANCD2; 275 (laplace), 2460 (linear) and 478 (rbf) for RAD54B - FANCD2; and 493 (laplace) and 203 (rbf) for RAD54L - FANCD2; RAD-1/18/50/51/51C/54B/54L were found to be down regulated w.r.t FANCD2OS. These are reflected in rankings of 693 (laplace) and 1146 (rbf) for RAD1 - FANCD2OS; 1472 (laplace), 526 (linear) and 239 (rbf) for RAD18 - FANCD2OS; 178 (laplace) and 1534 (linear) for RAD50 - FANCD2OS; 1080 (linear) and 1226 (rbf) for RAD51 - FANCD2OS; 1297 (laplace), 977 (linear) and 1237 (rbf) for RAD51C - FANCD2OS; 475 (laplace), 1367 (linear) for RAD54B - FANCD2OS; 1227 (linear) and 252 (rbf) for RAD54L - FANCD2OS; RAD-1/18/50/51/51AP1/51C/54B/54L were found to be down regulated w.r.t FANCF. These are reflected in rankings of 1582 (linear) and 285 (rbf) for RAD1 - FANCF; 770 (laplace), 1329 (linear) and 1445 (rbf) for RAD18 - FANCF; 1403 (laplace), 1684 (linear) and 803 (rbf) for RAD50 - FANCF; 209 (laplace), 1247 (linear) for RAD51 - FANCF; 1681 (laplace), 13 (linear) for RAD51AP1 - FANCF; 1493 (laplace) and 224 (linear) for RAD51C - FANCF; 401 (laplace) and 143 (linear) for RAD54B - FANCF; for 690 (laplace), 829 (linear) for RAD54L - FANCF; RAD-1/18/50/51/51AP1/51C/54B/54L were found to be down regulated w.r.t FANCG. These are reflected in rankings of 755 (laplace), 393 (linear) and 82 (rbf) for RAD18 - FANCG; 345 (laplace), 114 (linear) and 295 (rbf) for RAD51 - FANCG; 957 (laplace), 218 (linear) and 1360 (rbf) for RAD51C - FANCG; 17 (laplace), 182 (linear) and 423 (rbf) for RAD54B - FANCG; and 1058 (laplace), 701 (linear) and 581 (rbf) for RAD54L - FANCG. RAD-18/50/51/51C/54B/54L were found to be down regulated w.r.t FANCG. These are reflected in rankings of 1693 (laplace)and 436 (rbf) for RAD18 - FANCI; 1703 (laplace) and 1458 (rbf) for RAD50 - FANCI; 1038 (laplace), 1668 (linear) and 310 (rbf) for RAD51 - FANCI; 597 (laplace) and 165 (linear) for RAD51C - FANCI; 557 (laplace) and 84 (linear) for RAD54B - FANCI; and 468 (laplace), 606 (linear) for RAD54L - FANCI.
Table 66. 2nd order combinatorial hypotheses between RAD and FANC members.
Table 66. 2nd order combinatorial hypotheses between RAD and FANC members.
Ranking RAD family VS FANC family
Ranking of RAD family w.r.t FANCB Ranking of FANCB w.r.t RAD family
laplace linear rbf laplace linear rbf
RAD1 - FANCB 2431 400 2553 RAD1 - FANCB 1499 656 340
RAD18 - FANCB 10 2219 625 RAD18 - FANCB 2708 383 2298
RAD50 - FANCB 2419 915 2556 RAD50 - FANCB 133 234 73
RAD51 - FANCB 247 73 610 RAD51 - FANCB 2444 378 8
RAD51AP1 - FANCB 479 1667 663 RAD51AP1 - FANCB 89 562 2
RAD51C - FANCB 769 536 887 RAD51C - FANCB 460 187 86
RAD54B - FANCB 468 133 438 RAD54B - FANCB 486 891 568
RAD54L - FANCB 583 2131 160 RAD54L - FANCB 41 2675 692
Ranking of RAD family w.r.t FANCD2 Ranking of FANCD2 w.r.t RAD family
laplace linear rbf laplace linear rbf
RAD1 - FANCD2 1935 332 2102 RAD1 - FANCD2 1451 1605 796
RAD18 - FANCD2 1035 1271 405 RAD18 - FANCD2 2356 403 1299
RAD50 - FANCD2 2109 436 2038 RAD50 - FANCD2 646 357 769
RAD51 - FANCD2 885 1995 1383 RAD51 - FANCD2 591 1938 85
RAD51AP1 - FANCD2 1734 644 1291 RAD51AP1 - FANCD2 993 603 2684
RAD51C - FANCD2 54 2399 2566 RAD51C - FANCD2 629 656 620
RAD54B - FANCD2 275 2460 478 RAD54B - FANCD2 227 230 131
RAD54L - FANCD2 493 2530 203 RAD54L - FANCD2 2457 1369 1816
Ranking of RAD family w.r.t FANCD2OS Ranking of FANCD2OS w.r.t RAD family
laplace linear rbf laplace linear rbf
RAD1 - FANCD2OS 693 1926 1146 RAD1 - FANCD2OS 1455 2445 1624
RAD18 - FANCD2OS 1472 526 239 RAD18 - FANCD2OS 851 1457 653
RAD50 - FANCD2OS 178 1534 2141 RAD50 - FANCD2OS 1763 1477 1372
RAD51 - FANCD2OS 2061 1080 1226 RAD51 - FANCD2OS 2007 2336 1739
RAD51AP1 - FANCD2OS 637 2050 2660 RAD51AP1 - FANCD2OS 2209 2376 1722
RAD51C - FANCD2OS 1297 977 1237 RAD51C - FANCD2OS 1729 779 2596
RAD54B - FANCD2OS 475 1367 2571 RAD54B - FANCD2OS 2032 1241 1637
RAD54L - FANCD2OS 2557 1227 252 RAD54L - FANCD2OS 1671 1830 1839
Ranking of RAD family w.r.t FANCF Ranking of FANCF w.r.t RAD family
laplace linear rbf laplace linear rbf
RAD1 - FANCF 1817 1582 285 RAD1 - FANCF 529 2198 1997
RAD18 - FANCF 770 1329 1445 RAD18 - FANCF 1063 2186 196
RAD50 - FANCF 1403 1684 803 RAD50 - FANCF 2205 1419 1676
RAD51 - FANCF 209 1247 2221 RAD51 - FANCF 1222 1060 2251
RAD51AP1 - FANCF 1681 13 2619 RAD51AP1 - FANCF 1963 2372 107
RAD51C - FANCF 1493 224 2051 RAD51C - FANCF 2062 1904 2386
RAD54B - FANCF 401 143 2359 RAD54B - FANCF 1903 1936 2026
RAD54L - FANCF 690 829 2120 RAD54L - FANCF 2529 716 1262
Ranking of RAD family w.r.t FANCG Ranking of FANCG w.r.t RAD family
laplace linear rbf laplace linear rbf
RAD1 - FANCG 2013 2215 2328 RAD1 - FANCG 1938 825 843
RAD18 - FANCG 755 393 82 RAD18 - FANCG 2352 878 2574
RAD50 - FANCG 2652 2408 2663 RAD50 - FANCG 695 511 933
RAD51 - FANCG 345 114 295 RAD51 - FANCG 2163 1 397
RAD51AP1 - FANCG 1743 749 1984 RAD51AP1 - FANCG 661 400 23
RAD51C - FANCG 957 218 1360 RAD51C - FANCG 450 2319 1122
RAD54B - FANCG 17 182 423 RAD54B - FANCG 140 194 64
RAD54L - FANCG 1058 701 581 RAD54L - FANCG 2167 1968 2344
Ranking of RAD family w.r.t FANCI Ranking of FANCI w.r.t RAD family
laplace linear rbf laplace linear rbf
RAD1 - FANCI 1919 2263 2286 RAD1 - FANCI 2496 897 664
RAD18 - FANCI 1693 2466 436 RAD18 - FANCI 1601 1161 1668
RAD50 - FANCI 1703 2074 1458 RAD50 - FANCI 1133 1211 1238
RAD51 - FANCI 1038 1668 310 RAD51 - FANCI 1612 2724 1187
RAD51AP1 - FANCI 2496 2517 383 RAD51AP1 - FANCI 1513 1211 65
RAD51C - FANCI 597 165 2447 RAD51C - FANCI 143 137 87
RAD54B - FANCI 557 84 2055 RAD54B - FANCI 178 350 76
RAD54L - FANCI 468 606 2461 RAD54L - FANCI 211 2304 1128
On the right half, we find, FANCB to be down regulated w.r.t RAD-1/50/51/51AP1/51C/54B/54L. These are reflected in rankings of 1499 (laplace), 656 (linear) and 340 (rbf) for RAD1 - FANCB; 133 (laplace), 234 (linear) and 73 (rbf) for RAD50 - FANCB; 378 (linear) and 8 (rbf) for RAD51 - FANCB; 89 (laplace), 562 (linear) and 2 (rbf) for RAD51AP1 - FANCB; 460 (laplace), 187 (linear) and 86 (rbf) for RAD51C - FANCB; 486 (laplace), 891 (linear) and 568 (rbf) for RAD54B - FANCB and 41 (laplace) and 692 (rbf) for RAD54L - FANCB; FANCD2 was found to be down regulated w.r.t RAD-1/50/51/51AP1/51C/54B/54L. These are reflected in rankings of 1451 (laplace), 1605 (linear) and 796 (rbf) for RAD1 - FANCD2; 403 (linear) and 1299 (rbf) for RAD18 - FANCD2; 646 (laplace), 357 (linear) and 769 (rbf) for RAD50 - FANCD2; 591 (laplace) and 85 (rbf) for RAD51 - FANCD2; 993 (laplace) and 603 (linear) for RAD51AP1 - FANCD2; 629 (laplace), 656 (linear) and 620 (rbf) for RAD51C - FANCD2; 227 (laplace), 230 (linear) and 131 (rbf) for RAD54B - FANCD2. FANCD2OS2 was found to be down regulated w.r.t RAD-1/18/5051C/54B. These are reflected in rankings of 1455 (laplace) and 1624 (rbf) for RAD1 - FANCD2OS; 851 (laplace), 1457 (linear) and 653 (rbf) for RAD18 - FANCD2OS; 1477 (linear) and 1372 (rbf) for RAD50 - FANCD2OS; 1729 (laplace) and 779 (linear) for RAD51C - FANCD2OS; 1241 (linear) and 1637 (rbf) for RAD54B - FANCD2OS; FANCF was found to be down regulated w.r.t RAD-1/18/50/51C/54B. These are reflected in rankings of 1063 (laplace) and 196 (rbf) for RAD18 - FANCF; 1419 (linear) and 1676 (rbf) for RAD50 - FANCF; 1222 (laplace) and 1060 (linear) for RAD51 - FANCF; and 716 (linear) and 1262 (rbf) for RAD54L - FANCF; FANCG was found to be down regulated w.r.t RAD-1/50/51/51AP1/51C/54B. These are reflected in rankings of 825 (linear) and 843 (rbf) for RAD1 - FANCG; 695 (laplace), 511 (linear) and 933 (rbf) for RAD50 - FANCG; 1 (linear) and 397 (rbf) for RAD51 - FANCG; 661 (laplace), 400 (linear) and 23 (rbf) for RAD51AP1 - FANCG; 450 (laplace) and 1122 (rbf) for RAD51C - FANCG; 140 (laplace), 194 (linear) and 64 (rbf) for RAD54B - FANCG; FANCI was found to be down regulated w.r.t RAD-1/18/50/51/51AP1/51C/54B/54L. These are reflected in 897 (linear) and 664 (rbf) for RAD1 - FANCI; 1601 (laplace), 1161 (linear) and 1668 (rbf) for RAD18 - FANCI; 1133 (laplace), 1211 (linear) and 1238 (rbf) for RAD50 - FANCI; 1612 (laplace) and 1187 (rbf) for RAD51 - FANCI; 1513 (laplace), 1211 (linear) and 65 (rbf) for RAD51AP1 - FANCI; 143 (laplace), 137 (linear) and 87 (rbf) for RAD51C - FANCI; 178 (laplace), 350 (linear) and 76 (rbf) for RAD54B - FANCI; 211 (laplace) and 1128 (rbf) for RAD54L - FANCI.
Table 67 shows the derived influences which can be represented graphically, with the following influences - • RAD w.r.t FANC with RAD-18/51/51AP1/51C/54B/54L <- FANCB; RAD-18/51/51AP1/54B/54L <- FANCD2; RAD-1/18/50/51/51C/54B/54L <- FANCD2OS; RAD-1/18/50/51/51AP1/51C/54B/54L <- FANCF; RAD-1/18/50/51/51AP1/51C/54B/54L <- FANCG; and RAD-18/50/51/51C/54B/54L <- FANCI, and • FANC w.r.t RAD with FANCB <- RAD-1/50/51/51AP1/51C/54B/54L; FANCD2 <- RAD-1/50/51/51AP1/51C/54B/54L; FANCD2OS <- RAD-1/18/5051C/54B; FANCF <- RAD-1/18/50/51C/54B; FANCG <- RAD-1/50/51/51AP1/51C/54B; FANCI <- RAD-1/18/50/51/51AP1/51C/54B/54L;

3.5. Telomerase Related Synergies

3.5.1. TERT - ABC Transporters Cross Family Analysis

TERT and ABC family members found to be down regulated after ETC-1922159 treatment in CRC cells. Not much is known about the TERT and ABC transporters and research is still ongoing regarding the synergy of TERT and ABC transporters. The most recent work on telomerase and drug resistance in cancer by Lipinska et al. [154] talks on a range of theories about the mechanism of inactivation of telomerase in cancer cells that is accompanied by relatively increased sensitivity to some drugs. These mechanism has not been fully understood. Some association with the telomerase expression and drug resistance has been shown by Wang et al. [155] while no correlation between the two has been indicated by Sakin et al. [156]. However Keshet et al. [157], show a deep correlation in melanoma cells revealing co-expression of ABC transporters, ABCB5 and ABCC2 and hTERT. Based on these little known associations the search engine was able to rank the combinations of some of the members of ABC with TERT. Table 68 shows the rankings of TERT and ABC members w.r.t to each other. On the left half, we find ABC family to be down regulated w.r.t TERT. These are reflected in rankings of 381 (laplace), 1047 (linear) and 316 (rbf) for ABCF2 - TERT; 1201 (laplace), 49 (linear) and 317 (rbf) for ABCA2 - TERT; and 1613 (laplace), 499 (linear) and 1217 (rbf) for ABCE1 - TERT. On the right side we find TERT to be down regulated w.r.t ABCE1. These are reflected in 120 (laplace), 2736 (linear) and 294 (rbf) for ABCE1 - TERT.
So if we look at the above rankings, what we find is that the ABC family is down regulated along with TERT, synergistically (directly or indirectly) with moderate and high promise (rankings nearing to 1) in the top table. Vice versa, the same affect is not shown in Table 69 for ABC-F2/A2 with TERT. If we look at the 2 way cross analysis what we find is the following combinatorial hypotheses in Table 69 which is graphicaly reflected as - • ABC family w.r.t TRET with TERT -> ABCF2; TERT -> ABCA2; and TERT -> ABCE1 and • TRET w.r.t ABC family with ABCE1 -> TERT. Consequently, it is possible that the TERT does have influence over ABC-F2/A2 but with ABCE1, directionality could not be established. Further more, these low rankings point to high promise of down regulation that is observed in CRC treated with ETC-1922159. Which might mean that in CRC cells which have not been treated with ETC-1922159, it is highly possible that TERT is highly up regulated and also bolsters/influences the functioning of ABC transporters. Wet lab study and further experiments will be needed to establish the dual role of TERT and ABC transporters.

3.6. ABC Transporter Related Synergies

3.6.1. ABC Transporters - UBE2 Cross Family Analysis

Not much is known about the interaction or any possible direct/indirect synergy of ABC transporters and the Ubiquitin-conjugating enzyme E2 family. In CRC cells treated with ETC-1922159, family members of both were found to be up regulated. The search engine also assigned numerically high valued ranks to a few of 2nd order synergies between the the two. We document here these synergies and show the possible unexplored combinations between the two familes. Table 70 and Table 71 show the rankings of ABC w.r.t UBE2 and vice versa, respectively.
In Table 70 we found ABC-C3 up regulated w.r.t UBE2-A. This is reflected in the rankings of 2137 (laplace) and 2491 (linear) for ABC-C3 - UBE2-A. ABC-C5 was up regulated w.r.t UBE2-B. This is reflected in the rankings of 2317 (laplace) and 2266 (rbf) for ABC-C5 - UBE2-B. ABC-A5/D1/G2 were up regulated w.r.t UBE2-F. These are reflected in the rankings of 2408 (linear) and 1784 (rbf) for ABC-A5 - UBE2-F, 2069 (linear) and 1959 (rbf) for ABC-D1 - UBE2-F and 1995 (linear) and 2120 (rbf) for ABC-G2 - UBE2-F. ABC-A5/C13 were up regulated w.r.t UBE2-H. These are reflected in 2068 (linear) and 2438 (rbf) for ABC-A5 - UBE2-H and 2492 (linear) and 2051 (rbf) for ABC-C13 - UBE2-H. ABC-C13 was up regulated w.r.t UBE2-J1. This is reflected in the rankings of 2095 (laplace), 2412 (linear) and 2360 (rbf). ABC-C5 was up regulated w.r.t UBE2-Z. This is reflected in rankings of 2348 (laplace) and 1859 (rbf) for ABC-C5 - UBE2-Z.
In Table 71 we found UBE2-A up regulated w.r.t ABC-C5/G2. This is reflected in the rankings of 2122 (linear) and 2297 (rbf) for ABC-C5 - UBE2-A; and 2048 (laplace) and 1829 (linear) for ABC-G2 - UBE2-A. UBE2-B up regulated w.r.t ABC-A5/C3/C13/D1/G2. This is reflected in the rankings of 1846 (laplace) and 2038 (linear) for ABC-A5 - UBE2-B; 1999 (laplace) and 2050 (rbf) for ABC-C3 - UBE2-B; 1863 (linear) and 2496 (rbf) for ABC-C13 - UBE2-B; 2322 (laplace), 1917 (linear) and 2426 (rbf) for ABC-D1 - UBE2-B and 1833 (laplace), 2445 (linear) and 2506 (rbf) for ABC-G2 - UBE2-B. UBE2-F was found up regulated w.r.t ABC-B11/C3/D1/G1. These were reflected in 2003 (laplace) and 2422 (rbf) for ABC-B11 - UBE2-F; 2132 (laplace) and 2163 (linear) for ABC-C3 - UBE2-F; 2421 (laplace) and 2176 (rbf) for ABC-D1 - UBE2-F; and 2202 (laplace) and 1953 (rbf) for ABC-G1 - UBE2-F. UBE2-H was found to be up regulated w.r.t ABC-B11/C3/C5/C13/G1. These are reflected in rankings of 1950 (laplace), 1770 (linear) and 2461 (rbf) for ABC-B11 - UBE2-H; 2439 (laplace), 1972 (linear) and 2305 (rbf) for ABC-C3 - UBE2-H; 2473 (linear) and 2355 (rbf) for ABC-C5 - UBE2-H; 2004 (laplace), 2317 (linear) and 1847 (rbf) for ABC-C13 - UBE2-H; and 1921 (linear) and 2288 (rbf) for ABC-G1 - UBE2-H; UBE2-J1 was found to be up regulated w.r.t ABC-B11/C3/C13/D1/G1/G2; 1806 (laplace) and 1935 (rbf) for ABC-B11 - UBE2-J1; 2073 (laplace) and 2291 (linear) for ABC-C3 - UBE2-J1; 2329 (laplace), 2153 (linear) and 1951 (rbf) ABC-C13 - UBE2-J1; 2263 (laplace), 1886 (linear) and 2249 (rbf) for ABC-D1 - UBE2-J1; and 2418 (linear) and 2277 (rbf) for ABC-G1 - UBE2-J1; Finally, UBE2-Z was found up regulated w.r.t ABC-C3/D1/G1/G2. These are reflected in rankings of 1978 (laplace), 1823 (linear) and 1859 (rbf) for ABC-C3 - UBE2-Z; 2292 (laplace) and 2381 (linear) for ABC-D1 - UBE2-Z; 2515 (linear) and 1858 (rbf) for ABC-G1 - UBE2-Z; 2270 (laplace), 2080 (linear) and 2448 (rbf) for ABC-G2 - UBE2-Z.
Table 72 shows the derived influences which can be represented graphically, with the following influences - • ABC w.r.t UBE2 with ABC-C3 <- UBE2-A; ABC-C5 <- UBE2-B; ABC-A5/D1/G2 <- UBE2-F; ABC-A5/C13 <- UBE2-H; ABC-C13 <- UBE2-J1; ABC-C5 <- UBE2-Z; and • UBE2 w.r.t ABC with UBEA-2 <- ABC-C5/G2; UBE2-B <- ABC-A5/C3/C13/D1/G2; UBE2-F <- ABC-B11/C3/D1/G1; UBE2-H <- ABC-B11/C3/C5/C13/G1; UBE2-J1 <- ABC-B11/C3/C13/D1/G1/G2; UBE2-Z <- ABC-C3/D1/G1/G2.

3.6.2. ABC Transporters Intra Cross Family Analysis

A range of ABC transporters were found to be up regulated in CRC cells after ETC-1922159 treatment. We checked the rankings of the ABC transporters within the ABC family and found multiple synergistic upregulation at 2nd order level that were ranked appropriately. Table 73 shows intra family rankings of ABC members among themselves. We found ABC-C13 upregulated w.r.t ABC-A5. These were reflected in rankings of 1943 (linear) and 2151 (rbf); ABC-C5/C13/G1 were up regulated w.r.t ABC-B11. These are reflected in rankings of 2226 (laplace) and 2241 (rbf) for ABC-C5 - ABC-B11; 1971 (laplace) and 2150 (rbf) for ABC-C13 - ABC-B11 and 1957 (laplace) and 1920 (linear) for ABC-G1 - ABC-B11; ABC-C3/C13 were found to be up regulated w.r.t ABC-C5. These are reflected in 2084 (laplace), 2274 (linear) and 1758 (rbf) for ABC-C3 - ABC-C5 and 2476 (linear) and 2446 (rbf) for ABC-C13 - ABC-C5. ABC-C5/C13 were found to be up regulated w.r.t ABC-D1. 2423 (laplace) and 2388 (rbf) for ABC-C5 - ABC-D1 and 2383 (laplace) and 2029 (linear) for ABC-C13 - ABC-D1. ABC-A5 was found to be up regulated w.r.t ABC-G1. This is reflected in rankings of 2488 (laplace) and 1776 (linear) for ABC-A5 - ABC-G1. ABC-A5 was found to be up regulated w.r.t ABC-G2 also. This is reflected in rankings of 2284 (laplace), 1904 (linear) and 1829 (rbf) for ABC-A5 - ABC-G2.
Table 74 shows the derived influences which can be represented graphically, with the following influences - • ABC intra family with ABC-C13 <- ABC-A5; ABC-C5/C13/G1 <- ABC-B11; ABC-C3/C13 <- ABC-C5; ABC-C5/C13 <- ABC-D1; ABC-A5 <- ABC-G1; ABC-C5 <- ABC-G2.

3.6.3. Interleukin - ABC Transporters Cross Family Analysis

Zhou et al. [158] have observed that the ABCA1 contributes to the secretion of interleukin 1β from macrophages. Haskó et al. [159] show that inhibitors of ABC transporters suppress interleukin-12 p40 production and major histocompatibility complex II up-regulation in macrophages. Park et al. [160] conclude that anti-cancer drug-induced IL-8 secretion increased the expression of ABC transporters and SP cells, promoting the growth of HCC in vitro. Marty et al. [161] show that ABC1 is required for the release of interleukin-1β by P2X7-stimulated and lipopolysaccharide-primed mouse Schwann cells. Lottaz et al. [162] observe that inhibition of ABC transporter downregulates interleukin-1β-mediated autocrine activation of human dermal fibroblasts. These findings and many more indicate the synergy between IL family and ABC transporters. In colorectal cancer cells treated with ETC-1922159, some of the members of both families were up regulated. Given the studied synergies, our search engine found multiple combinations which were ranked with high numerical values, thus indicating possible dual combinatorial role. Table 75 and Table 76, each show rankings of ABC transporters w.r.t IL family on the left half and vice versa on the right half.
On the left half we found IL-17REL up regulated w.r.t ABCA5. This is reflected in the rankings of 2405 (linear) and 2202 (rbf) for IL17REL - ABCA5. IL-2RG/6ST/15/15RA up regulated w.r.t ABCB11. This is reflected in the rankings of 2182 (laplace), 2102 (linear) and 550 (rbf) for IL2RG - ABCB11; 1793 (laplace), 2140 (linear) and 1938 (rbf) for IL6ST - ABCB11; 2438 (laplace) and 2512 (linear) for IL15 - ABCB11; and 2271 (laplace) and 1784 (rbf) for IL15RA - ABCB11. IL-8/15RA up regulated w.r.t ABCC3. This is reflected in the rankings of 1767 (laplace) and 2419 (rbf) for IL8 - ABCC3 and 2403 (linear) and 1795 (rbf) for IL15RA - ABCC3. IL-15RA/17REL up regulated w.r.t ABCC5. These are reflected in rankings of 2255 (linear) and 1861 (rbf) for IL15RA - ABCC5 and 2462 (linear) and 2509 (rbf) for IL17REL - ABCC5. IL-15RA/17REL were up regulated w.r.t ABCC13. These are reflected in 2248 (laplace), 1955 (linear) and 2456 (rbf) for IL15RA - ABCC13 and 2339 (laplace) and 2137 (linear) for IL17REL - ABCC13. IL-1A/1RAP/8/15RA were up regulated w.r.t ABCD1. These are reflected in rankings of 1932 (laplace) and 2203 (rbf) for IL1A - ABCD1; 2508 (laplace), 2006 (linear) and 1907 (rbf) for IL1RAP - ABCD1; 2010 (laplace), 2315 (linear) and 1814 (rbf) for IL8 - ABCD1; and 2097 (laplace) and 1765 (linear) for IL15RA - ABCD1. IL-1RAP was up regulated w.r.t ABCG1. This was reflected in rankings of 2205 (linear) and 2339 (rbf) for IL1RAP - ABCG1. IL-1RAP/15RA were up regulated w.r.t ABCG2. These were reflected in rankings of 2184 (laplace) and 2167 (linear) for IL1RAP - ABCG2 and 1910 (laplace), 2428 (linear) and 1921 (rbf) for IL15RA - ABCG2.
Table 75. 2nd order interaction ranking between ABC and IL family members.
Table 75. 2nd order interaction ranking between ABC and IL family members.
Ranking ABC family VS IL family
Ranking of IL family w.r.t ABCA5 Ranking of ABCA5 family w.r.t IL
laplace linear rbf laplace linear rbf
IL1A - ABCA5 705 95 11 IL1A - ABCA5 677 2069 871
IL1B - ABCA5 240 35 353 IL1B - ABCA5 2069 790 2301
IL1RAP - ABCA5 1515 2354 514 IL1RAP - ABCA5 1763 335 2345
IL1RN - ABCA5 771 1093 1417 IL1RN - ABCA5 892 2252 1482
IL2RG - ABCA5 500 246 173 IL2RG - ABCA5 993 750 1745
IL6ST - ABCA5 2464 1564 1365 IL6ST - ABCA5 155 266 1386
IL8 - ABCA5 1676 1568 1111 IL8 - ABCA5 104 1261 946
IL10RB - ABCA5 492 146 643 IL10RB - ABCA5 2230 2184 2240
IL15 - ABCA5 638 1169 65 IL15 - ABCA5 661 169 711
IL15RA - ABCA5 2151 1672 740 IL15RA - ABCA5 706 1300 2031
IL17C - ABCA5 680 197 164 IL17C - ABCA5 615 575 1518
IL17REL - ABCA5 1014 2405 2202 IL17REL - ABCA5 212 1024 146
Ranking of IL family w.r.t ABCB11 Ranking of ABCB11 family w.r.t IL
laplace linear rbf laplace linear rbf
IL1A - ABCB11 1962 465 648 IL1A - ABCB11 551 140 385
IL1B - ABCB11 1778 851 438 IL1B - ABCB11 255 428 208
IL1RAP - ABCB11 1427 1704 1318 IL1RAP - ABCB11 1681 878 1709
IL1RN - ABCB11 1832 539 297 IL1RN - ABCB11 342 1912 779
IL2RG - ABCB11 2182 2102 550 IL2RG - ABCB11 814 67 584
IL6ST - ABCB11 1793 2140 1938 IL6ST - ABCB11 1347 1504 385
IL8 - ABCB11 1607 2441 1028 IL8 - ABCB11 349 846 1786
IL10RB - ABCB11 341 1119 449 IL10RB - ABCB11 2101 2419 1352
IL15 - ABCB11 2438 2512 576 IL15 - ABCB11 344 224 256
IL15RA - ABCB11 2271 1288 1784 IL15RA - ABCB11 1052 48 719
IL17C - ABCB11 1262 69 706 IL17C - ABCB11 653 316 437
IL17REL - ABCB11 50 305 783 IL17REL - ABCB11 1004 736 896
Ranking of IL family w.r.t ABCC3 Ranking of ABCC3 family w.r.t IL
laplace linear rbf laplace linear rbf
IL1A - ABCC3 1860 758 1538 IL1A - ABCC3 1343 1798 2459
IL1B - ABCC3 1764 749 896 IL1B - ABCC3 1647 1369 569
IL1RAP - ABCC3 1514 2294 1989 IL1RAP - ABCC3 2074 1377 303
IL1RN - ABCC3 647 607 1252 IL1RN - ABCC3 1366 975 1354
IL2RG - ABCC3 990 444 40 IL2RG - ABCC3 1229 379 844
IL6ST - ABCC3 98 1589 339 IL6ST - ABCC3 970 712 1342
IL8 - ABCC3 1767 1046 2419 IL8 - ABCC3 937 1033 430
IL10RB - ABCC3 1354 78 359 IL10RB - ABCC3 1609 29 1830
IL15 - ABCC3 1580 602 1560 IL15 - ABCC3 1087 1191 1084
IL15RA - ABCC3 189 2403 1795 IL15RA - ABCC3 2153 163 1324
IL17C - ABCC3 1587 778 2425 IL17C - ABCC3 466 631 2237
IL17REL - ABCC3 1135 403 54 IL17REL - ABCC3 2089 2388 1618
Ranking of IL family w.r.t ABCC5 Ranking of ABCC5 family w.r.t IL
laplace linear rbf laplace linear rbf
IL1A - ABCC5 2004 681 60 IL1A - ABCC5 2217 2022 1512
IL1B - ABCC5 1948 112 251 IL1B - ABCC5 1223 2137 942
IL1RAP - ABCC5 1038 355 2023 IL1RAP - ABCC5 1982 1892 2296
IL1RN - ABCC5 709 430 1087 IL1RN - ABCC5 1668 816 2142
IL2RG - ABCC5 1421 264 601 IL2RG - ABCC5 500 2018 1691
IL6ST - ABCC5 1569 2010 845 IL6ST - ABCC5 754 2326 874
IL8 - ABCC5 1869 143 1589 IL8 - ABCC5 855 1211 2434
IL10RB - ABCC5 1162 70 434 IL10RB - ABCC5 1337 736 958
IL15 - ABCC5 1262 147 389 IL15 - ABCC5 1947 1991 1584
IL15RA - ABCC5 1083 2255 1861 IL15RA - ABCC5 2457 1444 534
IL17C - ABCC5 2447 96 116 IL17C - ABCC5 1836 845 1802
IL17REL - ABCC5 54 2462 2509 IL17REL - ABCC5 1247 2149 1031
On the right half we found ABCA5 up regulated w.r.t IL-1B/1RAP/10RB. These are reflected in the rankings of 2069 (laplace) and 2301 (rbf) for IL1B - ABCA5; 1763 (laplace) and 2345 (rbf) for IL1RAP - ABCA5; and 2230 (laplace), 2184 (linear) and 2240 (rbf) for IL10RB - ABCA5; ABCB11 was up regulated w.r.t IL-10RB. This is reflected in the rankings of 2101 (laplace) and 2419 (linear) for IL10RB - ABCB11. ABCC3 was up regulated w.r.t IL-1A/17REL. This is reflected in the rankings of 1798 (linear) and 2459 (rbf) for IL1A - ABCC3 and 2089 (laplace) and 2388 (linear) for IL17REL - ABCC3. ABCC5 was up regulated w.r.t IL-1A/1RAP/15/17C. This are reflected in the rankings of 2217 (laplace) and 2022 (linear) for IL1A - ABCC5; 1982 (laplace), 1892 (linear) and 2296 (rbf) for IL1RAP - ABCC5; 1947 (laplace) and 1991 (linear) for IL15 - ABCC5 and 1836 (laplace) and 1802 (rbf) for IL17C - ABCC5. ABCC13 was up regulated w.r.t IL-1RAP/15RA. This are reflected in the rankings of 2136 (laplace) and 2392 (linear) for IL1RAP - ABCC13 and 2397 (laplace) and 2485 (linear) for IL15RA - ABCC13; ABCD1 was up regulated w.r.t IL-8/10RB. This are reflected in the rankings of 2501 (laplace) and 2154 (linear) for IL8 - ABCD1 and 1795 (laplace) and 2325 (rbf) for IL10RB - ABCD1. ABCG2 was up regulated w.r.t IL-10RB. This is reflected in the rankings of 2144 (laplace), 2335 (linear) and 2434 (rbf) for IL10RB - ABCG2.
Table 76. 2nd order interaction ranking between ABC and IL family members.
Table 76. 2nd order interaction ranking between ABC and IL family members.
Ranking ABC family VS IL family
Ranking of IL family w.r.t ABCC13 Ranking of ABCC13 family w.r.t IL
laplace linear rbf laplace linear rbf
IL1A - ABCC13 512 135 1207 IL1A - ABCC13 464 352 201
IL1B - ABCC13 152 103 1553 IL1B - ABCC13 635 974 60
IL1RAP - ABCC13 1092 502 2442 IL1RAP - ABCC13 2136 2392 33
IL1RN - ABCC13 1753 559 323 IL1RN - ABCC13 114 1016 1839
IL2RG - ABCC13 2064 674 1076 IL2RG - ABCC13 807 1079 938
IL6ST - ABCC13 332 1416 2112 IL6ST - ABCC13 119 1098 2323
IL8 - ABCC13 551 1200 1680 IL8 - ABCC13 592 984 907
IL10RB - ABCC13 631 621 561 IL10RB - ABCC13 2011 1272 1297
IL15 - ABCC13 502 296 373 IL15 - ABCC13 612 968 170
IL15RA - ABCC13 2248 1955 2456 IL15RA - ABCC13 2397 2485 790
IL17C - ABCC13 25 140 123 IL17C - ABCC13 924 308 711
IL17REL - ABCC13 2339 2137 1497 IL17REL - ABCC13 462 376 461
Ranking of IL family w.r.t ABCC5 Ranking of ABCC5 family w.r.t IL
laplace linear rbf laplace linear rbf
IL1A - ABCD1 1932 30 2203 IL1A - ABCD1 530 2046 1196
IL1B - ABCD1 569 109 1778 IL1B - ABCD1 1400 605 453
IL1RAP - ABCD1 2508 2006 1907 IL1RAP - ABCD1 399 840 1548
IL1RN - ABCD1 606 2003 789 IL1RN - ABCD1 551 2025 60
IL2RG - ABCD1 1064 284 2374 IL2RG - ABCD1 311 1233 1322
IL6ST - ABCD1 1347 1237 1220 IL6ST - ABCD1 1581 507 612
IL8 - ABCD1 2010 2315 1814 IL8 - ABCD1 2501 2154 539
IL10RB - ABCD1 631 825 85 IL10RB - ABCD1 1795 1028 2325
IL15 - ABCD1 890 325 1578 IL15 - ABCD1 1795 302 1258
IL15RA - ABCD1 2097 1765 1629 IL15RA - ABCD1 580 1240 2342
IL17C - ABCD1 1372 56 2509 IL17C - ABCD1 687 1753 851
IL17REL - ABCD1 5 2388 237 IL17REL - ABCD1 1423 642 2164
Ranking of IL family w.r.t ABCG1 Ranking of ABCG1 family w.r.t IL
laplace linear rbf laplace linear rbf
IL1A - ABCG1 724 67 80 IL1A - ABCG1 699 824 600
IL1B - ABCG1 938 178 533 IL1B - ABCG1 70 783 81
IL1RAP - ABCG1 1263 2205 2339 IL1RAP - ABCG1 2298 394 612
IL1RN - ABCG1 1240 688 1396 IL1RN - ABCG1 2465 834 1051
IL2RG - ABCG1 1396 7 112 IL2RG - ABCG1 587 24 21
IL6ST - ABCG1 357 845 520 IL6ST - ABCG1 1723 1345 177
IL8 - ABCG1 977 1835 1099 IL8 - ABCG1 1730 1748 382
IL10RB - ABCG1 2244 349 840 IL10RB - ABCG1 167 1315 61
IL15 - ABCG1 1960 613 1279 IL15 - ABCG1 2212 734 326
IL15RA - ABCG1 785 651 2191 IL15RA - ABCG1 1195 862 1876
IL17C - ABCG1 2516 486 51 IL17C - ABCG1 80 95 177
IL17REL - ABCG1 2229 732 150 IL17REL - ABCG1 1579 1025 452
Ranking of IL family w.r.t ABCG2 Ranking of ABCG2 family w.r.t IL
laplace linear rbf laplace linear rbf
IL1A - ABCG2 745 716 1299 IL1A - ABCG2 238 89 659
IL1B - ABCG2 354 232 668 IL1B - ABCG2 31 197 439
IL1RAP - ABCG2 2184 2167 1384 IL1RAP - ABCG2 1314 253 2434
IL1RN - ABCG2 783 228 11 IL1RN - ABCG2 552 1692 827
IL2RG - ABCG2 444 463 1024 IL2RG - ABCG2 261 87 1275
IL6ST - ABCG2 1647 1827 55 IL6ST - ABCG2 1792 1477 1222
IL8 - ABCG2 2212 1362 563 IL8 - ABCG2 448 441 1423
IL10RB - ABCG2 31 80 667 IL10RB - ABCG2 2144 2335 2434
IL15 - ABCG2 76 312 187 IL15 - ABCG2 247 590 832
IL15RA - ABCG2 1910 2428 1921 IL15RA - ABCG2 1116 1005 1059
IL17C - ABCG2 649 692 61 IL17C - ABCG2 784 462 775
IL17REL - ABCG2 883 1435 35 IL17REL - ABCG2 852 1606 1597
Table 77 shows the derived influences which can be represented graphically, with the following influences - • ABC w.r.t IL with IL-1B/1RAP/10RB -> ABCA5; IL-10RB -> ABCB11; IL-1A/17REL -> ABCC3; IL-1A/1RAP/15/17C -> ABCC5; IL-1RAP/15RA -> ABCC13; IL-8/10RB -> ABCD1 and IL-10RB -> ABCG2; • IL w.r.t ABC with IL-17REL <- ABCA5; IL-2RG/6ST/15/15RA <- ABCB11; IL-8/15RA <- ABCC3; IL-15RA/17REL <- ABCC5; IL-15RA/17REL <- ABCC13; IL-1A/1RAP/8/15RA <- ABCD1; IL-1RAP <- ABCG1 and IL-1RAP/15RA <- ABCG2;

3.6.4. BCL - ABC Transporters Cross Family Analysis

Ruzickova et al. [163] show clinically relevant interactions of anti-apoptotic Bcl-2 protein inhibitors with ABC transporters. Alla et al. [164] observe that E2F1 confers anticancer drug resistance by targeting ABC transporter family members and Bcl-2 via the p73/DNp73-miR-205 circuitry. Yasui et al. [165] show a range of ABC family members along with BCL member to be overexpressed while studying the alteration in copy numbers of genes as a mechanism for acquired drug resistance. These point to the possible synergistic workings of BCL with ABC. In colorectal cancer cells treated with ETC-1922159, these were found to be up regulated. The search engine pointed to some of these 2nd order combinations and alloted rankings of high numerical value, thus indicating possible synergy. Table 78 and Table 79 show rankings of BCL family w.r.t ABC members on the left half and vice versa on the right half.
On the left half we found BCL2L1 up regulated w.r.t ABCC5. This is reflected in the rankings of 2239 (laplace) and 1845 (linear). BCL2L2 was up regulated w.r.t ABC-B11/C5/C13/D1. These are reflected in the rankings of 2097 (laplace) and 2311 (rbf) for ABCB11 - BCL2L2; 2195 (laplace), 2359 (linear) and 2322 (rbf) for ABCC5 - BCL2L2; 2438 (laplace) and 2494 (linear) for ABCC13 - BCL2L2 and 2477 (laplace) and 2156 (rbf) for ABCD1 - BCL2L2. BCL2L13 was up regulated w.r.t ABC-B11/C5/C13/D1/G1. These are reflected in the rankings of 2505 (laplace) and 1855 (rbf) for ABCB11 - BCL2L13; 1835 (linear) and 2178 (rbf) for ABCC5 - BCL2L13; 2484 (laplace), 2184 (linear) and 2410 (rbf) for ABCC13 - BCL2L13; 2472 (laplace) and 2201 (rbf) for ABCD1 - BCL2L13 and 2276 (linear) and 2095 (rbf) for ABCG1 - BCL2L13. BCL3 was up regulated w.r.t ABC-D1/G1. These are reflected in the rankings of 2194 (linear) and 2106 (rbf) for ABCD1 - BCL3 and 2014 (laplace) and 2253 (rbf) for ABCG1 - BCL3. BCL6 was up regulated w.r.t ABC-B11. These are reflected in the rankings of 2010 (linear) and 2350 (rbf) for ABC-B11 - BCL6. BCL10 was up regulated w.r.t ABC-B11. These are reflected in the rankings of 2234 (laplace) and 2382 (rbf) for ABC-B11 - BCL10.
Table 79. 2nd order interaction ranking between ABC and BCL family members.
Table 79. 2nd order interaction ranking between ABC and BCL family members.
Ranking BCL family VS ABC family
Ranking of BCL6 w.r.t ABC family Ranking of ABC family w.r.t BCL6
laplace linear rbf laplace linear rbf
ABCA5 - BCL6 2045 557 1384 ABCA5 - BCL6 211 283 1615
ABCB11 - BCL6 1611 2010 2350 ABCB11 - BCL6 841 427 2320
ABCC3 - BCL6 1895 983 958 ABCC3 - BCL6 1084 570 594
ABCC5 - BCL6 615 597 567 ABCC5 - BCL6 1370 1841 2389
ABCC13 - BCL6 1097 2431 1731 ABCC13 - BCL6 2172 2456 1063
ABCD1 - BCL6 1446 1139 1953 ABCD1 - BCL6 1097 1297 827
ABCG1 - BCL6 1462 1688 1918 ABCG1 - BCL6 192 27 1111
ABCG2 - BCL6 947 1503 978 ABCG2 - BCL6 129 745 719
Ranking of BCL9L w.r.t ABC family Ranking of ABC family w.r.t BCL9L
laplace linear rbf laplace linear rbf
ABCA5 - BCL9L 67 1008 94 ABCA5 - BCL9L 1753 1167 2312
ABCB11 - BCL9L 1989 158 1705 ABCB11 - BCL9L 1033 494 48
ABCC3 - BCL9L 1307 2249 1357 ABCC3 - BCL9L 457 2296 971
ABCC5 - BCL9L 1694 432 477 ABCC5 - BCL9L 1775 1551 2073
ABCC13 - BCL9L 1724 1410 862 ABCC13 - BCL9L 110 2475 2325
ABCD1 - BCL9L 1366 2344 1666 ABCD1 - BCL9L 1016 2440 2411
ABCG1 - BCL9L 1248 1680 536 ABCG1 - BCL9L 1146 676 16
ABCG2 - BCL9L 2451 1119 224 ABCG2 - BCL9L 1263 1421 218
Ranking of BCL10 w.r.t ABC family Ranking of ABC family w.r.t BCL10
laplace linear rbf laplace linear rbf
ABCA5 - BCL10 687 176 808 ABCA5 - BCL10 1753 1167 2312
ABCB11 - BCL10 2234 2382 322 ABCB11 - BCL10 1033 494 48
ABCC3 - BCL10 589 379 492 ABCC3 - BCL10 457 2296 971
ABCC5 - BCL10 1489 397 1643 ABCC5 - BCL10 1775 1551 2073
ABCC13 - BCL10 956 538 1491 ABCC13 - BCL10 110 2475 2325
ABCD1 - BCL10 1009 470 1597 ABCD1 - BCL10 1016 2440 2411
ABCG1 - BCL10 1613 310 1115 ABCG1 - BCL10 1146 676 16
ABCG2 - BCL10 361 676 2020 ABCG2 - BCL10 1263 1421 218
On the right half we found ABCC3 up regulated w.r.t BCL2L1. This is reflected in the rankings of 2085 (laplace) and 2309 (linear) for ABCC3 - BCL2L1. ABC-C5/C13 were up regulated w.r.t BCL2L13. These was reflected in the rankings of 1975 (laplace) and 2421 (linear) for ABCC5 - BCL2L13; and 1894 (laplace), 2335 (linear) and 2475 (rbf) for ABCC13 - BCL2L13. ABC-C3 was up regulated w.r.t BCL3. This is reflected in the rankings of 1782 (linear) and 2186 (rbf) for ABCC3 - BCL3. ABC-C5/C13 were up regulated w.r.t BCL6. This is reflected in the rankings of 1841 (linear) and 2389 (rbf) for ABCC5 - BCL6 and 2172 (laplace) and 2456 (linear) for ABCC13 - BCL6. ABC-C5/C13/D1 were up regulated w.r.t BCL9L. This is reflected in the rankings of 1775 (laplace) and 2073 (rbf) for ABCC5 - BCL9L; 2475 (linear) and 2325 (rbf) for ABCC13 - BCL9L and 2440 (linear) and 2411 (rbf) for ABCD1 - BCL9L; ABC-A5/C5/C13/D1 were up regulated w.r.t BCL10. These were reflected in the rankings of 1753 (laplace) and 2312 (rbf) for ABCA5 - BCL10; 1775 (laplace) and 2073 (rbf) for ABCC5 - BCL10; 2475 (linear) and 2325 (rbf) for ABCC13 - BCL10 and 2440 (linear) and 2411 (rbf) for ABCD1 - BCL10.
Table 80 shows the derived influences which can be represented graphically, with the following influences - • BCL w.r.t ABC with ABC-C5 -> BCL2L1; ABC-B11/C5/C13/D1 -> BCL2L2; ABC-B11/C5/C13/D1/G1 -> BCL2L13; ABC-D1/G1 -> BCL3; ABC-B11 -> BCL6; ABC-B11 -> BCL10; and • ABC w.r.t BCL with ABC-C3 <- BCL2L1; ABC-C5/C13 <- BCL2L13; ABC-C3 <- BCL3; ABC-C5/C13 <- BCL6; ABC-C5/C13/D1 <- BCL9L; ABC-A5/C5/C13/D1 <- BCL10.

3.6.5. CASPASE - ABC Transporters Cross Family Analysis

Hu et al. [166] observe that the loss of ABCB4 attenuates the caspase-dependent apoptosis regulating resistance to 5-Fu in colorectal cancer. Ihlefeld et al. [167] analyze whether the observed upregulation of the multidrug transporters contributed to the resistance of Sgpl1/-MEFs against chemotherapy-induced apoptosis by measuring the influence of ABC transporter inhibitors on cell viability and caspase-3 cleavage. Though recent developements, they point to the synergy between the transporters and the CASP family. In CRC cells, treated with ETC-1922159, these were found to be UP regulated. The engine alotted high numerical valued ranks to some of the 2nd order combinations between the members of the two families. Table 81 and Table 82 show the rankings of ABC transporters w.r.t CASP and vice versa.
In Table 81, we found ABC-C5 to be up regulated w.r.t CASP4. These are reflected in rankings of 2495 (laplace) and 2257 (rbf) for CASP4 - ABC-C5. ABC-C5 was up regulated w.r.t CASP5. These are reflected in rankings of 2475 (laplace) and 2234 (rbf) for CASP5 - ABC-C5. ABC-A5/C13/D1 were up regulated w.r.t CASP7. These are reflected in rankings of 2515 (laplace) and 1742 (linear) for CASP7 - ABC-C5; 2489 (laplace) and 2418 (linear) for CASP7 - ABC-C13; and 2323 (laplace) and 2004 (linear) for CASP7 - ABC-D1. ABC-B11/C5/D1/G1 were up regulated w.r.t CASP9. These are reflected in rankings of 2001 (linear) and 2051 (rbf) for CASP9 - ABC-B11; 2180 (laplace) and 2343 (linear) for CASP9 - ABC-C5; 2267 (laplace) and 2382 (rbf) for CASP9 - ABC-C13; 1890 (linear) and 2286 (rbf) for CASP9 - ABC-G1; ABC-A5/C13 were up regulated w.r.t CASP10. These are reflected in rankings of 2292 (laplace), 2311 (linear) and 1108 (rbf) for CASP10 - ABC-A5; 2139 (laplace) and 2203 (linear) for CASP10 - ABC-C13;
In Table 82, we found ABC-C5 to be up regulated w.r.t CASP4. These are reflected in rankings of 2495 (laplace) and 2257 (rbf) for CASP4 - ABC-C5. ABC-C5 was up regulated w.r.t CASP5. These are reflected in rankings of 2475 (laplace) and 2234 (rbf) for CASP5 - ABC-C5. ABC-A5/C13/D1 were up regulated w.r.t CASP7. These are reflected in rankings of 2515 (laplace) and 1742 (linear) for CASP7 - ABC-C5; 2489 (laplace) and 2418 (linear) for CASP7 - ABC-C13; and 2323 (laplace) and 2004 (linear) for CASP7 - ABC-D1. ABC-B11/C5/D1/G1 were up regulated w.r.t CASP9. These are reflected in rankings of 2001 (linear) and 2051 (rbf) for CASP9 - ABC-B11; 2180 (laplace) and 2343 (linear) for CASP9 - ABC-C5; 2267 (laplace) and 2382 (rbf) for CASP9 - ABC-C13; 1890 (linear) and 2286 (rbf) for CASP9 - ABC-G1; ABC-A5/C13 were up regulated w.r.t CASP10. These are reflected in rankings of 2292 (laplace), 2311 (linear) and 1108 (rbf) for CASP10 - ABC-A5; 2139 (laplace) and 2203 (linear) for CASP10 - ABC-C13;
In Table 82, we found CASP4 to be up regulated w.r.t ABC-D1. These are reflected in rankings of 1791 (laplace) and 1954 (rbf) for CASP4 - ABC-D1. CASP5 was up regulated w.r.t ABC-C13. These are reflected in rankings of 2286 (laplace) and 1905 (rbf) for CASP5 - ABC-C13. CASP7 was up regulated w.r.t ABC-C5. This is reflected in rankings of 2168 (laplace), 1881 (linear) and 2016 (rbf) for CASP7 - ABC-C5. CASP9 were up regulated w.r.t ABC-C5/C13/D1/G1. These are reflected in rankings of 2404 (laplace) and 2374 (linear) for CASP9 - ABC-A5; 2449 (laplace) and 2506 (rbf) for CASP9 - ABC-C13; 1858 (laplace) and 2430 (rbf) for CASP9 - ABC-D1; and 2342 (linear) and 2468 (rbf) for CASP9 - ABC-G1; CASP16 were up regulated w.r.t ABC-A5. This is reflected in rankings of 2477 (linear) and 2315 (rbf) for CASP16 - ABC-A5.
Table 83 shows the derived influences which can be represented graphically, with the following influences - • ABC w.r.t CASP with CASP-4 -> ABC-C5; CASP-5 -> ABC-C5; CASP-7 -> ABC-A5/C13/D1; CASP-9 -> ABC-B11/C5/D1/G1; CASP-10 -> ABC-A5/C13; and • CASP w.r.t ABC with CASP-4 <- ABC-D1; CASP-5 <- ABC-C13; CASP-7 <- ABC-C5; CASP-9 <- ABC-C5/C13/D1/G1; CASP-16 <- ABC-A5;
Table 81. 2nd order interaction ranking between ABC and CASP family members.
Table 81. 2nd order interaction ranking between ABC and CASP family members.
Ranking ABC family w.r.t CASP family
Ranking of ABC family w.r.t CASP4 Ranking of ABC family w.r.t CASP5
laplace linear rbf laplace linear rbf
CASP4 - ABC-A5 957 682 991 CASP5 - ABC-A5 733 1986 421
CASP4 - ABC-B11 19 727 158 CASP5 - ABC-B11 513 406 355
CASP4 - ABC-C3 1242 857 1848 CASP5 - ABC-C3 685 1694 1558
CASP4 - ABC-C5 2495 1316 2257 CASP5 - ABC-C5 2475 1038 2234
CASP4 - ABC-C13 154 1537 1206 CASP5 - ABC-C13 1660 1581 853
CASP4 - ABC-D1 1494 964 999 CASP5 - ABC-D1 354 725 1304
CASP4 - ABC-G1 1405 70 326 CASP5 - ABC-G1 298 485 382
CASP4 - ABC-G2 157 176 523 CASP5 - ABC-G2 706 846 1598
Ranking of ABC family w.r.t CASP7 Ranking of ABC family w.r.t CASP9
laplace linear rbf laplace linear rbf
CASP7 - ABC-A5 2515 1742 25 CASP9 - ABC-A5 1125 1863 694
CASP7 - ABC-B11 1299 207 348 CASP9 - ABC-B11 729 2001 2051
CASP7 - ABC-C3 992 511 2222 CASP9 - ABC-C3 1108 1470 1465
CASP7 - ABC-C5 1232 1449 2154 CASP9 - ABC-C5 2180 2343 1732
CASP7 - ABC-C13 2489 2418 1623 CASP9 - ABC-C13 2267 1472 2382
CASP7 - ABC-D1 1544 2323 2004 CASP9 - ABC-D1 1011 1086 174
CASP7 - ABC-G1 665 382 670 CASP9 - ABC-G1 580 1890 2286
CASP7 - ABC-G2 1930 23 963 CASP9 - ABC-G2 647 2374 310
Ranking of ABC family w.r.t CASP10 Ranking of ABC family w.r.t CASP16
laplace linear rbf laplace linear rbf
CASP10 - ABC-A5 2292 2311 1108 CASP16 - ABC-A5 165 408 113
CASP10 - ABC-B11 2245 1467 1182 CASP16 - ABC-B11 495 949 1417
CASP10 - ABC-C3 760 2479 923 CASP16 - ABC-C3 50 4 556
CASP10 - ABC-C5 326 485 1429 CASP16 - ABC-C5 1635 2487 1309
CASP10 - ABC-C13 2139 2203 1524 CASP16 - ABC-C13 1517 936 1236
CASP10 - ABC-D1 2210 475 1655 CASP16 - ABC-D1 1029 1210 1285
CASP10 - ABC-G1 2337 128 71 CASP16 - ABC-G1 350 756 109
CASP10 - ABC-G2 2075 1693 1306 CASP16 - ABC-G2 318 476 515
Table 82. 2nd order interaction ranking between CASP and ABC family members.
Table 82. 2nd order interaction ranking between CASP and ABC family members.
Ranking CASP family w.r.t ABC family
Ranking of CASP4 w.r.t ABC family Ranking of CASP5 w.r.t ABC family
laplace linear rbf laplace linear rbf
CASP4 - ABC-A5 791 586 753 CASP5 - ABC-A5 696 427 48
CASP4 - ABC-B11 462 263 427 CASP5 - ABC-B11 1470 1300 242
CASP4 - ABC-C3 1013 54 1140 CASP5 - ABC-C3 821 286 459
CASP4 - ABC-C5 2396 26 209 CASP5 - ABC-C5 2368 665 171
CASP4 - ABC-C13 1305 775 2193 CASP5 - ABC-C13 2286 739 1905
CASP4 - ABC-D1 1791 591 1954 CASP5 - ABC-D1 653 440 972
CASP4 - ABC-G1 593 99 173 CASP5 - ABC-G1 2176 446 317
CASP4 - ABC-G2 423 109 1364 CASP5 - ABC-G2 332 122 533
Ranking of CASP7 w.r.t ABC family Ranking of CASP9 w.r.t ABC family
laplace linear rbf laplace linear rbf
CASP7 - ABC-A5 1726 697 1874 CASP9 - ABC-A5 2404 2374 1265
CASP7 - ABC-B11 1549 189 1692 CASP9 - ABC-B11 998 1258 2046
CASP7 - ABC-C3 2331 1572 69 CASP9 - ABC-C3 1398 2358 1445
CASP7 - ABC-C5 2168 1881 2016 CASP9 - ABC-C5 1023 965 1080
CASP7 - ABC-C13 1822 865 1239 CASP9 - ABC-C13 2449 1545 2506
CASP7 - ABC-D1 111 813 2230 CASP9 - ABC-D1 1858 2430 412
CASP7 - ABC-G1 1609 983 1994 CASP9 - ABC-G1 305 2342 2468
CASP7 - ABC-G2 1094 952 102 CASP9 - ABC-G2 1868 1621 1154
Ranking of CASP10 w.r.t ABC family Ranking of CASP16 w.r.t ABC family
laplace linear rbf laplace linear rbf
CASP10 - ABC-A5 683 1453 1437 CASP16 - ABC-A5 960 2477 2315
CASP10 - ABC-B11 1301 774 558 CASP16 - ABC-B11 402 1860 794
CASP10 - ABC-C3 369 683 1453 CASP16 - ABC-C3 171 825 23
CASP10 - ABC-C5 1823 346 761 CASP16 - ABC-C5 2467 585 258
CASP10 - ABC-C13 1320 832 868 CASP16 - ABC-C13 428 177 64
CASP10 - ABC-D1 249 1440 387 CASP16 - ABC-D1 651 153 2010
CASP10 - ABC-G1 1687 1232 156 CASP16 - ABC-G1 2398 421 1120
CASP10 - ABC-G2 1151 651 464 CASP16 - ABC-G2 1193 734 479
Table 83. 2nd order combinatorial hypotheses between BCL and ABC family members.
Table 83. 2nd order combinatorial hypotheses between BCL and ABC family members.
Unexplored combinatorial hypotheses
ABC w.r.t CASP
CASP-4 ABC-C5
CASP-5 ABC-C5
CASP-7 ABC-A5/C13/D1
CASP-9 ABC-B11/C5/D1/G1
CASP-10 ABC-A5/C13
CASP w.r.t ABC
CASP-4 ABC-D1
CASP-5 ABC-C13
CASP-7 ABC-C5
CASP-9 ABC-C5/C13/D1/G1
CASP-16 ABC-A5

3.7. Interleukin Related Synergies

3.7.1. NFkB-2/I - Interleukin Cross Family Analysis

Hörber et al. [168] show that the atypical inhibitor of NF-κB, IκBζ, controls macrophage interleukin-10 expression. Yamazaki et al. [169] observe that stimulus-specific induction of a novel nuclear factor-κB regulator, IκB-ζ, via Toll/Interleukin-1 receptor is mediated by mRNA stabilization. Kurzrock et al. [170] show that Interleukin-1 increases expression of the LYT-10 (NFκB2) proto-oncogene/transcription factor in renal cell carcinoma lines. These studies and many others not indicated here, show the connection between Interleukin and NFkB-2 and NFkBI family. In CRC cells treated with ETC-1922159, members of these families were UP regulated. Table 84 shows the rankings of each family with the other.
On the left side, rankings of IL w.r.t NFkB-2/I has been indicated. We found IL-15RA/17C to be up regulated w.r.t NFkB2. These are reflected in rankings of 1787 (rbf) and 1957 (rbf) IL15RA - NFkB2 and 2288 (linear) and 2018 (rbf) IL17C - NFkB2. IL-1RN/6ST/15RA to be up regulated w.r.t NFkB2. These are reflected in rankings of 1753 (laplace) and 1906 (linear) for IL1RN - NFkBIA; 2400 (linear) and 2094 (rbf) for IL6ST - NFkBIA and 2251 (laplace) and 2390 (linear) for IL15RA - NFkBIA. IL-1RAP/6ST/8/17REL to be up regulated w.r.t NFkB2. These are reflected in rankings of 2221 (linear) and 1807 (rbf) IL1RAP - NFkBIE; 2381 (linear) and 2277 (rbf) for IL6ST - NFkBIE; 2198 (linear) and 2133 (rbf) for IL8 - NFkBIE and 2216 (linear) and 2168 (rbf) for IL17REL - NFkBIE. IL-1A/6ST/15 to be up regulated w.r.t NFkB2. These are reflected in rankings of 2381 (laplace) and 2049 (linear) for IL1A - NFkBIZ; 2279 (laplace) and 2431 (linear) for IL6ST - NFkBIZ and 1780 (laplace) and 2098 (linear) for IL15 - NFkBIZ;
On the right side, rankings of NFkB-2/I w.r.t IL has been indicated. We found NFkB-2 to be up regulated w.r.t IL10RB. This is reflected in rankings of 2282 (laplace), 2381 (linear) and 1897 (rbf) for NFkB2 - IL10RB. NFkBIZ to be up regulated w.r.t IL-10RB/17REL. These were reflected in rankings of 2271 (laplace) and 2082 (rbf) for IL10RB - NFkBIZ and 1883 (linear) and 1830 (rbf) for IL17REL - NFkBIZ.
Table 84. 2nd order combinatorial hypotheses between NFkB-2/I and IL.
Table 84. 2nd order combinatorial hypotheses between NFkB-2/I and IL.
Ranking Interleukin family vs NFkB-2 family
Ranking of IL family w.r.t NFkB-2 Ranking of NFkB-2/I w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - NFkB2 1485 6 2494 IL1A - NFkB2 616 276 1358
IL1B - NFkB2 1852 638 1587 IL1B - NFkB2 283 284 1088
IL1RAP - NFkB2 1369 1849 1463 IL1RAP - NFkB2 967 377 161
IL1RN - NFkB2 1285 1963 1604 IL1RN - NFkB2 1386 2086 52
IL2RG - NFkB2 486 1077 1300 IL2RG - NFkB2 1436 1123 2163
IL6ST - NFkB2 493 814 283 IL6ST - NFkB2 2177 343 2255
IL8 - NFkB2 1907 865 335 IL8 - NFkB2 303 2355 1152
IL10RB - NFkB2 707 1607 595 IL10RB - NFkB2 2282 2381 1897
IL15 - NFkB2 792 1113 1434 IL15 - NFkB2 2112 1214 1217
IL15RA - NFkB2 1787 233 1957 IL15RA - NFkB2 1289 1235 1913
IL17C - NFkB2 2288 305 2018 IL17C - NFkB2 380 529 1492
IL17REL - NFkB2 9 2464 167 IL17REL - NFkB2 115 1540 308
Ranking of IL family w.r.t NFkBI-A Ranking of NFkB-2/I w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - NFkBIA 116 46 1885 IL1A - NFkBIA 989 1179 705
IL1B - NFkBIA 328 56 1228 IL1B - NFkBIA 611 397 1378
IL1RAP - NFkBIA 1376 778 359 IL1RAP - NFkBIA 1131 515 1887
IL1RN - NFkBIA 1753 1906 267 IL1RN - NFkBIA 2357 578 382
IL2RG - NFkBIA 32 6 898 IL2RG - NFkBIA 132 684 784
IL6ST - NFkBIA 1011 2400 2094 IL6ST - NFkBIA 2008 533 90
IL8 - NFkBIA 1988 1234 1232 IL8 - NFkBIA 183 993 1109
IL10RB - NFkBIA 864 2239 8 IL10RB - NFkBIA 616 1251 107
IL15 - NFkBIA 1181 453 462 IL15 - NFkBIA 2227 958 165
IL15RA - NFkBIA 2251 2390 1652 IL15RA - NFkBIA 765 291 2301
IL17C - NFkBIA 538 229 330 IL17C - NFkBIA 450 178 19
IL17REL - NFkBIA 643 16 4 IL17REL - NFkBIA 1275 403 2190
Ranking of IL family w.r.t NFkBI-E Ranking of NFkBI-E w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - NFkBIE 2486 27 76 IL1A - NFkBIE 433 1574 953
IL1B - NFkBIE 2089 39 311 IL1B - NFkBIE 1103 507 1931
IL1RAP - NFkBIE 201 2221 1807 IL1RAP - NFkBIE 474 1404 875
IL1RN - NFkBIE 2025 610 1153 IL1RN - NFkBIE 2051 381 468
IL2RG - NFkBIE 1141 986 654 IL2RG - NFkBIE 1327 1464 983
IL6ST - NFkBIE 1155 2381 2277 IL6ST - NFkBIE 309 143 939
IL8 - NFkBIE 259 2198 2133 IL8 - NFkBIE 1507 911 67
IL10RB - NFkBIE 1730 191 310 IL10RB - NFkBIE 305 478 1960
IL15 - NFkBIE 1922 365 117 IL15 - NFkBIE 2476 783 1302
IL15RA - NFkBIE 1912 839 1385 IL15RA - NFkBIE 424 526 1423
IL17C - NFkBIE 2179 105 404 IL17C - NFkBIE 2231 1205 321
IL17REL - NFkBIE 13 2216 2168 IL17REL - NFkBIE 333 831 949
Ranking of IL family w.r.t NFkBI-Z Ranking of NFkBI-Z w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - NFkBIZ 2381 2049 1578 IL1A - NFkBIZ 157 792 1460
IL1B - NFkBIZ 1241 2210 463 IL1B - NFkBIZ 586 217 1617
IL1RAP - NFkBIZ 694 1077 936 IL1RAP - NFkBIZ 1326 240 1080
IL1RN - NFkBIZ 860 2151 231 IL1RN - NFkBIZ 2463 739 579
IL2RG - NFkBIZ 1362 2054 68 IL2RG - NFkBIZ 68 829 1212
IL6ST - NFkBIZ 2279 980 2431 IL6ST - NFkBIZ 996 1223 140
IL8 - NFkBIZ 992 1732 966 IL8 - NFkBIZ 816 1510 119
IL10RB - NFkBIZ 717 2275 571 IL10RB - NFkBIZ 2271 42 2082
IL15 - NFkBIZ 1780 2098 626 IL15 - NFkBIZ 2155 200 245
IL15RA - NFkBIZ 633 1726 2422 IL15RA - NFkBIZ 834 1284 1785
IL17C - NFkBIZ 1716 2430 1098 IL17C - NFkBIZ 848 1282 1391
IL17REL - NFkBIZ 14 75 314 IL17REL - NFkBIZ 289 1883 1830
Table 85 shows the derived influences which can be represented graphically, with the following influences - • IL w.r.t NFkB with IL w.r.t NFkB-2/I with IL15RA <- NFkB2; IL17C <- NFkB2; IL1RN <- NFkBIA; IL6ST <- NFkBIA; IL15RA <- NFkBIA; IL1RAP <- NFkBIE; IL6ST <- NFkBIE; IL8 <- NFkBIE; IL17REL <- NFkBIE; IL1A <- NFkBIZ; IL6ST <- NFkBIZ; IL15 <- NFkBIZ; and • NFkB-2/I w.r.t IL with IL10RB -> NFkB2; IL10RB -> NFKBIZ; IL17REL -> NFkBIZ;

3.7.2. Potassium Channel - Interleukin Cross Family Analysis

In 1986, Lee et al. [171] showed that increased voltage-gated potassium conductance during interleukin 2-stimulated proliferation of a mouse helper T lymphocyte clone. Martin et al. [172] show that interleukin-4 activates large-conductance, calcium-activated potassium (BKCa) channels in human airway smooth muscle cells. However, the author is not aware of deep studies between the Potassium ion channel subfamily members (KCN) and interleukin. In CRC cells treated with ETC-1922159, these were found to be UP regulated. The search engine found alotted multiple combinations between the members of these two families. These were reflected in ranking of the each with the other in the following Table 86 and Table 87. On the left is rankings of IL family with respect to the KCN family member and on the right, vice versa.
Beginning on the left side we found IL-1A/1B/15RA/17C to be up regulated w.r.t KCND3. These are reflected in rankings of 1995 (laplace) and 2255 (linear) for IL1A - KCND3; 2083 (laplace) and 1897 (linear) for IL1B - KCND3; 2074 (laplace) and 2495 (rbf) for IL15RA - KCND3; and 1881 (laplace) and 2139 (linear) for IL17C - KCND3. IL-1A/1B to be up regulated w.r.t KCNH2. These are reflected in rankings of 2103 (laplace) and 1832 (linear) for IL1A - KCNH2 and 2447 (laplace) and 2068 (linear) for IL1B - KCNH2; IL-1A/1B/17C to be up regulated w.r.t KCNH8. These are reflected in rankings of 2268 (laplace), 2507 (linear) and 1877 (rbf) for IL1A - KCNH8; 2223 (laplace), 2013 (linear) and 2204 (rbf) for IL1B - KCNH8; and 1847 (laplace), and 2354 (rbf) for IL17C - KCNH8. IL-1A/1B/1RN/15 to be up regulated w.r.t KCNK1. These are reflected in rankings of 2290 (laplace) and 2066 (linear) for IL1A - KCNK1; 1941 (laplace) and 2452 (linear) and 1905 (rbf) for IL1B - KCNK1; 2468 (laplace) and 1897 (linear) for IL1RN - KCNK1; 2280 (laplace) and 2009 (rbf) for IL15 - KCNK1. IL-1RN/10RB/17REL to be up regulated w.r.t KCNK5. These are reflected in rankings of 1930 (linear) and 2136 (rbf) for IL1RN-KCNK5; 1879 (laplace), 2298 (linear) and 1903 (rbf) for IL10RB-KCKK5; and 2118 (laplace) and 1873 (rbf) for IL17REL - KCNK5; IL-8/17REL to be up regulated w.r.t KCNK5. These are reflected in rankings of 2168 (laplace) and 2442 (linear) for IL8 - KCNK6; and 2066 (laplace) and 2159 (linear) for IL17REL - KCNK6.
Beginning on the right side we found KCND3 to be up regulated w.r.t IL-1A/1B/15RA/17C. These are reflected in rankings of 2495 (laplace), 2390 (linear) for IL1RAP - KCND3; 2048 (laplace), 2306 (linear) and 2197 (rbf) for IL10RB - KCND3 and 2511 (laplace) and 2517 (linear) for IL15RA - KCND3; KCNH2 to be up regulated w.r.t IL-1A/1RAP. These are reflected in rankings of 1897 (laplace), 2152 (linear) and 2179 (rbf) for IL1A - KCNH2; and 2451 (laplace), 1805 (linear) and 2002 (rbf) for IL1RAP - KCNH2; KCNH8 to be up regulated w.r.t IL-1B/10RB. These are reflected in rankings of 2060 (laplace) and 2177 (rbf) for IL1B - KCNH8; and 2381 (laplace) and 2008 (linear) for IL10RB - KCNH8; KCNK1 to be up regulated w.r.t IL-1A/6ST/8. These are reflected in rankings of 1818 (linear) and 2362 (rbf) for IL1A - KCNK1; 2226 (laplace) and 2283 (rbf) for IL6ST - KCNK1; and 1872 (laplace) and 1978 (linear) for IL8 - KCNK1; KCNK5 to be up regulated w.r.t IL-10RB. This is reflected in rankings of 1769 (linear) and 2206 (rbf) for IL10RB - KCNK5; KCNK6 to be up regulated w.r.t IL-1RAP/10RB/15. These are reflected in rankings of 2386 (laplace) and 2053 (rbf) for IL1RAP - KCNK6; 1903 (linear) and 2156 (rbf) for IL10RB - KCNK6; and 1944 (laplace) and 2047 (rbf) for IL15 - KCNK6;
Finally, Table 88 shows the derived influences which can be represented graphically, with the following influences - • IL w.r.t KCN with IL-1A/1B/15RA/17C <- KCND3; IL-1A/1B <- KCNH2; IL-1A/1B/17C <- KCNH8; IL-1A/1B/1RN/15 <- KCNK1; IL-1RN/10RB/17REL <- KCNK5; IL-8/17REL <- KCNK6; and • KCN w.r.t IL family with IL-1A/1B/15RA/17C -> KCND3; IL-1A/1RAP -> KCNH2; IL-1B/10RB -> KCNH8; IL-1A/6ST/8 -> KCNK1; IL-10RB -> KCNK5; and IL-1RAP/10RB/15 -> KCNK6;

3.7.3. Mucin - Interleukin Cross Family Analysis

Kerschner et al. [173] have observed that middle ear epithelial mucin production in response to interleukin-6 exposure in vitro. Chen et al. [174] observe that stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. Suppression of mucin 2 promotes interleukin-6 secretion and tumor growth in an orthotopic immune-competent colon cancer animal model was observed by Shan et al. [175]. Yokoigawa et al. [176] show enhanced production of interleukin 6 in peripheral blood monocytes stimulated with mucins secreted into the bloodstream. Gray et al. [177] show that interleukin-1β-induced mucin production in human airway epithelium is mediated by cyclooxygenase-2, prostaglandin E2 receptors, and cyclic AMP-protein kinase A signaling. Finally, in colorectal cancer, Hsu et al. [178] mucin 2 silencing promotes metastasis through interleukin-6 signaling. In CRC cells treated with ETC-1922159, both were found to be up regulated. Table 89 and Table 90 show the rankings of IL family w.r.t MUC family on the left side and vice versa on the right side.
On the left side, we found IL-1B/17C to be up regulated with respect to MUC1. These are reflected in rankings of 2218 (laplace) 1757 (linear) for IL1B - MUC1; and 1841 (linear) and 2003 (rbf) for IL17C - MUC1; IL-1A/1B/1RN/2RG/15/17C were up regulated with respect to MUC3A. These are reflected in rankings of 2513 (laplace) and 2480 (linear) for IL1A - MUC3A; 1820 (laplace) and 2308 (linear) for IL1B - MUC3A; 2138 (laplace) and 2270 (linear) for IL1RN - MUC3A; 1816 (laplace), 2115 (linear) and 1900 (rbf) for IL2RG - MUC3A; 2391 (laplace) and 2288 (linear) for IL15 - MUC3A; and 2443 (laplace) and 2512 (linear) for IL17C - MUC3A; IL-1RN/6ST/15RA were up regulated with respect to MUC4. These are reflected in rankings of 2010 (laplace) and 1960 (rbf) for IL1RN - MUC4; 2204 (laplace) and 1765 (rbf) for IL6ST - MUC4; and 2190 (laplace), 1814 (linear) and 2061 (rbf) for IL15RA - MUC4; IL-1A/2RG/8/15/17C were up regulated with respect to MUC12. These are reflected in rankings of 1806 (laplace) and 2396 (rbf) for IL1A - MUC12; 2195 (laplace) and 2089 (rbf) for IL2RG - MUC12; 1814 (laplace) and 2497 (rbf) for IL8 - MUC12; 2408 (laplace) and 2340 (rbf) for IL15 - MUC12; and 2436 (laplace) and 2416 (rbf) for IL17C - MUC12; IL-15RA were up regulated with respect to MUC17. These are reflected in rankings of 2265 (laplace) and 2064 (linear) for IL15RA - MUC17. IL-1RAP/8/17REL were up regulated with respect to MUC20. These are reflected in rankings of 2025 (linear) and 2251 (rbf) for IL1RAP - MUC20; 1820 (laplace) and 2303 (rbf) for IL8 - MUC20; and 2121 (laplace) and 2267 (rbf) for IL17REL - MUC20.
On the left side, we found MUC1 to be up regulated with respect to IL-1B. These are reflected in rankings of 1847 (laplace) and 2049 (rbf) for IL1B - MUC1. MUC12 to be up regulated with respect to IL-1RN/2RG/6ST. These are reflected in rankings of 2505 (laplace) and 1891 (linear) for IL1RN - MUC12; 1913 (laplace) and 1833 (linear) for IL2RG - MUC12; and 2100 (laplace) and 1759 (linear) for IL6ST - MUC12. MUC13 to be up regulated with respect to IL-1RAP/15RA. These are reflected in rankings of 1887 (laplace) and 2263 (rbf) for IL1RAP - MUC13; and 2109 (laplace) and 2402 (rbf) for IL15RA - MUC13; MUC20 to be up regulated with respect to IL-1A/10RB/17C. These are reflected in rankings of 2218 (laplace) and 2260 (rbf) for IL1A - MUC20; 1883 (linear) and 1947 (rbf) for IL10RB - MUC20; and 2212 (laplace) and 1843 (linear) for IL17C - MUC20.
Finally, Table 91 shows the derived influences which can be represented graphically, with the following influences - • IL w.r.t MUC with IL-1B/17C <- MUC1; IL-1A/1B/1RN/2RG/15/17C and MUC3A; IL-1RN/6ST/15RA <- MUC4; IL-1A/2RG/8/15/17C <- MUC12; IL-15RA <- MUC17; and IL-1RAP/8/17REL <- MUC20; and • MUC w.r.t IL with IL-1B <- MUC1; IL-1RN/2RG/6ST <- MUC12; IL-1RAP/15RA <- MUC13; and IL-1A/10RB/17C <- MUC20;
Table 89. 2nd order combinatorial hypotheses between MUC and IL.
Table 89. 2nd order combinatorial hypotheses between MUC and IL.
Ranking Interleukin family vs MUC family
Ranking of IL family w.r.t MUC1 Ranking of MUC1 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - MUC1 1961 1711 107 IL1A - MUC1 111 879 535
IL1B - MUC1 2218 1757 228 IL1B - MUC1 1847 520 2049
IL1RAP - MUC1 837 604 146 IL1RAP - MUC1 1968 589 439
IL1RN - MUC1 1084 918 1859 IL1RN - MUC1 1752 353 507
IL2RG - MUC1 1872 272 1281 IL2RG - MUC1 1769 1009 285
IL6ST - MUC1 2415 1115 1633 IL6ST - MUC1 296 801 245
IL8 - MUC1 1276 544 1055 IL8 - MUC1 2079 1320 82
IL10RB - MUC1 291 1638 1710 IL10RB - MUC1 973 1691 924
IL15 - MUC1 212 1003 1060 IL15 - MUC1 160 205 942
IL15RA - MUC1 213 1346 1067 IL15RA - MUC1 1127 1057 1521
IL17C - MUC1 1215 1841 2003 IL17C - MUC1 3 236 7
IL17REL - MUC1 19 44 2069 IL17REL - MUC1 1142 541 1464
Ranking of IL family w.r.t MUC3A Ranking of MUC3A w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - MUC3A 2513 2480 194 IL1A - MUC3A 1426 1017 1484
IL1B - MUC3A 1820 2308 1086 IL1B - MUC3A 816 1157 908
IL1RAP - MUC3A 753 1270 526 IL1RAP - MUC3A 1403 1402 102
IL1RN - MUC3A 2138 2270 313 IL1RN - MUC3A 1123 360 1333
IL2RG - MUC3A 1816 2115 1900 IL2RG - MUC3A 480 1560 514
IL6ST - MUC3A 283 1126 1229 IL6ST - MUC3A 1601 908 889
IL8 - MUC3A 356 760 1517 IL8 - MUC3A 2350 587 80
IL10RB - MUC3A 1401 729 157 IL10RB - MUC3A 520 458 2324
IL15 - MUC3A 850 2391 2288 IL15 - MUC3A 1385 1351 959
IL15RA - MUC3A 1304 1949 959 IL15RA - MUC3A 1538 1685 584
IL17C - MUC3A 2443 2512 647 IL17C - MUC3A 2153 623 1349
IL17REL - MUC3A 200 243 2048 IL17REL - MUC3A 1274 1250 1387
Ranking of IL family w.r.t MUC4 Ranking of MUC4 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - MUC4 1268 489 112 IL1A - MUC4 42 1449 331
IL1B - MUC4 779 1142 393 IL1B - MUC4 780 301 393
IL1RAP - MUC4 1672 1203 926 IL1RAP - MUC4 460 358 883
IL1RN - MUC4 2010 438 1960 IL1RN - MUC4 1681 1164 51
IL2RG - MUC4 161 292 36 IL2RG - MUC4 581 659 1056
IL6ST - MUC4 2204 1116 1765 IL6ST - MUC4 977 1555 873
IL8 - MUC4 619 741 1030 IL8 - MUC4 222 1341 1552
IL10RB - MUC4 1818 1343 599 IL10RB - MUC4 87 1511 95
IL15 - MUC4 434 1268 602 IL15 - MUC4 440 806 276
IL15RA - MUC4 2190 1814 2061 IL15RA - MUC4 427 1145 305
IL17C - MUC4 255 60 558 IL17C - MUC4 167 152 159
IL17REL - MUC4 222 482 52 IL17REL - MUC4 2266 419 160
Ranking of IL family w.r.t MUC12 Ranking of MUC12 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - MUC12 1806 166 2396 IL1A - MUC12 706 84 570
IL1B - MUC12 1004 113 2086 IL1B - MUC12 1352 167 445
IL1RAP - MUC12 1906 1588 517 IL1RAP - MUC12 52 272 1955
IL1RN - MUC12 2209 669 235 IL1RN - MUC12 2505 1891 567
IL2RG - MUC12 2195 751 2089 IL2RG - MUC12 1913 1833 939
IL6ST - MUC12 1115 1522 1031 IL6ST - MUC12 2100 1759 1508
IL8 - MUC12 1814 1554 2497 IL8 - MUC12 439 121 1635
IL10RB - MUC12 2467 1114 1044 IL10RB - MUC12 381 1863 12
IL15 - MUC12 2408 192 2340 IL15 - MUC12 2400 1307 1408
IL15RA - MUC12 612 1636 203 IL15RA - MUC12 137 127 468
IL17C - MUC12 2436 484 2416 IL17C - MUC12 411 182 283
IL17REL - MUC12 2421 331 611 IL17REL - MUC12 1452 678 651
Table 90. 2nd order combinatorial hypotheses between MUC and IL.
Table 90. 2nd order combinatorial hypotheses between MUC and IL.
Ranking Interleukin family vs MUC family contd.
Ranking of IL family w.r.t MUC13 Ranking of MUC13 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - MUC13 655 2323 826 IL1A - MUC13 1176 148 803
IL1B - MUC13 2250 298 185 IL1B - MUC13 833 30 8
IL1RAP - MUC13 386 490 360 IL1RAP - MUC13 1887 1142 2263
IL1RN - MUC13 904 1614 698 IL1RN - MUC13 1749 1607 313
IL2RG - MUC13 1043 59 27 IL2RG - MUC13 434 852 1140
IL6ST - MUC13 635 1774 730 IL6ST - MUC13 1901 535 163
IL8 - MUC13 225 510 1130 IL8 - MUC13 2328 722 555
IL10RB - MUC13 944 491 1631 IL10RB - MUC13 1459 1841 342
IL15 - MUC13 1773 609 1047 IL15 - MUC13 315 465 302
IL15RA - MUC13 1884 1360 1067 IL15RA - MUC13 2109 158 2402
IL17C - MUC13 562 106 149 IL17C - MUC13 73 4 84
IL17REL - MUC13 1808 83 59 IL17REL - MUC13 694 676 586
Ranking of IL family w.r.t MUC17 Ranking of MUC17 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - MUC17 1573 2431 1622 IL1A - MUC17 881 311 254
IL1B - MUC17 1122 514 1035 IL1B - MUC17 676 1243 174
IL1RAP - MUC17 1634 1148 1469 IL1RAP - MUC17 136 369 2512
IL1RN - MUC17 38 260 911 IL1RN - MUC17 361 22 690
IL2RG - MUC17 754 218 403 IL2RG - MUC17 1379 530 177
IL6ST - MUC17 1616 554 1381 IL6ST - MUC17 1782 668 270
IL8 - MUC17 241 583 402 IL8 - MUC17 1612 436 1984
IL10RB - MUC17 401 464 51 IL10RB - MUC17 1707 1305 1857
IL15 - MUC17 307 438 878 IL15 - MUC17 466 366 596
IL15RA - MUC17 2265 2064 1458 IL15RA - MUC17 63 376 849
IL17C - MUC17 1045 581 2291 IL17C - MUC17 1530 285 1449
IL17REL - MUC17 656 657 456 IL17REL - MUC17 380 580 1306
Ranking of IL family w.r.t MUC20 Ranking of MUC20 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - MUC20 103 1729 18 IL1A - MUC20 2218 1499 2260
IL1B - MUC20 85 1810 30 IL1B - MUC20 1313 1719 735
IL1RAP - MUC20 974 2025 2251 IL1RAP - MUC20 1784 859 1705
IL1RN - MUC20 1176 2264 246 IL1RN - MUC20 1265 726 823
IL2RG - MUC20 405 2168 335 IL2RG - MUC20 2152 165 1400
IL6ST - MUC20 1475 1093 2233 IL6ST - MUC20 1743 203 1643
IL8 - MUC20 1820 538 2303 IL8 - MUC20 1875 883 488
IL10RB - MUC20 394 1884 312 IL10RB - MUC20 889 1883 1947
IL15 - MUC20 244 2241 166 IL15 - MUC20 1412 2057 1669
IL15RA - MUC20 589 1406 1406 IL15RA - MUC20 1450 1902 1570
IL17C - MUC20 228 2278 46 IL17C - MUC20 2212 1843 255
IL17REL - MUC20 2121 962 2267 IL17REL - MUC20 1130 1000 1868
Table 91. 2nd order combinatorial hypotheses between IL and NFkB-2/I family.
Table 91. 2nd order combinatorial hypotheses between IL and NFkB-2/I family.
Unexplored combinatorial hypotheses
IL w.r.t MUC
IL-1B/17C MUC1
IL-1A/1B/1RN/2RG/15/17C MUC3A
IL-1RN/6ST/15RA MUC4
IL-1A/2RG/8/15/17C MUC12
IL-15RA MUC17
IL-1RAP/8/17REL MUC20
MUC w.r.t IL
IL-1B MUC1
IL-1RN/2RG/6ST MUC12
IL-1RAP/15RA MUC13
IL-1A/10RB/17C MUC20

3.7.4. Interleukin - TP53 Cross Family Analysis

In a new pathway connecting inflammation to cancer, Brighenti et al. [179] show that interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis. Tan et al. [180] show that loss of p53 attenuates the contribution of IL-6 deletion on suppressed tumor progression and extended survival in Kras-driven murine lung cancer. Pützer et al. [181] show that combination therapy with interleukin-2 and wild-type p53 expressed by adenoviral vectors potentiates tumor regression in a murine model of breast cancer. A critical role for p53 in the control of NF-κB-dependent gene expression in TLR4-stimulated dendritic cells exposed to genistein has been shown by Dijsselbloem et al. [182]. The authors previously demonstrated that genistein suppresses TNF-α induced NF-κB-dependent IL-6 gene expression in cancer cells by interfering with the mitogen- and stress-activated protein kinase 1 activation pathway. Schauer et al. [183] show that interleukin-1β promotes ovarian tumorigenesis through a p53/NF-κB-mediated inflammatory response in stromal fibroblasts. These findings indicate connection between IL and TP53 family. Table 92 shows the rankings of IL family w.r.t TP53 family on the left and vice versa on the right.
On the left side, we found IL-17REL to be up regulated with respect to TP53BP2. These are reflected in rankings of 1873 (linear) and 2403 (rbf). IL-15RA was up regulated with respect to TP53I3. These are reflected in rankings of 2069 (laplace), 2079 (linear) and 2228 (rbf) for IL15RA - TP53I3. IL-1RN/2RG/8/10RB/17REL was up regulated with respect to TP53INP1. These are reflected in rankings of 2482 (laplace) and 1911 (linear) for IL1RN - TP53INP1; 2152 (laplace) and 1798 (linear) for IL2RG - TP53INP1; 2388 (linear) and 2343 (rbf) for IL8 - TP53INP1; 2510 (laplace), 2293 (linear) for IL10RB - TP53INP1; and 2505 (linear) and 2509 (rbf) for IL17REL - TP53INP1.
On the right side, we found TP53BP2 to be up regulated with respect to IL-1A/1B/2RG/6ST/8/15/15RA. These are reflected in rankings of 2306 (linear) and 2483 (rbf) for IL1A - TP53BP2; 2003 (laplace) and 2317 (rbf) for IL1B - TP53BP2; 1842 (laplace), 1888 (linear) and 1791 (rbf) for IL2RG - TP53BP2; 1862 (laplace) and 2234 (rbf) for IL6ST - TP53BP2; 2356 (laplace), 2336 (linear) for IL8 - TP53BP2; 2029 (linear) and 1896 (rbf) for IL15 - TP53BP2; 2086 (laplace), 2287 (linear) and 2198 (rbf) for IL15RA - TP53BP2; TP53I3 was up regulated with respect to IL-17REL. This is reflected in rankings of 2268 (laplace) and 2220 (rbf) for IL17REL - TP53I3. TP53INP1 was up regulated with respect to IL2RG. This is reflected in rankings of 2063 (laplace) and 1864 (linear) and 1956 (rbf) IL2RG - TP53INP1. TP53INP2 was up regulated with respect to IL6ST. This is reflected in rankings of 2512 (laplace) and 1952 (linear).
Finally, Table 93 shows the derived influences which can be represented graphically, with the following influences - • IL w.r.t TP53 with IL17REL <- TP53BP2; IL15RA <- TP53I3; IL-1RN/2RG/8/10RB/17REL <- TP53INP1; and • TP53 w.r.t IL with IL-1A/1B/2RG/6ST/8/15/15RA -> TP53BP2; IL17REL -> TP53I3; IL2RG -> TP53INP1; and IL6ST -> TP53INP2.
Table 92. 2nd order combinatorial hypotheses between TP53 and IL.
Table 92. 2nd order combinatorial hypotheses between TP53 and IL.
Ranking Interleukin family vs TP53 family
Ranking of IL family w.r.t TP53BP2 Ranking of TP53BP2 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TP53BP2 2396 1377 302 IL1A - TP53BP2 390 2306 2483
IL1B - TP53BP2 1868 1606 16 IL1B - TP53BP2 2003 1319 2317
IL1RAP - TP53BP2 154 1863 1166 IL1RAP - TP53BP2 1565 1196 133
IL1RN - TP53BP2 320 1676 1920 IL1RN - TP53BP2 1559 1149 2489
IL2RG - TP53BP2 755 377 644 IL2RG - TP53BP2 1842 1888 1791
IL6ST - TP53BP2 2237 581 1526 IL6ST - TP53BP2 1862 1530 2234
IL8 - TP53BP2 1135 1279 2250 IL8 - TP53BP2 2356 2336 325
IL10RB - TP53BP2 645 977 289 IL10RB - TP53BP2 420 705 2040
IL15 - TP53BP2 1715 281 973 IL15 - TP53BP2 879 2029 1896
IL15RA - TP53BP2 1225 727 567 IL15RA - TP53BP2 2086 2287 2198
IL17C - TP53BP2 2286 1214 617 IL17C - TP53BP2 1158 1243 2313
IL17REL - TP53BP2 76 1873 2403 IL17REL - TP53BP2 1526 1463 1600
Ranking of IL family w.r.t TP53I3 Ranking of TP53I3 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TP53I3 1140 1547 1558 IL1A - TP53I3 283 157 341
IL1B - TP53I3 759 333 1392 IL1B - TP53I3 156 164 463
IL1RAP - TP53I3 1521 885 1978 IL1RAP - TP53I3 432 605 818
IL1RN - TP53I3 737 340 1797 IL1RN - TP53I3 1504 1674 16
IL2RG - TP53I3 7 3 328 IL2RG - TP53I3 836 637 134
IL6ST - TP53I3 524 363 981 IL6ST - TP53I3 2157 897 778
IL8 - TP53I3 579 485 697 IL8 - TP53I3 1921 290 1265
IL10RB - TP53I3 185 137 758 IL10RB - TP53I3 345 1080 326
IL15 - TP53I3 240 244 428 IL15 - TP53I3 353 1153 456
IL15RA - TP53I3 2069 2079 2228 IL15RA - TP53I3 106 644 1794
IL17C - TP53I3 74 114 647 IL17C - TP53I3 49 75 37
IL17REL - TP53I3 597 326 1290 IL17REL - TP53I3 2268 429 2220
Ranking of IL family w.r.t TP53INP1 Ranking of TP53INP1 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TP53INP1 2309 746 7 IL1A - TP53INP1 1049 1135 1138
IL1B - TP53INP1 2281 21 461 IL1B - TP53INP1 1395 1370 1684
IL1RAP - TP53INP1 531 1274 2407 IL1RAP - TP53INP1 2223 1460 680
IL1RN - TP53INP1 2482 1911 891 IL1RN - TP53INP1 1473 1252 2399
IL2RG - TP53INP1 2152 1798 932 IL2RG - TP53INP1 2063 1864 1956
IL6ST - TP53INP1 591 790 1740 IL6ST - TP53INP1 537 404 2042
IL8 - TP53INP1 573 2388 2343 IL8 - TP53INP1 1671 1787 1014
IL10RB - TP53INP1 2510 2293 1664 IL10RB - TP53INP1 1000 2339 218
IL15 - TP53INP1 663 878 1116 IL15 - TP53INP1 2147 588 429
IL15RA - TP53INP1 663 149 169 IL15RA - TP53INP1 1266 2264 1636
IL17C - TP53INP1 2455 220 435 IL17C - TP53INP1 823 523 438
IL17REL - TP53INP1 83 2505 2509 IL17REL - TP53INP1 1085 1476 1393
Ranking of IL family w.r.t TP53INP2 Ranking of TP53INP2 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TP53INP2 1481 41 2490 IL1A - TP53INP2 952 505 487
IL1B - TP53INP2 489 310 267 IL1B - TP53INP2 200 26 146
IL1RAP - TP53INP2 1159 684 1263 IL1RAP - TP53INP2 1168 757 1827
IL1RN - TP53INP2 2374 779 110 IL1RN - TP53INP2 1735 1927 264
IL2RG - TP53INP2 2118 103 995 IL2RG - TP53INP2 1151 539 380
IL6ST - TP53INP2 261 1459 333 IL6ST - TP53INP2 2512 1952 113
IL8 - TP53INP2 82 679 779 IL8 - TP53INP2 2349 85 1561
IL10RB - TP53INP2 865 1991 67 IL10RB - TP53INP2 653 2479 236
IL15 - TP53INP2 1354 989 161 IL15 - TP53INP2 1105 449 1506
IL15RA - TP53INP2 1574 1545 2295 IL15RA - TP53INP2 345 488 825
IL17C - TP53INP2 449 56 221 IL17C - TP53INP2 1065 260 116
IL17REL - TP53INP2 1325 93 593 IL17REL - TP53INP2 1251 643 1832
Table 93. 2nd order combinatorial hypotheses between IL and NFkB-2/I family.
Table 93. 2nd order combinatorial hypotheses between IL and NFkB-2/I family.
Unexplored combinatorial hypotheses
IL w.r.t TP53
IL17REL TP53BP2
IL15RA TP53I3
IL-1RN/2RG/8/10RB/17REL TP53INP1
TP53 w.r.t IL
IL-1A/1B/2RG/6ST/8/15/15RA TP53BP2
IL17REL TP53I3
IL2RG TP53INP1
IL6ST TP53INP2

3.7.5. Interleukin - STAT Cross Family Analysis

Jones et al. [184] study the roles of interleukin-6 in activation of STAT proteins and recruitment of neutrophils during Escherichia coli pneumonia. Characterization of the interleukin-4 nuclear activated factor/STAT and its activation independent of the insulin receptor substrate proteins have been studied by Kotanides et al. [185]. Adam et al. [186] have unraveled viral interleukin-6 binding to gp130 and activation of STAT-signaling pathways independently of the interleukin-6 receptor. Frank et al. [187] report the involvement of interleukin 2 signaling in phosphorylation of Stat proteins. Boyd et al. [188] show that interleukin-10 receptor signaling through STAT-3 regulates the apoptosis of retinal ganglion cells in response to stress. Essential role of endocytosis for interleukin-4-receptor-mediated JAK/STAT signalling has been studied in Kurgonaite et al. [189]. Contribution of the interleukin-6/STAT-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells has been studied in Kondo et al. [190]. Tanaka et al. [191] show interleukin-10 induces inhibitory C/EBPβ through STAT-3 and represses HIV-1 transcription in macrophages. Jobst et al. [192] show that inhibition of interleukin-3-and interferon-α-induced JAK/STAT signaling by the synthetic α-X-2’,3,4,4’-tetramethoxychalcones α-Br-TMC and α-CF3-TMC. These indicate significant interaction between interleukin family and the STAT family. In CRC cells, treated with ETC-1922159 both were found to be up regulated. The search engine alotted high numerical ranked values to some of the 2nd order combinations between the two. Table 94 indicates the rankings of IL family w.r.t STAT2 family on the left and vice versa on the right.
On the left side, we found IL-1RAP/6ST/17REL to be up regulated with respect to STAT2. These are reflected in rankings of 2111 (laplace), 2258 (linear) and 2012 (rbf) for IL1RAP - STAT2; 2167 (laplace) and 2313 (linear) for IL6ST - STAT2; and 2508 (laplace), 2488 (linear) and 2172 (rbf) for IL17REL - STAT2. IL-1RAP/17REL were up regulated with respect to STAT3. These are reflected in rankings of 2252 (linear) and 2211 (rbf) for IL1RAP - STAT3; and 2282 (linear) and 2517 (rbf) for IL17REL - STAT3; IL-1RAP/15RA were up regulated with respect to STAT5A. These are reflected in rankings of 1768 (laplace) and 2149 (linear) for IL1RAP - STAT5A; and 2342 (laplace) and 2350 (linear) for IL15RA - STAT5A.
On the right side, we found STAT2 to be up regulated with respect to IL-1RAP/1RN/2RG/15RA/ 17C/17REL. These are reflected in rankings of 1826 (laplace) and 2005 (linear) for IL1RAP - STAT2; 2050 (laplace) 2082 (linear) for IL1RN - STAT2; 1986 (laplace) 2021 (linear) and 2031 (rbf) for IL2RG - STAT2; 1988 (linear) and 1863 (rbf) for IL15RA - STAT2; 2473 (linear) and 1883 (rbf) for IL17C - STAT2; 1890 (linear) and 1885 (rbf) for IL17REL - STAT2. STAT3 was up regulated with respect to IL-1RN/2RG. These are reflected in rankings of 2090 (laplace) and 2312 (linear) for IL1RN - STAT3; and 2233 (laplace) and 2146 (linear) IL2RG - STAT3. STAT5A was up regulated with respect to IL-2RG/8/17C. These are reflected in rankings of 1832 (linear) and 2149 (rbf) for IL2RG - STAT5A; 2000 (laplace) and 2386 (linear) for IL8 - STAT5A; and 1760 (laplace), 2060 (linear) and 2201 (rbf) for IL17C - STAT5A.
Finally, Table 95 shows the derived influences which can be represented graphically, with the following influences - • IL w.r.t STAT with IL-1RAP/6ST/17REL <- STAT2; IL-1RAP/17REL <- STAT3 and IL-1RAP/15RA <- STAT5A; and • STAT w.r.t IL with IL-1RN/2RG -> STAT2; IL-1A/1RN/2RG/6ST/15 -> STAT3 and IL-2RG/8/17C -> STAT5A;
Table 94. 2nd order combinatorial hypotheses between STAT and IL.
Table 94. 2nd order combinatorial hypotheses between STAT and IL.
Ranking Interleukin family vs STAT family
Ranking of IL family w.r.t STAT2 Ranking of STAT2 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - STAT2 171 207 709 IL1A - STAT2 1000 687 1941
IL1B - STAT2 347 559 188 IL1B - STAT2 1629 1019 2351
IL1RAP - STAT2 2111 2258 2012 IL1RAP - STAT2 1826 2005 70
IL1RN - STAT2 828 1942 1226 IL1RN - STAT2 2050 2082 1030
IL2RG - STAT2 939 1424 272 IL2RG - STAT2 1986 2021 2031
IL6ST - STAT2 2167 2313 1042 IL6ST - STAT2 1532 1766 696
IL8 - STAT2 806 1012 69 IL8 - STAT2 397 1015 2349
IL10RB - STAT2 1093 2401 1260 IL10RB - STAT2 1566 1241 467
IL15 - STAT2 929 197 446 IL15 - STAT2 1875 1724 940
IL15RA - STAT2 537 415 1916 IL15RA - STAT2 1406 1988 1863
IL17C - STAT2 175 78 514 IL17C - STAT2 1199 2473 1883
IL17REL - STAT2 2508 2488 2172 IL17REL - STAT2 244 1890 1885
Ranking of IL family w.r.t STAT3 Ranking of STAT3 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - STAT3 2516 173 7 IL1A - STAT3 1872 1289 2350
IL1B - STAT3 1628 127 613 IL1B - STAT3 1367 2391 901
IL1RAP - STAT3 23 2252 2211 IL1RAP - STAT3 2169 1483 179
IL1RN - STAT3 2309 300 488 IL1RN - STAT3 2090 2312 1440
IL2RG - STAT3 1168 397 611 IL2RG - STAT3 2233 2146 1387
IL6ST - STAT3 1355 1217 381 IL6ST - STAT3 2400 2491 1953
IL8 - STAT3 2353 740 1176 IL8 - STAT3 1371 942 2018
IL10RB - STAT3 2494 1257 1320 IL10RB - STAT3 1118 406 1299
IL15 - STAT3 2164 903 62 IL15 - STAT3 2015 2412 1356
IL15RA - STAT3 1140 1572 1618 IL15RA - STAT3 1724 1638 1963
IL17C - STAT3 2437 30 20 IL17C - STAT3 554 1446 1428
IL17REL - STAT3 339 2282 2517 IL17REL - STAT3 573 2181 521
Ranking of IL family w.r.t STAT5A Ranking of STAT5A w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - STAT5A 1631 1110 2210 IL1A - STAT5A 275 464 1645
IL1B - STAT5A 1194 1561 2223 IL1B - STAT5A 416 240 1659
IL1RAP - STAT5A 1768 1680 2149 IL1RAP - STAT5A 1852 391 432
IL1RN - STAT5A 119 285 908 IL1RN - STAT5A 86 2026 960
IL2RG - STAT5A 1136 1088 1435 IL2RG - STAT5A 1367 1832 2149
IL6ST - STAT5A 1441 2022 1697 IL6ST - STAT5A 1903 436 317
IL8 - STAT5A 1932 1543 1069 IL8 - STAT5A 2000 2386 4
IL10RB - STAT5A 897 87 2033 IL10RB - STAT5A 2103 1292 1326
IL15 - STAT5A 1116 801 1653 IL15 - STAT5A 436 2139 1041
IL15RA - STAT5A 2342 2350 788 IL15RA - STAT5A 621 1185 1537
IL17C - STAT5A 984 1386 2045 IL17C - STAT5A 1760 2060 2201
IL17REL - STAT5A 1308 755 3 IL17REL - STAT5A 477 369 992
Table 95. 2nd order combinatorial hypotheses between IL and STAT family.
Table 95. 2nd order combinatorial hypotheses between IL and STAT family.
Unexplored combinatorial hypotheses
IL w.r.t STAT
IL-1RAP/6ST/17REL STAT2
IL-1RAP/17REL STAT3
IL-1RAP/15RA STAT5A
STAT w.r.t IL
IL-1RN/2RG STAT2
IL-1A/1RN/2RG/6ST/15 STAT3
IL-2RG/8/17C STAT5A

3.7.6. Interleukin - TRAF Cross Family Analysis

Greene and O’Neill [193] show that interleukin-1 receptor-associated kinase and TRAF-6 mediate the transcriptional regulation of interleukin-2 by interleukin-1 via NFκB but unlike interleukin-1 are unable to stabilise interleukin-2 mRNA. Cao et al. [194] observe that TRAF6 is a signal transducer for interleukin-1. Schwandner et al. [195] show the requirement of tumor necrosis factor receptor-associated factor (TRAF) 6 in interleukin 17 signal transduction. Lomaga et al. [196] show that TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Jefferies et al. [197] observe that transactivation by the p65 subunit of NF-κB in response to interleukin-1 (IL-1) involves MyD88, IL-1 receptor-associated kinase 1, TRAF-6, and Rac1. Wu and Arron [198] study the role of TRAF6 as a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology and find relation with the interleukin-1 receptor family. These findings indicate the range of interaction between IL family and TRAF family. In CRC cells treated with ETC-1922159, these were found to be UP regulated. Table 96 show the rankings of IL family w.r.t TRAF family on the left side and vice versa on the right side.
On the left we found, we found IL-1RAP/15RA/17REL to be up regulated with respect to TRAF3IP2. These are reflected in rankings of 2482 (linear) and 2385 (rbf) for IL1RAP - TRAF3IP2; 2024 (laplace), 2162 (linear) and 1800 (rbf) for IL15RA - TRAF3IP2; and 2515 (linear) and 2057 (rbf) for IL17REL - TRAF3IP2. IL-6ST/17REL were up regulated with respect to TRAF4. These are reflected in rankings of 2333 (laplace) and 1914 (rbf) for IL6ST - TRAF4; and (laplace) and 2487 (rbf) for IL17REL - TRAF4 2422; IL-8/17REL were up regulated with respect to TRAF6. These are reflected in rankings of 2088 (laplace), 1883 (linear) and 2089 (rbf) for IL8 - TRAF6; and 2454 (laplace) and 2517 (linear) for IL17REL - TRAF6; IL-6ST were up regulated with respect to TRAFD1. These are reflected in rankings of 1835 (laplace) and 1824 (linear) for IL6ST - TRAFD1.
On the right we found, we found TRAF3IP2 was up regulated with respect to IL-1B/2RG/6ST/8/17REL. These are reflected in rankings of 1953 (laplace) and 2359 (rbf) for IL1B - TRAF3IP2; 1767 (laplace), 2385 (linear) and 2059 (rbf) for IL2RG - TRAF3IP2; 1991 (linear) and 1871 (rbf) for IL6ST - TRAF3IP2; 2192 (linear) and 2289 (rbf) for IL8 - TRAF3IP2; and 1836 (laplace) and 2042 (linear) for IL17REL - TRAF3IP2. TRAF4 was up regulated with respect to IL-10RB/15/15RA. These are reflected in rankings of 2407 (laplace) and 1781 (linear) for IL10RB - TRAF4; 2408 (linear) and 1759 (rbf) for IL15 - TRAF4; and 2408 (linear) and 1759 (rbf) for IL15RA - TRAF4; TRAF6 was up regulated with respect to IL-1RAP/8/15/17C. These are reflected in rankings of 2219 (laplace), 1984 (linear) and 1766 (rbf) for IL1RAP - TRAF6; 2457 (laplace) and 2139 (linear) for IL8 - TRAF6; 2071 (lapalce) and 2475 (linear) for IL15 - TRAF6; and 2469 (laplace) and 2309 (linear) for IL17C - TRAF6;
Finally, Table 97 shows the derived influences which can be represented graphically, with the following influences - • IL w.r.t TRAF with IL-1RAP/15RA/17REL <- TRAF3IP2; IL-6ST/17REL <- TRAF4; IL-8/17REL <- TRAF6; and IL-6ST <- TRAFD1; and • TRAF w.r.t IL with IL-1B/2RG/6ST/8/17REL -> TRAF3IP2; IL-10RB/15/15RA -> TRAF4 and IL-1RAP/8/15/17C -> TRAF6.

3.7.7. Interleukin - Metalloreductase STEAP4 Cross Family Analysis

Ramadoss et al. [199] show that C/EBPα also regulates hepatic expression of STEAP4 during feeding, whereas both C/EBPα and STAT3 regulate expression of steap4 in the presence of high levels of IL-6. Also, Tanaka et al. [120] show STEAP4 is a tumor necrosis factor alpha-induced protein that regulates IL-6, IL-8, and cell proliferation in synovium from patients with rheumatoid arthritis. Gauss et al. [121] observe that the STEAP4 expression in adipocytes is normally induced by nutritional stress, leptin, and proinflammatory cytokines, including TNF-α, interleukin-1β, and interleukin-6. These were found to be up regulated in CRC cells treated with ETC-1922159. Table 98 shows the interaction between the IL family and STEAP4. We found that IL-8/10RB/17C/17REL was up regulated w.r.t STEAP4. These are reflected in rankings of 2204 (laplace) and 1987 (linear) for IL8 - STEAP4; 2422 (laplace) and 2310 (linear) for IL10RB - STEAP4; 2103 (linear) and 1889 (rbf) for IL17C - STEAP4; and 1965 (linear) and 2297 (rbf) for IL17REL - STEAP4; Also STEAP4 was up regulated w.r.t IL-1A/1RAP/1RN/15. These are reflected in rankings of 2358 (linear) and 2223 (rbf) for IL1A - STEAP4; 1871 (laplace), 1898 (linear) and 2077 (rbf) for IL1RAP - STEAP4; 2043 (linear) and 1763 (rbf) for IL1RN - STEAP4; and 1965 (linear) and 2283 (rbf) for IL15 - STEAP4;
Finally, Table 99 shows the derived influences which can be represented graphically, with the following influences - • IL w.r.t STEAP4 with IL-8/10RB/17C/17REL <- STEAP4 • STEAP4 w.r.t IL with IL-1A/1RAP/1RN/15 -> STEAP4.
Table 98. 2nd order combinatorial hypotheses between STEAP4 and IL.
Table 98. 2nd order combinatorial hypotheses between STEAP4 and IL.
Ranking Interleukin family vs STEAP4 family
Ranking of IL family w.r.t STEAP4 Ranking of STEAP4 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - STEAP4 422 482 992 IL1A - STEAP4 71 2358 2223
IL1B - STEAP4 423 814 982 IL1B - STEAP4 240 1570 1863
IL1RAP - STEAP4 2092 262 661 IL1RAP - STEAP4 1871 1898 2077
IL1RN - STEAP4 404 1602 370 IL1RN - STEAP4 195 2043 1763
IL2RG - STEAP4 1293 1458 1323 IL2RG - STEAP4 299 1562 1284
IL6ST - STEAP4 920 1641 2424 IL6ST - STEAP4 1374 504 1628
IL8 - STEAP4 2204 1987 1558 IL8 - STEAP4 794 1049 1615
IL10RB - STEAP4 2422 2310 1179 IL10RB - STEAP4 476 254 906
IL15 - STEAP4 700 1154 2320 IL15 - STEAP4 288 1965 2283
IL15RA - STEAP4 2277 1114 1528 IL15RA - STEAP4 1170 1334 1347
IL17C - STEAP4 433 2103 1889 IL17C - STEAP4 17 2426 1108
IL17REL - STEAP4 33 1965 2297 IL17REL - STEAP4 2439 715 100
Table 99. 2nd order combinatorial hypotheses between IL and STEAP4 family.
Table 99. 2nd order combinatorial hypotheses between IL and STEAP4 family.
Unexplored combinatorial hypotheses
IL w.r.t STEAP4
IL-8/10RB/17C/17REL STEAP4
STEAP4 w.r.t IL
IL-1A/1RAP/1RN/15 STEAP4

3.7.8. Interleukin - Metalloreductase STEAP3 Cross Family Analysis

Based on the interactions of STEAP4 and interleukin, we also generated rankings for STEAP3 and interleukin family. It was found that STEAP3 and interleukin family were down regulated. Table 100 shows the rankings of IL family w.r.t STEAP3 and vice versa. We found IL-1RL2/17D/17RB/17RD/33/F2/F3.AS1 to be down regulated w.r.t STEAP3. These are reflected in rankings of 619 (laplace) and 1471 (linear) for IL1RL2 - STEAP3; 1338 (laplace), 1275 (linear) and 458 (rbf) for IL17D - STEAP3; 1101 (laplace) and 239 (rbf) for IL17RB - STEAP3; 1323 (laplace) and 810 (linear) for IL17RD - STEAP3; 1589 (laplace) and 781 (linear) and 1210 (rbf) for IL33 - STEAP3; 1571 (laplace) and 811 (linear) and 579 (rbf) for ILF2 - STEAP3; and 947 (laplace) and 926 (rbf) for ILF3.AS1 - STEAP3. STEAP3 to be down regulated w.r.t IL-1RL2/17D/17RB/33/F3/F3.AS1. These are reflected in rankings of 835 (laplace) and 1733 (rbf) for IL1RL2 - STEAP3; 596 (laplace) and 705 (linear) for IL17D - STEAP3; 208 (laplace) and 404 (rbf) for IL17RB - STEAP3; 1070 (laplace) and 57 (linear) for IL33 - STEAP3; 121 (laplace) and 926 (rbf) for ILF3 - STEAP3 and 1592 (laplace), 678 (linear) and 1094 (rbf) for ILF3.AS1 - STEAP3.
Finally, Table 101 shows the derived influences which can be represented graphically, with the following influences - • IL w.r.t STEAP3 with IL-1RL2/17D/17RB/17RD/33/F2/F3.AS1 <- STEAP3; and • STEAP3 w.r.t IL with IL-1RL2/17D/17RB/33/F3/F3.AS1 -> STEAP3.
Table 100. 2nd order combinatorial hypotheses between STEAP3 and IL.
Table 100. 2nd order combinatorial hypotheses between STEAP3 and IL.
Ranking Interleukin family vs STEAP3 family
Ranking of IL family w.r.t STEAP3 Ranking of STEAP3 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1RL2 - STEAP3 619 1471 2246 IL1RL2 - STEAP3 835 2234 1733
IL17D - STEAP3 1338 1275 458 IL17D - STEAP3 596 705 2273
IL17RB - STEAP3 1101 2302 239 IL17RB - STEAP3 208 2462 404
IL17RD - STEAP3 1323 810 1834 IL17RD - STEAP3 2352 589 2233
IL33 - STEAP3 1589 781 1210 IL33 - STEAP3 1070 57 2098
ILF2 - STEAP3 1571 811 579 ILF2 - STEAP3 1986 1029 2474
ILF3 - STEAP3 261 1866 1953 ILF3 - STEAP3 121 2314 926
ILF3.AS1 - STEAP3 947 2255 926 ILF3.AS1 - STEAP3 1592 678 1094
Table 101. 2nd order combinatorial hypotheses between IL and STEAP3 family.
Table 101. 2nd order combinatorial hypotheses between IL and STEAP3 family.
Unexplored combinatorial hypotheses
IL w.r.t STEAP3
IL-1RL2/17D/17RB/17RD/33/F2/F3.AS1 - STEAP3
STEAP3 w.r.t IL
IL-1RL2/17D/17RB/33/F3/F3.AS1 - STEAP3

3.7.9. Interleukin - ATP-Binding Cassette Transporters

Haskó et al. [159] show that the inhibitors of ATP-binding cassette transporters suppress interleukin-12 p40 production and major histocompatibility complex II up-regulation in macrophages. Marty et al. [161] observe that ATP binding cassette transporter ABC1 is required for the release of interleukin-1β by P2X7-stimulated and lipopolysaccharide-primed mouse Schwann cells. Hamon et al. [200] observe that interleukin-1β secretion is impaired by inhibitors of the ATP binding cassette transporter, ABC1. Lottaz et al. [162] show that inhibition of ATP-binding cassette transporter downregulates interleukin-1β-mediated autocrine activation of human dermal fibroblasts. These findings indicate the interaction of ABC transporters with Interleukin family. In CRC cells, treated with ETC-1922159 these were found to be down regulated. Table 102 shows rankings of IL family with respect to a few ABC members on the left and vice versa on the right.
Table 102. 2nd order combinatorial hypotheses between ABC and IL.
Table 102. 2nd order combinatorial hypotheses between ABC and IL.
Ranking Interleukin family vs ABC family
Ranking of IL family w.r.t ABCA2 Ranking of ABCA2 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1RL2 - ABCA2 2055 2097 405 IL1RL2 - ABCA2 2022 2490 1234
IL17D - ABCA2 1778 2160 1120 IL17D - ABCA2 540 227 1006
IL17RB - ABCA2 2419 1404 1727 IL17RB - ABCA2 2146 1543 1991
IL17RD - ABCA2 2202 1799 358 IL17RD - ABCA2 1717 1671 517
IL33 - ABCA2 1076 1707 1854 IL33 - ABCA2 1507 497 743
ILF2 - ABCA2 944 1054 2607 ILF2 - ABCA2 831 822 752
ILF3 - ABCA2 1380 1369 1702 ILF3 - ABCA2 1691 2094 2275
ILF3.AS1 - ABCA2 2243 1006 1924 ILF3.AS1 - ABCA2 2058 1664 2165
Ranking of IL family w.r.t ABCE1 Ranking of ABCE1 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1RL2 - ABCE1 906 1403 2365 IL1RL2 - ABCE1 525 2034 723
IL17D - ABCE1 1531 636 753 IL17D - ABCE1 1432 2146 1401
IL17RB - ABCE1 459 2056 1993 IL17RB - ABCE1 1090 2618 263
IL17RD - ABCE1 1030 1332 1565 IL17RD - ABCE1 1523 727 2185
IL33 - ABCE1 1649 719 937 IL33 - ABCE1 2619 808 2025
ILF2 - ABCE1 20 310 560 ILF2 - ABCE1 2650 331 2103
ILF3 - ABCE1 2410 2409 1826 ILF3 - ABCE1 1767 2674 19
ILF3.AS1 - ABCE1 1154 2222 786 ILF3.AS1 - ABCE1 1788 1948 820
Ranking of IL family w.r.t ABCF2 Ranking of ABCF2 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1RL2 - ABCF2 1031 1806 2002 IL1RL2 - ABCF2 2257 818 1274
IL17D - ABCF2 2481 2016 1006 IL17D - ABCF2 796 2104 568
IL17RB - ABCF2 509 1294 2302 IL17RB - ABCF2 1271 621 1631
IL17RD - ABCF2 610 1935 1084 IL17RD - ABCF2 957 2276 1431
IL33 - ABCF2 735 2050 1855 IL33 - ABCF2 421 1781 252
ILF2 - ABCF2 2093 1104 2073 ILF2 - ABCF2 683 2304 529
ILF3 - ABCF2 812 1686 1080 ILF3 - ABCF2 1243 585 1452
ILF3.AS1 - ABCF2 430 2416 1983 ILF3.AS1 - ABCF2 2272 1169 862
Table 103. 2nd order combinatorial hypotheses between IL and ABC family.
Table 103. 2nd order combinatorial hypotheses between IL and ABC family.
Unexplored combinatorial hypotheses
IL w.r.t ABC
IL-1RB/33/F2/F3 ABCA2
IL-1RL2/17D/17RD/33/F2/F3.AS1 ABCE1
IL-17RB/17RD/F3 ABCF2
ABC w.r.t IL
IL-17D/17RD/33/F2 ABCA2
IL-1RL2/17D/17RB/17RD ABCE1
IL-1RL2/17D/17RB/17RD/33/F2/F3/F3.AS1 ABCF2
On the left we found IL-1RB/33/F2/F3 were down regulated w.r.t ABCA2. These are reflected in rankings of 1404 (linear) and 1727 (rbf) for IL17RB - ABCA2; 1076 (laplace), 1707 (linear) for IL33 - ABCA2; 944 (laplace) and 1054 (linear) for ILF2 - ABCA2; 1380 (laplace), 1369 (linear) and 1702 (rbf) for ILF3 - ABCA2; IL-1RL2/17D/17RD/33/F2/F3.AS1 were up regulated w.r.t ABCE1. These are reflected in rankings of 906 (laplace) and 1403 (linear) for IL1RL2 - ABCE1; 1531 (laplace), 636 (linear) and 753 (rbf) for IL17D - ABCE1; 1030 (laplace), 1332 (linear) and 1565 (rbf) for IL17RD - ABCE1; 1649 (laplace), 719 (linear) and 937 (rbf) for IL33 - ABCE1; 20 (laplace), 310 (linear) and 560 (rbf) for ILF2 - ABCE1; and 1154 (laplace) and 786 (rbf) for ILF3.AS1 - ABCE1. IL-17RB/17RD/F3 were up regulated w.r.t ABCF2. These are reflected in rankings of 509 (laplace) and 1294 (laplace) for IL17RB - ABCF2; 610 (laplace) and 1084 (rbf) for IL17RD - ABCF2; and 812 (laplace), 1686 (laplace) and 1080 (rbf) for ILF3 - ABCF2.
On the right, we found ABCA2 were up regulated w.r.t IL-17D/17RD/33/F2. These are reflected in rankings of 540 (laplace), 227 (linear) and 1006 (rbf) for IL17D - ABCA2; 1717 (laplace), 1671 (linear) and 517 (rbf) for IL17RD - ABCA2; 1507 (laplace), 497 (linear) and 743 (rbf) for IL33 - ABCA2; and 831 (laplace), 822 (linear) and 752 (rbf) for ILF2 - ABCA2; ABCE1 were up regulated w.r.t IL-1RL2/17D/17RB/17RD. These are reflected in rankings of 525 (laplace) and 723 (rbf) for IL1RL2 - ABCE1; 1432 (laplace) and 1401 (rbf) for IL17D - ABCE1; 1090 (laplace) and 263 (rbf) for IL17RB - ABCE1; and 1523 (laplace) and 727 (linear) for IL17RD - ABCE1; ABCF2 were up regulated w.r.t IL-1RL2/17D/17RB/17RD/33/F2/F3/F3.AS1. These are reflected in rankings of 818 (rbf) and 1274 (rbf) for IL1RL2 - ABCF2; 796 (laplace) and 568 (rbf) for IL17D - ABCF2; 1271 (laplace), 621 (linear) and 1631 (rbf) for IL17RB - ABCF2; 957 (laplace) and 1431 (rbf) for IL17RD - ABCF2; 421 (laplace) and 252 (rbf) for IL33 - ABCF2; 683 (laplace) and 529 (rbf) for ILF2 - ABCF2; 1243 (laplace), 585 (linear) and 1452 (rbf) for ILF3 - ABCF2 and 1169 (linear) and 862 (rbf) for ILF3.AS1 - ABCF2.
Finally, Table 103 shows the derived influences which can be represented graphically, with the following influences - • IL w.r.t ABC with IL-1RB/33/F2/F3 <- ABCA2; IL-1RL2/17D/17RD/33/F2/ F3.AS1 <- ABCE1 and IL-17RB/17RD/F3 <- ABCF2. • ABC w.r.t IL with IL-17D/17RD/33/F2 -> ABCA2; IL-1RL2/17D/17RB/17RD -> ABCE1 and IL-1RL2/17D/17RB/17RD/33/F2/F3/F3.AS1 -> ABCF2.

3.7.10. Interleukin - TNF Cross Family Analysis

Neta et al. [201] study the relationship of TNF to interleukins way back in 1992. The review by Rieckmann et al. [202] studies role of TNF-α and IL-6 in normal and pathophysiological conditions of B-cell function. Bethea et al. [203] demonstrate that IL-1β induces TNF-α gene expression in CH235-MG cells in a protein kinase C-dependent manner. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β down-regulate intercellular adhesion molecule (ICAM)-2 expression on the endothelium as shown by McLaughlin et al. [204]. Zhai et al. [205] suggest that serum levels of tumor necrosis factor-α receptors and interleukin 6 (IL-6) are associated with the fibrotic process of coal workers’ pneumoconiosis (CWP) and serum cytokine levels may be correlated with the severity of CWP. However, in arthritic conditions, Koenders: 2006 interleukin show that Interleukin-17 acts independently of TNF-α. Serum interleukin-6 (IL-6), IL-10, tumor necrosis factor (TNF) alpha, soluble type II TNF receptor, and transforming growth factor beta levels in human immunodeficiency virus type 1-infected individuals with Mycobacterium avium complex disease have been studied by Havlir et al. [206]. Tissi et al. [207] study the role of tumor necrosis factor alpha, interleukin-1β, and interleukin-6 in a mouse model of group B streptococcal arthritis. They conclude that their results account for a strong involvement of IL-1β and IL-6, but not of TNF-α, in the pathogenesis of GBS arthritis. Ismail et al. [208] study the role of tumor necrosis factor alpha (TNF-α) and interleukin-10 in the pathogenesis of severe murine monocytotropic ehrlichiosis. Their data suggest that the balance between TNF-α and IL-10 produced by either macrophages or T cells in response to infection with Ehrlichia may modulate the induction of apoptosis during the infection. Yap et al. [209] observe that Tumor necrosis factor (TNF) inhibits interleukin (IL)-1 and/or IL-6 stimulated synthesis of C-reactive protein (CRP) and serum amyloid A (SAA) in primary cultures of human hepatocytes. These findings suggest interactive role of IL and TNF family in a synergistic way. In CRC cells treated with ETC-1922159, both were found to be up regulated. The search engine assigned high valued numerical ranks to 2nd order combinations of IL and TNF family members. These are tabulated in Table 104, Table 105, Table 106 and Table 107. The left side contains rankings of IL w.r.t TNF family and the right side contains rankings of TNF family w.r.t IL.
Table 104. 2nd order combinatorial hypotheses between TNF and IL.
Table 104. 2nd order combinatorial hypotheses between TNF and IL.
Ranking Interleukin family vs TNF family
Ranking of IL family w.r.t TNF Ranking of TNF w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNF 1382 727 725 IL1A - TNF 172 660 230
IL1B - TNF 519 539 187 IL1B - TNF 443 458 244
IL1RAP - TNF 1475 1995 2255 IL1RAP - TNF 564 550 1500
IL1RN - TNF 163 106 609 IL1RN - TNF 292 462 276
IL2RG - TNF 276 820 340 IL2RG - TNF 419 708 1035
IL6ST - TNF 2374 2037 2003 IL6ST - TNF 2410 1901 666
IL8 - TNF 921 1325 1148 IL8 - TNF 1072 206 118
IL10RB - TNF 346 595 339 IL10RB - TNF 2065 2120 2296
IL15 - TNF 242 944 616 IL15 - TNF 265 828 279
IL15RA - TNF 2341 1843 2195 IL15RA - TNF 131 914 1488
IL17C - TNF 906 1573 776 IL17C - TNF 2148 568 280
IL17REL - TNF 296 804 677 IL17REL - TNF 1223 1901 11
Ranking of IL family w.r.t TNFAIP1 Ranking of TNFAIP1 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNFAIP1 2515 549 1534 IL1A - TNFAIP1 533 1901 1548
IL1B - TNFAIP1 2398 440 2449 IL1B - TNFAIP1 1324 756 1062
IL1RAP - TNFAIP1 326 866 2226 IL1RAP - TNFAIP1 1555 1284 1291
IL1RN - TNFAIP1 1952 649 1453 IL1RN - TNFAIP1 1567 307 979
IL2RG - TNFAIP1 1791 104 2482 IL2RG - TNFAIP1 421 973 1169
IL6ST - TNFAIP1 156 1415 1062 IL6ST - TNFAIP1 1281 104 2086
IL8 - TNFAIP1 456 682 1389 IL8 - TNFAIP1 2293 2126 752
IL10RB - TNFAIP1 97 425 2020 IL10RB - TNFAIP1 716 2092 569
IL15 - TNFAIP1 367 1392 159 IL15 - TNFAIP1 24 436 324
IL15RA - TNFAIP1 1860 1979 611 IL15RA - TNFAIP1 873 2141 1853
IL17C - TNFAIP1 2382 1072 2446 IL17C - TNFAIP1 961 2143 791
IL17REL - TNFAIP1 307 79 161 IL17REL - TNFAIP1 1603 1462 1764
Ranking of IL family w.r.t TNFAIP2 Ranking of TNFAIP2 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNFAIP2 219 1815 790 IL1A - TNFAIP2 450 1041 465
IL1B - TNFAIP2 210 1123 538 IL1B - TNFAIP2 1923 557 944
IL1RAP - TNFAIP2 1535 660 1525 IL1RAP - TNFAIP2 105 229 845
IL1RN - TNFAIP2 1769 2475 683 IL1RN - TNFAIP2 957 868 839
IL2RG - TNFAIP2 1358 576 188 IL2RG - TNFAIP2 415 1132 613
IL6ST - TNFAIP2 2007 633 1704 IL6ST - TNFAIP2 1649 929 1558
IL8 - TNFAIP2 769 331 368 IL8 - TNFAIP2 1262 1412 1595
IL10RB - TNFAIP2 2319 2497 719 IL10RB - TNFAIP2 93 1583 204
IL15 - TNFAIP2 1362 2383 795 IL15 - TNFAIP2 537 749 120
IL15RA - TNFAIP2 2032 821 1502 IL15RA - TNFAIP2 519 737 1146
IL17C - TNFAIP2 868 1684 1770 IL17C - TNFAIP2 199 424 687
IL17REL - TNFAIP2 279 563 299 IL17REL - TNFAIP2 2057 437 2008
Table 105. 2nd order combinatorial hypotheses between TNF and IL.
Table 105. 2nd order combinatorial hypotheses between TNF and IL.
Ranking Interleukin family vs TNF family
Ranking of IL family w.r.t TNFAIP3 Ranking of TNFAIP3 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNFAIP3 2307 319 108 IL1A - TNFAIP3 78 51 2058
IL1B - TNFAIP3 495 98 339 IL1B - TNFAIP3 140 146 520
IL1RAP - TNFAIP3 30 2428 1376 IL1RAP - TNFAIP3 1802 1610 903
IL1RN - TNFAIP3 579 277 299 IL1RN - TNFAIP3 60 1610 1320
IL2RG - TNFAIP3 1705 330 125 IL2RG - TNFAIP3 1056 1608 2333
IL6ST - TNFAIP3 2068 2432 2282 IL6ST - TNFAIP3 1652 1470 1507
IL8 - TNFAIP3 1918 2255 1587 IL8 - TNFAIP3 2224 1717 118
IL10RB - TNFAIP3 1576 666 1377 IL10RB - TNFAIP3 1073 417 943
IL15 - TNFAIP3 732 254 273 IL15 - TNFAIP3 907 628 684
IL15RA - TNFAIP3 727 1547 1476 IL15RA - TNFAIP3 1340 445 1031
IL17C - TNFAIP3 1675 222 138 IL17C - TNFAIP3 1105 1887 866
IL17REL - TNFAIP3 2364 2503 2283 IL17REL - TNFAIP3 2040 1143 1486
Ranking of IL family w.r.t TNFRSF1A Ranking of TNFRSF1A w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNFRSF1A 1556 2184 1375 IL1A - TNFRSF1A 2028 113 226
IL1B - TNFRSF1A 1621 1917 446 IL1B - TNFRSF1A 147 2027 2247
IL1RAP - TNFRSF1A 1236 2500 2293 IL1RAP - TNFRSF1A 1339 1003 2062
IL1RN - TNFRSF1A 411 1571 755 IL1RN - TNFRSF1A 1713 387 102
IL2RG - TNFRSF1A 565 2350 574 IL2RG - TNFRSF1A 1191 597 1479
IL6ST - TNFRSF1A 2221 1465 561 IL6ST - TNFRSF1A 1143 291 225
IL8 - TNFRSF1A 1536 750 304 IL8 - TNFRSF1A 1483 669 673
IL10RB - TNFRSF1A 620 35 1791 IL10RB - TNFRSF1A 230 1510 385
IL15 - TNFRSF1A 345 489 384 IL15 - TNFRSF1A 157 838 425
IL15RA - TNFRSF1A 442 1155 697 IL15RA - TNFRSF1A 682 322 1575
IL17C - TNFRSF1A 1113 284 149 IL17C - TNFRSF1A 5 169 122
IL17REL - TNFRSF1A 766 336 249 IL17REL - TNFRSF1A 1547 452 22
Ranking of IL family w.r.t TNFRSF10A Ranking of TNFRSF10A w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNFRSF10A 366 73 48 IL1A - TNFRSF10A 1972 1805 2504
IL1B - TNFRSF10A 317 45 367 IL1B - TNFRSF10A 2375 2373 2320
IL1RAP - TNFRSF10A 2104 1342 2027 IL1RAP - TNFRSF10A 981 1665 2504
IL1RN - TNFRSF10A 1739 346 173 IL1RN - TNFRSF10A 1261 2287 2469
IL2RG - TNFRSF10A 645 1448 1009 IL2RG - TNFRSF10A 1244 2246 2467
IL6ST - TNFRSF10A 1307 823 1778 IL6ST - TNFRSF10A 2128 2320 1738
IL8 - TNFRSF10A 402 1615 1908 IL8 - TNFRSF10A 566 733 2117
IL10RB - TNFRSF10A 1243 689 2119 IL10RB - TNFRSF10A 389 532 723
IL15 - TNFRSF10A 321 1602 358 IL15 - TNFRSF10A 2414 2260 1705
IL15RA - TNFRSF10A 2126 2342 148 IL15RA - TNFRSF10A 2398 1970 2088
IL17C - TNFRSF10A 981 269 1027 IL17C - TNFRSF10A 1831 2025 1718
IL17REL - TNFRSF10A 2497 2470 2109 IL17REL - TNFRSF10A 1034 1482 2068
On the left side, we found IL-1RAP/6ST/15RA to be up regulated w.r.t TNF. These are reflected in the rankings of 1995 (linear) and 2255 (rbf) for IL1RAP - TNF; 2374 (laplace), 2037 (linear) and 2003 (rbf) for IL6ST - TNF; 2341 (laplace), 1843 (linear) and 2195 (rbf) for IL15RA - TNF; IL-1B/2RG/15RA/17C were up regulated w.r.t TNFAIP1. These are reflected in the rankings of 2398 (laplace) and 2449 (rbf) for IL1B - TNFAIP1; 1791 (laplace) and 2482 (rbf) for IL2RG - TNFAIP1; 1860 (laplace) and 1979 (linear) for IL15RA - TNFAIP1; 2382 (laplace) and 2446 (rbf) for IL17C - TNFAIP1. IL-1RN/10RB were up regulated w.r.t TNFAIP2. These are reflected in the rankings of 1769 (laplace) and 2475 (rbf) for IL1RN - TNFAIP2; and 2319 (laplace) and 2497 (rbf) for IL10RB - TNFAIP2; IL-6ST/8/17REL were up regulated w.r.t TNFAIP3. These are reflected in the rankings of 2068 (laplace), 2432 (linear) and 2282 (rbf) for IL6ST - TNFAIP3; 1918 (laplace) and 2255 (linear) for IL8 - TNFAIP3; and 2364 (laplace), 2503 (linear) and 2283 (rbf) for IL17REL - TNFAIP3; IL-1RAP was up regulated w.r.t TNFRSF1A. This is reflected in the rankings of 2500 (linear) and 2293 (rbf) for IL1RAP - TNFRSF1A; IL-1RAP/15RA/17REL were up regulated w.r.t TNFRSF10A. These are reflected in the rankings of 2104 (laplace) and 2027 (rbf) for IL1RAP - TNFRSF10A; 2126 (laplace), 2342 (linear) for IL15RA - TNFRSF10A; 2497 (laplace), 2470 (linear) and 2109 (rbf) for IL17REL - TNFRSF10A; IL-15RA was up regulated w.r.t TNFRSF10B. This is reflected in the rankings of 2330 (laplace) and 1932 (rbf) for IL15RA - TNFRSF10B; IL-15RA was up regulated w.r.t TNFRSF10D. This is reflected in the rankings of 2197 (laplace) and 2126 (rbf) for IL-15RA - TNFRSF10D; IL-8/15RA/17REL were up regulated w.r.t TNFRSF12A. These are reflected in the rankings of 1827 (linear) and 2355 (rbf) for IL8 - TNFRSF12A; 2138 (laplace), 2090 (linear) and 1981 (rbf) for IL15RA - TNFRSF12A; 2475 (laplace) and 2496 (rbf) for IL17REL - TNFRSF12A. IL-15RA was up regulated w.r.t TNFRSF14. This is reflected in the rankings of 2378 (laplace) and 1929 (rbf) for IL-15RA - TNFRSF14; IL-1B/1RAP/2RG were up regulated w.r.t TNFRSF21. These are reflected in the rankings of 1862 (laplace), 2164 (linear), 2305 (rbf) for IL1B - TNFRSF21; 1762 (linear) and 2163 (rbf) for IL1RAP - TNFRSF21; and 2297 (linear) and 2351 (rbf) for IL2RG - TNFRSF21; IL-1B/15RA/17C were up regulated w.r.t TNFRSF10. These are reflected in the rankings of 2448 (linear) and 1993 (rbf) for IL1B - TNFSF10; 2163 (linear) and 2059 (rbf) for IL15RA - TNFSF10; and 2337 (linear) and 2431 (rbf) for IL17C - TNFSF10. IL-15RA/17C to be up regulated w.r.t TNFSF15. This is reflected in the rankings of 2222 (laplace) and 2328 (linear) for IL-17C - TNFSF15; and 2124 (laplace) and 2365 (rbf) for IL15RA - TNFSF15;
Table 106. 2nd order combinatorial hypotheses between IL and TNF.
Table 106. 2nd order combinatorial hypotheses between IL and TNF.
Ranking Interleukin family vs TNF family
Ranking of IL family w.r.t TNFRSF10B Ranking of TNFRSF10B w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNFRSF10B 771 190 110 IL1A - TNFRSF10B 294 1870 1471
IL1B - TNFRSF10B 2301 109 19 IL1B - TNFRSF10B 829 626 1465
IL1RAP - TNFRSF10B 752 2148 1579 IL1RAP - TNFRSF10B 2102 1685 405
IL1RN - TNFRSF10B 840 2005 443 IL1RN - TNFRSF10B 2087 1403 1966
IL2RG - TNFRSF10B 1868 1485 57 IL2RG - TNFRSF10B 1616 2134 1376
IL6ST - TNFRSF10B 788 1851 1038 IL6ST - TNFRSF10B 1149 510 1603
IL8 - TNFRSF10B 1494 1467 2312 IL8 - TNFRSF10B 1769 1763 196
IL10RB - TNFRSF10B 461 1770 1497 IL10RB - TNFRSF10B 1212 994 1542
IL15 - TNFRSF10B 360 1028 620 IL15 - TNFRSF10B 1712 815 2039
IL15RA - TNFRSF10B 2330 932 1932 IL15RA - TNFRSF10B 1640 1375 2210
IL17C - TNFRSF10B 557 1911 91 IL17C - TNFRSF10B 1594 969 1624
IL17REL - TNFRSF10B 457 1701 2422 IL17REL - TNFRSF10B 1074 2117 347
Ranking of IL family w.r.t TNFRSF10D Ranking of TNFRSF10D w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNFRSF10D 143 625 21 IL1A - TNFRSF10D 2415 2517 1894
IL1B - TNFRSF10D 185 142 191 IL1B - TNFRSF10D 2513 2300 2430
IL1RAP - TNFRSF10D 1106 1750 1376 IL1RAP - TNFRSF10D 811 1241 1946
IL1RN - TNFRSF10D 881 520 337 IL1RN - TNFRSF10D 2512 1658 857
IL2RG - TNFRSF10D 713 413 905 IL2RG - TNFRSF10D 2514 2419 2043
IL6ST - TNFRSF10D 752 2009 1617 IL6ST - TNFRSF10D 2324 2515 460
IL8 - TNFRSF10D 1267 903 629 IL8 - TNFRSF10D 463 446 2468
IL10RB - TNFRSF10D 1072 1050 1031 IL10RB - TNFRSF10D 1822 1959 982
IL15 - TNFRSF10D 108 842 333 IL15 - TNFRSF10D 2490 2234 2019
IL15RA - TNFRSF10D 2197 943 2126 IL15RA - TNFRSF10D 1895 1048 24
IL17C - TNFRSF10D 11 268 7 IL17C - TNFRSF10D 2493 2062 2488
IL17REL - TNFRSF10D 54 638 278 IL17REL - TNFRSF10D 2514 100 2452
Ranking of IL family w.r.t TNFRSF12A Ranking of TNFRSF12A w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNFRSF12A 52 2189 374 IL1A - TNFRSF12A 239 2080 1330
IL1B - TNFRSF12A 709 1592 1066 IL1B - TNFRSF12A 1422 516 1025
IL1RAP - TNFRSF12A 606 1030 1639 IL1RAP - TNFRSF12A 165 1595 1273
IL1RN - TNFRSF12A 122 1173 1182 IL1RN - TNFRSF12A 2176 529 1135
IL2RG - TNFRSF12A 206 1875 756 IL2RG - TNFRSF12A 1705 1060 2416
IL6ST - TNFRSF12A 2128 898 1092 IL6ST - TNFRSF12A 707 2213 2187
IL8 - TNFRSF12A 1132 1827 2355 IL8 - TNFRSF12A 461 1199 1587
IL10RB - TNFRSF12A 51 37 238 IL10RB - TNFRSF12A 852 781 910
IL15 - TNFRSF12A 281 1535 686 IL15 - TNFRSF12A 1984 1469 530
IL15RA - TNFRSF12A 2138 2090 1981 IL15RA - TNFRSF12A 1065 576 1568
IL17C - TNFRSF12A 326 2512 52 IL17C - TNFRSF12A 1497 1898 2209
IL17REL - TNFRSF12A 2475 587 2496 IL17REL - TNFRSF12A 148 1299 410
Ranking of IL family w.r.t TNFRSF14 Ranking of TNFRSF14 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNFRSF14 208 29 683 IL1A - TNFRSF14 2061 1969 693
IL1B - TNFRSF14 70 664 924 IL1B - TNFRSF14 592 1647 1743
IL1RAP - TNFRSF14 1356 2249 756 IL1RAP - TNFRSF14 2103 1414 1691
IL1RN - TNFRSF14 1001 794 745 IL1RN - TNFRSF14 1898 2414 975
IL2RG - TNFRSF14 1619 1780 1158 IL2RG - TNFRSF14 2009 1949 1367
IL6ST - TNFRSF14 2248 221 619 IL6ST - TNFRSF14 1033 1923 2175
IL8 - TNFRSF14 517 299 1301 IL8 - TNFRSF14 1776 578 2205
IL10RB - TNFRSF14 1595 156 943 IL10RB - TNFRSF14 763 1457 834
IL15 - TNFRSF14 1265 550 1692 IL15 - TNFRSF14 2039 954 1230
IL15RA - TNFRSF14 2378 1929 1577 IL15RA - TNFRSF14 2440 2031 253
IL17C - TNFRSF14 11 40 605 IL17C - TNFRSF14 1856 1836 671
IL17REL - TNFRSF14 46 306 293 IL17REL - TNFRSF14 2312 72 1623
Table 107. 2nd order combinatorial hypotheses between IL and TNF.
Table 107. 2nd order combinatorial hypotheses between IL and TNF.
Ranking Interleukin family vs TNF family
Ranking of IL family w.r.t TNFRSF21 Ranking of TNFRSF21 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNFRSF21 904 2313 1127 IL1A - TNFRSF21 322 1745 688
IL1B - TNFRSF21 1862 2164 2305 IL1B - TNFRSF21 1336 157 829
IL1RAP - TNFRSF21 1446 1762 2163 IL1RAP - TNFRSF21 563 22 497
IL1RN - TNFRSF21 1593 2373 627 IL1RN - TNFRSF21 1626 1341 320
IL2RG - TNFRSF21 403 2297 2351 IL2RG - TNFRSF21 618 719 981
IL6ST - TNFRSF21 1372 1894 753 IL6ST - TNFRSF21 2019 1123 1143
IL8 - TNFRSF21 1204 1944 1585 IL8 - TNFRSF21 2493 999 1513
IL10RB - TNFRSF21 238 845 1081 IL10RB - TNFRSF21 2502 842 1641
IL15 - TNFRSF21 1591 1905 1740 IL15 - TNFRSF21 65 1459 96
IL15RA - TNFRSF21 421 1934 1269 IL15RA - TNFRSF21 98 1109 1259
IL17C - TNFRSF21 2130 1039 1676 IL17C - TNFRSF21 2272 1163 266
IL17REL - TNFRSF21 557 765 61 IL17REL - TNFRSF21 1846 704 2381
Ranking of IL family w.r.t TNFRS10 Ranking of TNFRS10 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNFSF10 120 1575 2499 IL1A - TNFSF10 2369 1086 1034
IL1B - TNFSF10 972 2448 1993 IL1B - TNFSF10 2348 1544 1076
IL1RAP - TNFSF10 754 1045 2015 IL1RAP - TNFSF10 1613 2470 966
IL1RN - TNFSF10 740 1535 570 IL1RN - TNFSF10 1035 75 1074
IL2RG - TNFSF10 2272 1447 1285 IL2RG - TNFSF10 1032 882 1271
IL6ST - TNFSF10 1978 227 778 IL6ST - TNFSF10 1647 1602 2369
IL8 - TNFSF10 818 1702 791 IL8 - TNFSF10 1161 790 2265
IL10RB - TNFSF10 744 1146 2257 IL10RB - TNFSF10 1496 2252 1864
IL15 - TNFSF10 967 1382 1910 IL15 - TNFSF10 1400 1383 486
IL15RA - TNFSF10 346 2163 2059 IL15RA - TNFSF10 1458 790 1428
IL17C - TNFSF10 460 2337 2431 IL17C - TNFSF10 558 1004 942
IL17REL - TNFSF10 1728 145 989 IL17REL - TNFSF10 1664 718 250
Ranking of IL family w.r.t TNFRS15 Ranking of TNFRS15 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TNFSF15 1177 2494 979 IL1A - TNFSF15 1014 613 1449
IL1B - TNFSF15 1435 1529 1571 IL1B - TNFSF15 1898 1032 767
IL1RAP - TNFSF15 271 1665 2368 IL1RAP - TNFSF15 890 843 793
IL1RN - TNFSF15 2319 377 566 IL1RN - TNFSF15 414 1457 1704
IL2RG - TNFSF15 316 874 487 IL2RG - TNFSF15 2332 1362 1632
IL6ST - TNFSF15 1834 1004 1471 IL6ST - TNFSF15 771 1171 1445
IL8 - TNFSF15 1266 1571 1141 IL8 - TNFSF15 2422 515 966
IL10RB - TNFSF15 1488 326 1367 IL10RB - TNFSF15 1611 2041 1635
IL15 - TNFSF15 1356 1508 737 IL15 - TNFSF15 201 1922 1756
IL15RA - TNFSF15 2124 956 2365 IL15RA - TNFSF15 1551 668 864
IL17C - TNFSF15 2222 2328 954 IL17C - TNFSF15 2403 1049 1338
IL17REL - TNFSF15 1214 177 208 IL17REL - TNFSF15 513 1515 1943
On the right side, we found TNF was up regulated w.r.t IL-6ST/10RB. These are reflected in the rankings of 2410 (laplace) and 1901 (linear) for IL6ST - TNF; and 2065 (laplace), 2120 (linear) and 2296 (rbf) for IL10RB - TNF; TNFAIP1 was up regulated w.r.t IL-8/15RA. These are reflected in the rankings of 2293 (laplace) and 2126 (linear) for IL8 - TNFAIP1; and 2141 (linear) and 1853 (rbf) for IL15RA - TNFAIP1; TNFRSF1A was up regulated w.r.t IL-1B. This is reflected in the rankings of 2027 (linear) and 2247 (rbf) for IL1B - TNFRSF1A; TNFRSF10A was up regulated w.r.t IL-1A/1B/1RN/2RG/6ST/15/15RA/17C. These are reflected in the rankings of 1972 (laplace), 1805 (linear) and 2504 (rbf) for IL1A - TNFRSF10A; 2375 (laplace), 2373 (linear) and 2320 (rbf) for IL1B - TNFRSF10A; 2287 (linear) and 2469 (rbf) for IL1RN - TNFRSF10A; 2246 (linear) and 2467 (rbf) for IL2RG - TNFRSF10A; 2128 (laplace) and 2320 (linear) for IL6ST - TNFRSF10A; 2414 (laplace) and 2260 (linear) for IL15 - TNFRSF10A; 2398 (laplace) and 1970 (linear) and 2088 (rbf) for IL15RA - TNFRSF10A; and 1831 (laplace) and 2025 (linear) for IL17C - TNFRSF10A; TNFRSF10B was up regulated w.r.t IL-1RN. This is reflected in the rankings of 2087 (laplace) and 1966 (rbf) for IL1RN - TNFRSF10B; TNFRSF10D was up regulated w.r.t IL-1A/1B/2RG/6ST/10RB/15/17C/17REL. These are reflected in the rankings of 2415 (laplace), 2517 (linear) and 1894 (rbf) for IL1A - TNFRSF10D; 2513 (laplace), 2300 (linear) and 2430 (rbf) for IL1B - TNFRSF10D; 2514 (laplace), 2419 (linear) and 2043 (rbf) for IL2RG - TNFRSF10D; 2324 (laplace), 2515 (linear) for IL6ST - TNFRSF10D; 1822 (laplace), 1959 (linear) for IL10RB - TNFRSF10D; 2490 (laplace), 2234 (linear) and 2019(rbf) for IL15 - TNFRSF10D; 2493 (laplace), 2062 (linear) and 2488 (rbf) for IL17C - TNFRSF10D; and 2514 (laplace) and 2452 (rbf) for IL17REL - TNFRSF10D. TNFRSF12A was up regulated w.r.t IL-16ST/17C. These are reflected in the rankings of 2213 (linear) and 2187 (rbf) for IL6ST - TNFRSF12A; and 1898 (linear) and 2209 (rbf) for IL17C - TNFRSF12A; TNFRSF14 was up regulated w.r.t IL-1A/1RN/2RG/6ST/8/15RA/17C. These are reflected in the rankings of 2061 (laplace) and 1969 (linear) for IL1A - TNFRSF14; 1898 (laplace) and 2414 (linear) for IL1RN - TNFRSF14; 2009 (laplace) and 1949 (linear) for IL2RG - TNFRSF14; 1923 (linear) and 2175 (rbf) for IL6ST - TNFRSF14; 1776 (laplace) and 2205 (rbf) for IL8 - TNFRSF14; 2440 (laplace) and 2031 (linear) for IL15RA - TNFRSF14; and 1856 (laplace) and 1836 (linear) for IL17C - TNFRSF14. TNFRSF21 was up regulated w.r.t IL-17REL. This is reflected in the rankings of 1846 (laplace) and 2381 (rbf) for IL17REL - TNFRSF21; TNFRSF10 was up regulated w.r.t IL-10RB. This is reflected in the rankings 2252 (linear) and 1864 (rbf) of IL10RB - TNFSF10; TNFRSF15 was up regulated w.r.t IL-15. This is reflected in the rankings of 1922 (linear) and 1756 (rbf) for IL15 - TNFSF15.
Finally, Table 108 shows the derived influences which can be represented graphically, with the following influences - • IL w.r.t TNF with IL-1RAP/6ST/15RA <- TNF; IL-1B/2RG/15RA/17C <- TNFAIP1; IL-1RN/10RB <- TNFAIP2; IL-6ST/8/17REL <- TNFAIP3; IL-1RAP <- TNFRSF1A; IL-1RAP/15RA/17REL <- TNFRSF10A; IL-15RA <- TNFRSF10B; IL-15RA <- TNFRSF10D; IL-8/15RA/17REL <- TNFRSF12A; IL-15RA <- TNFRSF14; IL-1B/1RAP/2RG <- TNFRSF21; IL-1B/15RA/17C <- TNFSF10 and IL-17C <- TNFSF15; and • TNF w.r.t IL with IL-6ST/10RB -> TNF; IL-8/15RA -> TNFAIP1; IL-1B -> TNFRSF1A; IL-1A/1B/1RN/2RG/6ST/15/15RA/17C -> TNFRSF10A; IL-1RN -> TNFRSF10B; IL-1A/1B/2RG/6ST/10RB/15/17C/17REL -> TNFRSF10D; IL-6ST/17C -> TNFRSF12A; IL-1A/1RN/2RG/6ST/8/15RA/17C/17REL -> TNFRSF14; IL-17REL -> TNFRSF14; IL10RB -> TNFSF10; and IL15 -> TNFSF15;

3.8. BCL Related Synergies

3.8.1. Interleukin - BCL Cross Family Analysis

Qin et al. [210] observe that IL-6 inhibits starvation-induced autophagy via the STAT3/Bcl-2 signaling pathway. Gabellini et al. [211] observed that interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. Guruprasath et al. [212] show taht interleukin-4 receptor-targeted delivery of Bcl-xL siRNA sensitizes tumors to chemotherapy and inhibits tumor growth. Maraskovsky et al. [213] indicate that Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1−/− mice. Akashi et al. [214] show that Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Interleukin-10 increases Bcl-2 expression and survival in primary human CD34+ hematopoietic progenitor cells as shown by Weber-Nordt et al. [215]. Interleukin-7 and interleukin-15 regulate the expression of thebcl-2 and c-myb genes in cutaneous T-cell lymphoma cells as shown by Qin et al. [216]. Bcl-2 is a negative regulator of interleukin-1β secretion in murine macrophages in pharmacological-induced apoptosis as shown by Escandell et al. [217]. Alas et al. [218] observe that inhibition of interleukin 10 by rituximab results in down-regulation of bcl-2 and sensitization of B-cell non-Hodgkin’s lymphoma to apoptosis. These findings indicate the synergy between BCL and Interleukin in different pathological cases. In CRC cells treated with ETC-1922159, these were found to be up regulated. Table 109 and Table 110 indicate the rankings of the IL and BCL family.
On the left side is the rankings of IL w.r.t BCL family and the right side, the vice versa. We found IL-1A/1B/17C up regulated w.r.t BCL2L1. These are reflected in rankings of 2482 (laplace) and 1834 (rbf) for IL1A - BCL2L1; 2252 (laplace), 1920 (linear) for IL1B - BCL2L1; and 2481 (laplace), 2410 (linear) and 2512 (rbf) for IL17C - BCL2L1; IL-6ST/17REL were up regulated w.r.t BCL2L2. These are reflected in rankings of 2239 (laplace), 1927 (linear) and 2085 (rbf) for IL6ST - BCL2L2; and 2454 (laplace), 2510 (linear) and 2482 (rbf) for IL17REL - BCL2L2. IL-17REL were up regulated w.r.t BCL2L13. These are reflected in rankings of 2420 (laplace), 2419 (linear) and 2464 (rbf) for IL17REL - BCL2L13; IL-6ST/15RA were up regulated w.r.t BCL3. These are reflected in rankings of 1928 (laplace) and 2344 (rbf) for IL6ST - BCL3; and 2478 (laplace), 1820 (linear) and 2500 (rbf) for IL15RA - BCL3; IL-1RAP/6ST/8/17REL were up regulated w.r.t BCL6. These are reflected in rankings of 2360 (linear) and 1813 (rbf) for IL1RAP - BCL6; 2419 (laplace) and 1962 (rbf) for IL6ST - BCL6; 2363 (laplace) and 2233 (linear) for IL8 - BCL6; and 2253 (laplace) and 2396 (linear) for IL17REL - BCL6; IL-1A/6ST/8/17REL were up regulated w.r.t BCL9L. These are reflected in rankings of 1932 (laplace) and 1942 (linear) for IL1A - BCL9L; 2249 (laplace) and 1960 (linear) for IL6ST - BCL9L; 2197 (linear) and 2162 (rbf) for IL8 - BCL9L; and 2308 (linear) and 1926 (rbf) for IL17REL - BCL9L; IL-6ST/15RA were up regulated w.r.t BCL10. These are reflected in rankings of 2008 (laplace) and 1816 (rbf) for IL6ST - BCL10; and 2064 (linear) and 1789 (rbf) for IL15RA - BCL10;
On the right side is the rankings of BCL w.r.t IL family. We found BCL2L1 up regulated IL-1B/2RG/10RB. These are reflected in rankings of 1838 (laplace) and 2132 (rbf) for IL1B - BCL2L1; 2048 (laplace) and 1949 (rbf) for IL2RG - BCL2L1; and 1965 (linear) and 2024 (rbf) for IL10RB - BCL2L1; BCL2L2 was up regulated IL-1A/1B/1RN/6ST/8/15/17C. These are reflected in rankings of 2407 (laplace), 2362 (linear) and 2464 (rbf) for IL1A - BCL2L2; 1807 (laplace), 2462 (linear) and 2344 (rbf) for IL1B - BCL2L2; 2298 (laplace) and 2092 (rbf) for IL1RN - BCL2L2; 2046 (linear) and 1859 (rbf) for IL6ST - BCL2L2; 1803 (laplace) and 2024 (rbf) for IL8 - BCL2L2; 2474 (laplace), 2142 (linear) and 2416 (rbf) for IL15 - BCL2L2; and 2512 (linear) and 2447 (rbf) for IL17C - BCL2L2; BCL2L13 was up regulated IL-1RAP/1RN/2RG/6ST/8/10RB/15/15RA/17C. These are reflected in rankings of 2450 (linear) and 2510 (rbf) for IL1RAP - BCL2L13; 2503 (laplace) and 2378 (rbf) for IL1RN - BCL2L13; 2483 (laplace) and 2248 (rbf) for IL2RG - BCL2L13; 1899 (laplace), 2473 (linear) and 2046 (rbf) for IL6ST - BCL2L13; 2099 (laplace) and 2294 (rbf) for IL8 - BCL2L13; 2120 (laplace) and 1895 (linear) for IL10RB - BCL2L13; 2515 (laplace), 2160 (linear) and 2420 (rbf) for IL15 - BCL2L13; 1844 (linear) and 2318 (rbf) for IL15RA - BCL2L13; and 2004 (laplace), 2434 (linear) and 2500 (rbf) for IL17C - BCL2L13; BCL3 was up regulated IL-8/10RB. These are reflected in rankings of 2266 (laplace) and 1983 (rbf) for IL8 - BCL3; and 2187 (laplace) and 2170 (rbf) for IL10RB - BCL3; 2298 (laplace); 2423 (linear) and 2294 (rbf) for IL1B - BCL6; 1919 (laplace) and 2301 (linear) for IL1RN - BCL6; 2106 (linear) and 2478 (rbf) for IL2RG - BCL6; 2123 (laplace), 2068 (linear) for IL8 - BCL6; 2084 (laplace), 1791 (linear) and 2203 (rbf) for IL15RA - BCL6; and for 1949 (linear) and 1930 (rbf) for IL17REL - BCL6; BCL10 was up regulated IL-1A/1RAP/1RN/2RG/10RB/15RA. These are reflected in rankings of 2405 (linear) and 1889 (rbf) for IL1A - BCL10; 1929 (laplace) and 2112 (rbf) for IL1RAP - BCL10; 1846 (laplace) and 1823 (linear) for IL1RN - BCL10; 1885 (laplace) and 1803 (linear) for IL2RG - BCL10; 2244 (laplace) and 2150 (linear) for IL10RB - BCL10; and 1810 (laplace) and 1835 (rbf) for IL15RA - BCL10;
Finally, Table 111 shows the derived influences which can be represented graphically, with the following influences - • IL w.r.t BCL with IL-1A/1B/17C <- BCL2L1; IL-6ST/17REL <- BCL2L2; IL-17REL <- BCL2L13; IL-6ST/15RA <- BCL3; IL-1RAP/6ST/8/17REL <- BCL6; IL-1A/6ST/8/17REL <- BCL9L; and IL-6ST/15RA <- BCL10; • BCL w.r.t IL with IL-1B/2RG/10RB -> BCL2L1; IL-1A/1B/1RN/6ST/8/15/17C -> BCL2L2; IL-1RAP/1RN/2RG/6ST/8/10RB/15/15RA/17C -> BCL2L13; IL-8/10RB -> BCL3; IL-1B/1RN/2RG/8/15RA/17REL -> BCL6; and IL-1A/1RAP/1RN/2RG/10RB/15RA -> BCL10;

3.8.2. Selenbp1 - BCL Cross Family Analysis

Deng et al. [219] study the effects of selenium on lead-induced alterations in Aβ production and Bcl-2 family proteins. Yaming et al. [220] studied the effects of selenium dioxide on apoptosis, Bcl-2 and p53 expression, intracellular reactive oxygen species and calcium level in three human lung cancer cell lines. Activity of selenium on cell proliferation, cytotoxicity, and apoptosis and on the expression of CASP9, BCL-XL and APC in intestinal adenocarcinoma cells has been studied by Mauro et al. [221]. These studies suggest the synergy between BCL and Selenium based genes. In CRC cells treated with ETC-1922159, these were found to be down regulated. Table 112 shows the rankings of BCL family w.r.t to SELENBP1 and vice versa.
On the right side, we found BCL-6B/11A to be up regulated with respect to SELENBP1. These were reflected in the rankings of 182 (laplace), 110 (linear) and 494 (rbf) for SELENBP1 - BCL6B; and 905 (laplace), 931 (linear) and 401 (rbf) for SELENBP1 - BCL11A. On the left side SELENBP1 was up regulated w.r.t BCL-9/11B. These are reflected in rankings of 1568 (linear) and 1738 (rbf) for SELENBP1 - BCL9; and 299 (linear) and 1385 (rbf) for SELENBP1 - BCL11B; Finally, Table 113 shows the derived influences which can be represented graphically, with the following influences - • SELENBP1 w.r.t BCL with SELENBP1 <- BCL-9/11B; and • BCL w.r.t SELENBP1 with SELENBP1 -> BCL-6B/11A;
Table 112. 2nd order combinatorial hypotheses between BCL and SELENBP1.
Table 112. 2nd order combinatorial hypotheses between BCL and SELENBP1.
Ranking SELENBP1 vs BCL family
Ranking of BCL family w.r.t SELENBP1 Ranking of SELENBP1 w.r.t BCL
laplace linear rbf laplace linear rbf
SELENBP1 - BCL2L12 2426 2033 2629 SELENBP1 - BCL2L12 2589 2195 2082
SELENBP1 - BCL6B 2446 2575 1956 SELENBP1 - BCL6B 182 110 494
SELENBP1 - BCL7A 2620 1326 2006 SELENBP1 - BCL7A 2015 1799 767
SELENBP1 - BCL9 2453 1568 1738 SELENBP1 - BCL9 2538 1916 1793
SELENBP1 - BCL11A 1921 2463 1566 SELENBP1 - BCL11A 905 931 401
SELENBP1 - BCL11B 1896 299 1385 SELENBP1 - BCL11B 2496 2636 2510
Table 113. 2nd order combinatorial hypotheses between SELENBP1 and BCL family.
Table 113. 2nd order combinatorial hypotheses between SELENBP1 and BCL family.
Unexplored combinatorial hypotheses
SELENBP1 w.r.t BCL
SELENBP1 BCL-9/11B
BCL w.r.t SELENBP1
SELENBP1 BCL-6B/11A

3.8.3. TP53 - BCL Cross Family Analysis

The p53-Bcl-2 connection has been studied by Hemann and Lowe [222]. Tomita et al. [223] show wild type p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells as shown by Jiang and Milner [224]. The tissue dependent interactions between p53 and Bcl-2 in vivo has been studied by Li et al. [225]. Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML has been studied by Pan et al. [226]. Zaidi et al. [227] observe that the chloroquine-induced neuronal cell death is p53 and Bcl-2 family-dependent but caspase-independent. Relationship of p53, bcl-2, and tumor proliferation to clinical drug resistance in non-Hodgkin’s lymphomas has been studied in Wilson et al. [228]. TP53 and BCL family members were found to be up regulated in CRC cells treated with ETC-1922159. Table 114 show rankings of BCL and TP53 family w.r.t to each other.
On the left side, we found BCL2L2 to be up regulated w.r.t TP53-I3/INP2. These are reflected in the rankings of 2423 (laplace), 2377 (linear) and 2452 (rbf) for TP53I3 - BCL2L2; 1827 (linear) and 2035 (rbf) for TP53INP2 - BCL2L2. BCL2L13 to be up regulated w.r.t TP53-INP2. These are reflected in the rankings of 2427 (linear) and 2008 (rbf) for TP53INP2 - BCL2L13; BCL6 to be up regulated w.r.t TP53-I3/INP2. These are reflected in the rankings of 2275 (laplace), 2312 (linear) and 2146 (rbf) for TP53I3 - BCL6; and 2329 (linear) and 2352 (rbf) for TP53INP2 - BCL6; BCL9L to be up regulated w.r.t TP53-BP2. These are reflected in the rankings of 2320 (linear) and 2197 (rbf) for TP53BP2 - BCL9L; BCL10 to be up regulated w.r.t TP53-BP2/INP2. These are reflected in the rankings of 2230 (laplace) and 2418 (linear) for TP53BP2 - BCL10 and 1910 (linear) and 2087 (rbf) for TP53INP2 - BCL10;
On the right side, we found TP53-BP2/I3 to be up regulated w.r.t BCL2L1. These are reflected in the rankings of 1786 (laplace) and 1961 (linear) for TP53BP2 - BCL2L1; 1980 (laplace) and 1752 (linear) for TP53I3 - BCL2L1; TP53-INP1 were up regulated w.r.t BCL3. These are reflected in the rankings for 2259 (linear) and 2043 (rbf) for TP53INP1 - BCL3; TP53-BP2/INP2 were up regulated w.r.t BCL9L. These are reflected in the rankings for 2093 (laplace) and 2217 (linear) for TP53BP2 - BCL9L; and 2222 (laplace) and 1900 (linear) for TP53INP2 - BCL9L;
Finally, Table 115 shows the derived influences which can be represented graphically, with the following influences - • BCL w.r.t TP53 with TP53-I3/INP2 <- BCL2L2; TP53-INP2 <- BCL2L13; TP53-I3/INP2 <- BCL6; TP53-BP2 <- BCL9L; and TP53-BP2/INP2 <- BCL10; • TP53 w.r.t BCL with TP53-BP2/I3 <- BCL2L1; TP53-INP1 <- BCL3 and TP53-BP2/INP2 <- BCL9L.
Table 114. 2nd order combinatorial hypotheses between BCL and SELENBP1.
Table 114. 2nd order combinatorial hypotheses between BCL and SELENBP1.
Ranking TP53 family vs BCL family
Ranking of BCL2L1 w.r.t TP53 family Ranking of TP53 family w.r.t BCL2L1
laplace linear rbf laplace linear rbf
TP53BP2 - BCL2L1 2431 1529 1728 TP53BP2 - BCL2L1 1786 1961 1225
TP53I3 - BCL2L1 799 554 728 TP53I3 - BCL2L1 1980 1752 756
TP53INP1 - BCL2L1 1064 1154 1414 TP53INP1 - BCL2L1 1193 258 1850
TP53INP2 - BCL2L1 282 2371 851 TP53INP2 - BCL2L1 830 1477 1512
Ranking of BCL2L2 w.r.t TP53 family Ranking of TP53 family w.r.t BCL2L2
laplace linear rbf laplace linear rbf
TP53BP2 - BCL2L2 1471 34 1367 TP53BP2 - BCL2L2 1076 2168 1658
TP53I3 - BCL2L2 2423 2377 2452 TP53I3 - BCL2L2 1911 245 378
TP53INP1 - BCL2L2 1693 180 987 TP53INP1 - BCL2L2 482 1653 1130
TP53INP2 - BCL2L2 1688 1827 2035 TP53INP2 - BCL2L2 85 376 1146
Ranking of BCL2L13 w.r.t TP53 family Ranking of TP53 family w.r.t BCL2L13
laplace linear rbf laplace linear rbf
TP53BP2 - BCL2L13 1515 1261 1842 TP53BP2 - BCL2L13 1128 1827 1613
TP53I3 - BCL2L13 1264 1501 1963 TP53I3 - BCL2L13 419 1088 959
TP53INP1 - BCL2L13 759 387 205 TP53INP1 - BCL2L13 1550 1616 1245
TP53INP2 - BCL2L13 507 2427 2008 TP53INP2 - BCL2L13 1190 573 513
Ranking of BCL3 w.r.t TP53 family Ranking of TP53 family w.r.t BCL3
laplace linear rbf laplace linear rbf
TP53BP2 - BCL3 1754 335 226 TP53BP2 - BCL3 1177 1625 423
TP53I3 - BCL3 388 392 25 TP53I3 - BCL3 921 1151 233
TP53INP1 - BCL3 2350 766 472 TP53INP1 - BCL3 1126 2259 2043
TP53INP2 - BCL3 266 1184 379 TP53INP2 - BCL3 325 609 726
Ranking of BCL6 w.r.t TP53 family Ranking of TP53 family w.r.t BCL6
laplace linear rbf laplace linear rbf
TP53BP2 - BCL6 1172 1783 1120 TP53BP2 - BCL6 1667 1140 185
TP53I3 - BCL6 2275 2312 2146 TP53I3 - BCL6 979 71 859
TP53INP1 - BCL6 201 1818 1572 TP53INP1 - BCL6 1458 1200 2503
TP53INP2 - BCL6 1681 2329 2352 TP53INP2 - BCL6 346 833 1557
Ranking of BCL9L w.r.t TP53 family Ranking of TP53 family w.r.t BCL9L
laplace linear rbf laplace linear rbf
TP53BP2 - BCL9L 263 2320 2197 TP53BP2 - BCL9L 2093 2217 1010
TP53I3 - BCL9L 819 635 789 TP53I3 - BCL9L 1249 927 107
TP53INP1 - BCL9L 2090 1740 1179 TP53INP1 - BCL9L 2113 854 1711
TP53INP2 - BCL9L 640 951 316 TP53INP2 - BCL9L 2222 1900 151
Ranking of BCL10 w.r.t TP53 family Ranking of TP53 family w.r.t BCL10
laplace linear rbf laplace linear rbf
TP53BP2 - BCL10 2230 2418 73 TP53BP2 - BCL10 493 1999 351
TP53I3 - BCL10 727 1159 1301 TP53I3 - BCL10 519 1572 446
TP53INP1 - BCL10 543 1223 1275 TP53INP1 - BCL10 1094 1120 1848
TP53INP2 - BCL10 632 1910 2087 TP53INP2 - BCL10 789 1566 848
Table 115. 2nd order combinatorial hypotheses between SELENBP1 and BCL family.
Table 115. 2nd order combinatorial hypotheses between SELENBP1 and BCL family.
Unexplored combinatorial hypotheses
BCL w.r.t TP53
TP53-I3/INP2 BCL2L2
TP53-INP2 BCL2L13
TP53-I3/INP2 BCL6
TP53-BP2 BCL9L
TP53-BP2/INP2 BCL10
TP53 w.r.t BCL
TP53-BP2/I3 BCL2L1
TP53-INP1 BCL3
TP53-BP2/INP2 BCL9L

3.8.4. CASP - BCL Cross Family Analysis

Expression of caspase and BCL-2 apoptotic family members in mouse preimplantation embryos have been studied by Exley et al. [229]. Swanton et al. [230] observed that Bcl-2 regulates a caspase-3/caspase-2 apoptotic cascade in cytosolic extracts. Their role in the regulation of the immune response of Caspases, Bcl-2 family proteins and other components of the death machinery has been observed in Pellegrini and Strasser [231]. Moriishi et al. [232] show that Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1. In CRC cells treated with ETC-1922159, these families were found to be UP regulated. Table 116 shows rankings of CASP and BCL family.
On the left side, we found BCL2L2 to be up regulated w.r.t CASP-10/16. These are reflected in the rankings of 2043 (linear) and 1809 (rbf) for CASP10 - BCL2L2; and 2263 (laplace) and 1863 (rbf) for CASP16 - BCL2L2; BCL2L13 to be up regulated w.r.t CASP-4/5/16. These are reflected in the rankings of 1873 (laplace) and 2415 (rbf) for CASP4 - BCL2L13; 1962 (laplace), 2514 (linear) and 2493 (rbf) for CASP5 - BCL2L13; and 1762 (laplace), 2492 (linear) and 2166 (rbf) for CASP16 - BCL2L13; BCL3 to be up regulated w.r.t CASP-10. These are reflected in the rankings of 2409 (laplace) and 2011 (linear) for CASP10 - BCL3; BCL6 to be up regulated w.r.t CASP-5/16. These are reflected in the rankings of 1787 (laplace), 2124 (linear) and 2309 (rbf) for CASP5 - BCL6; and 2397 (laplace), 2166 (linear) and 2387 (rbf) for CASP16 - BCL6.
On the right side, we found CASP-5/7 to be up regulated w.r.t BCL2L1. These are reflected in the rankings of 1992 (laplace) and 2053 (linear) for CASP5 - BCL2L1; and 2203 (linear) and 1750 (rbf) for CASP7 - BCL2L1. CASP-4/7 to be up regulated w.r.t BCL2L1. These are reflected in the rankings of 1902 (linear) and 1979 (rbf) for CASP4 - BCL2L13 and 1877 (laplace) and 2216 (rbf) for CASP7 - BCL2L13; CASP-7/16 to be up regulated w.r.t BCL9L. These are reflected in the rankings of 1813 (laplace) and 1980 (rbf) for CASP7 - BCL9L; and 2499 (linear) and 2027 (rbf) for CASP16 - BCL9L; CASP-7 to be up regulated w.r.t BCL10. These are reflected in the rankings of 2489 (laplace) and 1945 (rbf) for CASP7 - BCL10.
Table 116. 2nd order combinatorial hypotheses between BCL and SELENBP1.
Table 116. 2nd order combinatorial hypotheses between BCL and SELENBP1.
Ranking CASP family vs BCL family
Ranking of BCL2L1 w.r.t CASP family Ranking of CASP family w.r.t BCL2L1
laplace linear rbf laplace linear rbf
CASP4 - BCL2L1 170 1441 1555 CASP4 - BCL2L1 355 1603 202
CASP5 - BCL2L1 1236 766 1261 CASP5 - BCL2L1 1992 2053 291
CASP7 - BCL2L1 2235 1161 1252 CASP7 - BCL2L1 657 2203 1750
CASP9 - BCL2L1 291 984 692 CASP9 - BCL2L1 833 1386 1855
CASP10 - BCL2L1 1162 2043 218 CASP10 - BCL2L1 721 2088 101
CASP16 - BCL2L1 239 34 305 CASP16 - BCL2L1 43 489 351
Ranking of BCL2L2 w.r.t CASP family Ranking of CASP family w.r.t BCL2L2
laplace linear rbf laplace linear rbf
CASP4 - BCL2L2 1144 1441 2348 CASP4 - BCL2L2 988 966 1400
CASP5 - BCL2L2 1896 766 914 CASP5 - BCL2L2 401 174 1136
CASP7 - BCL2L2 895 1161 1604 CASP7 - BCL2L2 2371 1352 1312
CASP9 - BCL2L2 1414 984 1933 CASP9 - BCL2L2 863 720 102
CASP10 - BCL2L2 1335 2043 1809 CASP10 - BCL2L2 1630 1912 884
CASP16 - BCL2L2 2263 34 1863 CASP16 - BCL2L2 2 151 114
Ranking of BCL2L13 w.r.t CASP family Ranking of CASP family w.r.t BCL2L13
laplace linear rbf laplace linear rbf
CASP4 - BCL2L13 1873 1096 2415 CASP4 - BCL2L13 1257 1902 1979
CASP5 - BCL2L13 1962 2514 2493 CASP5 - BCL2L13 1438 1376 664
CASP7 - BCL2L13 601 1195 756 CASP7 - BCL2L13 1877 1646 2216
CASP9 - BCL2L13 1592 2371 1376 CASP9 - BCL2L13 447 1618 844
CASP10 - BCL2L13 489 384 987 CASP10 - BCL2L13 1403 1048 354
CASP16 - BCL2L13 1762 2492 2166 CASP16 - BCL2L13 1927 376 510
Ranking of BCL3 w.r.t CASP family Ranking of CASP family w.r.t BCL3
laplace linear rbf laplace linear rbf
CASP4 - BCL3 18 844 1229 CASP4 - BCL3 335 172 1629
CASP5 - BCL3 728 953 1616 CASP5 - BCL3 343 498 628
CASP7 - BCL3 737 574 580 CASP7 - BCL3 1313 1804 1556
CASP9 - BCL3 1478 284 242 CASP9 - BCL3 2392 1123 1394
CASP10 - BCL3 2409 2011 1425 CASP10 - BCL3 156 838 1678
CASP16 - BCL3 868 103 715 CASP16 - BCL3 361 162 2505
Ranking of BCL6 w.r.t CASP family Ranking of CASP family w.r.t BCL6
laplace linear rbf laplace linear rbf
CASP4 - BCL6 1311 2266 1297 CASP4 - BCL6 27 507 944
CASP5 - BCL6 1787 2124 2309 CASP5 - BCL6 760 10 770
CASP7 - BCL6 996 1314 2322 CASP7 - BCL6 1478 1230 2366
CASP9 - BCL6 1022 824 2021 CASP9 - BCL6 1855 903 1296
CASP10 - BCL6 469 1559 1085 CASP10 - BCL6 591 787 1410
CASP16 - BCL6 2397 2166 2387 CASP16 - BCL6 1514 54 1881
Ranking of BCL9L w.r.t CASP family Ranking of CASP family w.r.t BCL9L
laplace linear rbf laplace linear rbf
CASP4 - BCL9L 578 897 325 CASP4 - BCL9L 1758 1346 1584
CASP5 - BCL9L 1075 791 1134 CASP5 - BCL9L 363 1731 632
CASP7 - BCL9L 2279 1347 632 CASP7 - BCL9L 1813 853 1980
CASP9 - BCL9L 98 1126 455 CASP9 - BCL9L 1472 717 940
CASP10 - BCL9L 24 841 2358 CASP10 - BCL9L 675 1449 699
CASP16 - BCL9L 591 666 233 CASP16 - BCL9L 12 2499 2027
Ranking of BCL10 w.r.t CASP family Ranking of CASP family w.r.t BCL10
laplace linear rbf laplace linear rbf
CASP4 - BCL10 1272 1457 619 CASP4 - BCL10 244 1637 426
CASP5 - BCL10 1732 1092 1293 CASP5 - BCL10 667 2488 522
CASP7 - BCL10 1448 1028 681 CASP7 - BCL10 2489 1516 1945
CASP9 - BCL10 612 553 205 CASP9 - BCL10 1644 1117 956
CASP10 - BCL10 2289 1694 1401 CASP10 - BCL10 664 917 84
CASP16 - BCL10 27 102 301 CASP16 - BCL10 2192 3 387
Table 117. 2nd order combinatorial hypotheses between CASP and BCL family.
Table 117. 2nd order combinatorial hypotheses between CASP and BCL family.
Unexplored combinatorial hypotheses
BCL w.r.t CASP
CASP-10/16 BCL2L2
CASP-4/5/16 BCL2L13
CASP-10 BCL3
CASP-5/16 BCL6
CASP w.r.t BCL
CASP-5/7 BCL2L1
CASP-4/7 BCL2L13
CASP-7/16 BCL9L
CASP-7 BCL10

3.8.5. MUC - BCL Cross Family Analysis

MUC1 and bcl-2 expression in preinvasive lesions and adenosquamous carcinoma of the lung have been studied by Demirag et al. [233]. Sheng et al. [234] report that MUC13 prevents colorectal cancer cell death by promoting two distinct pathways of NF-kB activation, consequently upregulating BCL-XL. In CRC cells treated with ETC-1922159, family members of BCL and MUC were found up regulated. The search engine assigned high valued numerical ranks to some of the 2nd order combinations of BCL-MUC family members. Table 118 show the rankings of the members with respect to each other.
On the left side, we found BCL2L1 to be up regulated w.r.t MUC-1/13. These are reflected in the rankings of 2055 (laplace), 2297 (linear) and 1854 (rbf) for MUC1 - BCL2L1; and 1927 (laplace) and 2108 (rbf) for MUC13 - BCL2L1; BCL2L2 was up regulated w.r.t MUC-4/13/17. These are reflected in the rankings of 2506 (linear) and 1988 (rbf) for MUC4 - BCL2L2; 2084 (laplace) and 2402 (linear) for MUC13 - BCL2L2; and 2283 (laplace) and 2212 (linear) for MUC17 - BCL2L2; BCL2L13 was up regulated w.r.t MUC-1/12. These are reflected in the rankings of 2029 (laplace) and 2347 (linear) for MUC1 - BCL2L13; and 2353 (linear) and 1997 (rbf) for MUC12 - BCL2L13; BCL3 was up regulated w.r.t MUC-20. These are reflected in the rankings of 2512 (laplace) and 2440 (rbf) for MUC20 - BCL3; BCL6 was up regulated w.r.t MUC-17. These are reflected in the rankings of 2411(laplace), 2153 (linear) and 1808 (rbf) for MUC17 - BCL6; BCL9L was up regulated w.r.t MUC-17. These are reflected in the rankings of 2101 (laplace) and 2408 (rbf) for MUC20 - BCL9L.
On the right side, we found MUC3A to be up regulated w.r.t BCL2L2. These are reflected in the rankings of 2099 (laplace) and 2397 (rbf) for MUC3A - BCL2L2; MUC3A to be up regulated w.r.t BCL9L. These are reflected in the rankings of 2180 (linear) and 2106 (rbf) for MUC3A - BCL9L;
Table 118. 2nd order combinatorial hypotheses between BCL and SELENBP1.
Table 118. 2nd order combinatorial hypotheses between BCL and SELENBP1.
Ranking MUC family vs BCL family
Ranking of BCL2L1 w.r.t MUC family Ranking of MUC family w.r.t BCL2L1
laplace linear rbf laplace linear rbf
MUC1 - BCL2L1 2055 2297 1854 MUC1 - BCL2L1 1226 1681 986
MUC3A - BCL2L1 603 2089 1637 MUC3A - BCL2L1 759 1107 678
MUC4 - BCL2L1 531 1137 711 MUC4 - BCL2L1 1758 999 487
MUC12 - BCL2L1 882 810 1305 MUC12 - BCL2L1 1591 900 272
MUC13 - BCL2L1 1927 1201 2108 MUC13 - BCL2L1 98 2160 1099
MUC17 - BCL2L1 1170 917 743 MUC17 - BCL2L1 2500 93 148
MUC20 - BCL2L1 1810 700 1627 MUC20 - BCL2L1 270 343 423
Ranking of BCL2L2 w.r.t MUC family Ranking of MUC family w.r.t BCL2L2
laplace linear rbf laplace linear rbf
MUC1 - BCL2L2 1578 1425 1826 MUC1 - BCL2L2 2476 903 739
MUC3A - BCL2L2 1542 370 159 MUC3A - BCL2L2 2099 241 2397
MUC4 - BCL2L2 1323 2506 1988 MUC4 - BCL2L2 797 727 851
MUC12 - BCL2L2 602 2504 815 MUC12 - BCL2L2 516 38 1688
MUC13 - BCL2L2 2084 2402 1200 MUC13 - BCL2L2 2201 717 233
MUC17 - BCL2L2 2283 2212 1279 MUC17 - BCL2L2 903 295 913
MUC20 - BCL2L2 890 1886 480 MUC20 - BCL2L2 1892 569 1040
Ranking of BCL2L13 w.r.t MUC family Ranking of MUC family w.r.t BCL2L13
laplace linear rbf laplace linear rbf
MUC1 - BCL2L13 2029 2347 550 MUC1 - BCL2L13 1838 903 739
MUC3A - BCL2L13 2140 1123 1100 MUC3A - BCL2L13 173 241 2397
MUC4 - BCL2L13 1497 1918 1579 MUC4 - BCL2L13 1906 727 851
MUC12 - BCL2L13 581 2353 1997 MUC12 - BCL2L13 2096 38 1688
MUC13 - BCL2L13 1210 2185 1658 MUC13 - BCL2L13 1688 717 233
MUC17 - BCL2L13 1079 1270 1254 MUC17 - BCL2L13 1167 295 913
MUC20 - BCL2L13 187 2081 535 MUC20 - BCL2L13 1653 569 1040
Ranking of BCL3 w.r.t MUC family Ranking of MUC family w.r.t BCL3
laplace linear rbf laplace linear rbf
MUC1 - BCL3 458 1016 1881 MUC1 - BCL3 273 360 1683
MUC3A - BCL3 1642 668 588 MUC3A - BCL3 1044 860 1452
MUC4 - BCL3 427 321 457 MUC4 - BCL3 624 1360 585
MUC12 - BCL3 1813 311 1623 MUC12 - BCL3 1193 1092 132
MUC13 - BCL3 2151 641 1407 MUC13 - BCL3 279 65 603
MUC17 - BCL3 1106 531 2310 MUC17 - BCL3 305 1285 257
MUC20 - BCL3 2512 63 2440 MUC20 - BCL3 16 539 2198
Ranking of BCL6 w.r.t MUC family Ranking of MUC family w.r.t BCL6
laplace linear rbf laplace linear rbf
MUC1 - BCL6 1652 2294 173 MUC1 - BCL6 1550 595 788
MUC3A - BCL6 2323 1435 187 MUC3A - BCL6 407 809 318
MUC4 - BCL6 723 711 1403 MUC4 - BCL6 176 203 1963
MUC12 - BCL6 184 1024 1267 MUC12 - BCL6 1126 26 229
MUC13 - BCL6 158 1083 2198 MUC13 - BCL6 1633 1052 603
MUC17 - BCL6 2411 2153 1808 MUC17 - BCL6 242 719 1026
MUC20 - BCL6 925 840 2153 MUC20 - BCL6 1132 1669 652
Ranking of BCL9L w.r.t MUC family Ranking of MUC family w.r.t BCL9L
laplace linear rbf laplace linear rbf
MUC1 - BCL9L 2194 744 1112 MUC1 - BCL9L 1144 1999 896
MUC3A - BCL9L 2114 1441 1359 MUC3A - BCL9L 901 2180 2106
MUC4 - BCL9L 882 466 1526 MUC4 - BCL9L 658 1152 781
MUC12 - BCL9L 1547 526 2391 MUC12 - BCL9L 1733 1510 366
MUC13 - BCL9L 1545 1891 796 MUC13 - BCL9L 1529 502 602
MUC17 - BCL9L 1282 1160 1362 MUC17 - BCL9L 955 1788 99
MUC20 - BCL9L 2101 116 2408 MUC20 - BCL9L 307 1516 1042
Ranking of BCL10 w.r.t MUC family Ranking of MUC family w.r.t BCL10
laplace linear rbf laplace linear rbf
MUC1 - BCL10 1325 1524 1900 MUC1 - BCL10 547 1319 284
MUC3A - BCL10 1298 1004 1509 MUC3A - BCL10 1681 751 2250
MUC4 - BCL10 304 1632 1050 MUC4 - BCL10 591 570 151
MUC12 - BCL10 1019 1093 2239 MUC12 - BCL10 38 1155 817
MUC13 - BCL10 358 1687 2004 MUC13 - BCL10 517 2229 455
MUC17 - BCL10 524 2038 1579 MUC17 - BCL10 216 803 132
MUC20 - BCL10 1380 619 2081 MUC20 - BCL10 97 465 239
Table 119. 2nd order combinatorial hypotheses between MUC and BCL family.
Table 119. 2nd order combinatorial hypotheses between MUC and BCL family.
Unexplored combinatorial hypotheses
MUC w.r.t BCL
MUC-3A BCL2L2
MUC-3A BCL9L
BCL w.r.t MUC
MUC-1/13 BCL2L1
MUC-4/13/17 BCL2L2
MUC-1/12 BCL2L13
MUC-20 BCL3
MUC-17 BCL6
MUC-20 BCL9L

3.8.6. EXOSC - BCL Cross Family Analysis

The exosome complex is involved in the degradation of various kinds of RNA. Recently, Deng et al. [235] observe that Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression. Xu et al. [236] show that Exosome-derived microRNA-29c induces apoptosis of BIU-87 cells by down regulating BCL-2 and MCL-1. Exosomes were demonstrated to upregulate the expression of Bcl-2 and Cyclin D1 proteins, but reduce the levels of Bax and caspase-3 proteins in these cells in work of Yang et al. [237]. In western blot analysis results showed that exosomes can block the significant reduction of BCL-2, full-length caspase-3 and full-length PARP, while preventing the increase of BAX, cleaved caspase-3 and cleaved PARP induced by VP16, as studied by Wang et al. [238]. These findings point to the definite synergistic role of exosome with BCL family. In CRC cells, both exosome components EXOSC and BCL family members were found to be down regulated, after ETC-1922159 drug treatment. The search engine allocated low numerical valued ranks for many of the EXOSC and BCL combinations which might suggest greater role of EXOSC along with BCL. However, the nature of the mechanism between the two families yet needs to be explored, despite the generated hypothesis of possible synergy.
Table 120 shows rankings of EXOSC and BCL family with respect to each other. Left half of the Table shows rankings of EXOSC w.r.t BCL and right half shows the vice versa. On the left, we find EXOSC2 to be down regulated w.r.t BCL-2L12/6B/7A/9/11A/11B. These are shown in the rankings of 723 (laplace), 355 (linear) and 1211 (rbf) for EXOSC2 - BCL2L12; 1092 (laplace), 1033 (linear) and 638 (rbf) for EXOSC2 - BCL6; 1633 (laplace), 1047 (linear) and 317 (rbf) for EXOSC2 - BCL7A; 699 (laplace), 559 (linear) and 425 (rbf) for EXOSC2 - BCL9; 338 (laplace), 319 (linear) and 1598 (rbf) for EXOSC2 - BCL11A; and 1285 (laplace), 1440 (linear) and 812 (rbf) for EXOSC2 - BCL11B; EXOSC3 was found to down regulated w.r.t BCL11B. This is reflected in rankigns of 1677 (laplace), 199 (linear) and 267 (rbf) for EXOSC3 - BCL11B. EXOSC5 was found to be down regulated w.r.t BCL family. These are reflected in the rankings of 498 (laplace), 1342 (linear) and 436 (rbf) for EXOSC5 - BCL2L12; 786 (laplace), 1272 (linear) and 1194 (rbf) for EXOSC5 - BCL6B; 374 (laplace), 1338 (linear) and 874 (rbf) for EXOSC5 - BCL7A; 613 (laplace), 946 (linear) and 772 (rbf) for EXOSC5 - BCL9; 459 (laplace), 90 (linear) and 1034 (rbf) for EXOSC5 - BCL11A; and 1404 (laplace) and 1558 (linear) for EXOSC5 - BCL11B; EXOSC6 was found to be down regulated w.r.t BCL family. These are reflected in rankings of 1676 (laplace), 787 (linear) and 944 (rbf) for EXOSC6 - BCL7A; 1059 (linear) and 1091 (rbf) for EXOSC6 - BCL9; 1677 (laplace) and 1573 (linear) for EXOSC6 - BCL11A; EXOSC7 was found to be down regulated w.r.t BCL family. These are reflected in rankings of 666 (laplace); 98 (linear) and 743 (rbf) EXOSC7 - BCL6B; 1501 (linear) and 1513 (rbf) for EXOSC7 - BCL7A; and 1477 (laplace) and 1217 (rbf) for EXOSC7 - BCL11A; EXOSC8 was found to be down regulated w.r.t BCL family. Thesea reflected in 1175 (laplace), 1504 (linear) and 1743 (rbf) for EXOSC8 - BCL7A; 906 (linear) and 1130 (rbf) EXOSC8 - BCL11A; and 605 (linear) and 374 (rbf) for EXOSC8 - BCL11B; EXOSC9 found to be down regulate w.r.t BCL family. These are reflected in rankings of 1179 (laplace); 1018 (linear) and 687 (rbf) for EXOSC9 - BCL2L12; 437 (laplace), 852 (linear) and 1358 (rbf) EXOSC9 - BCL6B; 821 (laplace), 346 (linear) and 727 (rbf) for EXOSC9 - BCL7A; 1305 (laplace) and 299 (rbf) EXOSC9 - BCL9; 1569 (laplace), 549 (linear) and 1456 (rbf) for EXOSC9 - BCL11B.
On the right, we find BCL-6B/11A/11B to be down regulated w.r.t EXOSC2. These are reflected in the rankings of 202 (laplace), 81 (linear) and 194 (rbf) for EXOSC2 - BCL6B; 574 (laplace), 834 (linear) and 1055 (rbf) for EXOSC2 - BCL11A; and 1368 (laplace), 1353 (linear) and 1455 (rbf) for EXOSC2 - BCL11B. BCL-6B/7A/11A was found to be down regulated w.r.t EXOSC3. These are reflected in rankings of 571 (laplace), 335 (linear) and 307 (rbf) for EXOSC3 - BCL6B; 1739 (laplace) and 1700 (rbf) for EXOSC3 - BCL7A; and 1018 (laplace), 1345 (linear) and 483 (rbf) for EXOSC3 - BCL11A; BCL-6B/11A/11B was found to be down regulated w.r.t EXOSC5. These were reflected in rankings of 571 (laplace), 335 (linear) and 307 (rbf) for EXOSC5 - BCL6B; 756 (laplace), 389 (linear) and 1183 (rbf) for EXOSC5 - BCL11A; and 1368 (laplace), 1353 (linear) and 1455 (rbf) for EXOSC5 - BCL11B. BCL-9 was found to be down regulated w.r.t EXOSC6. These are reflected in rankigns of 851 (linear) and 1564 (rbf) for EXOSC6 - BCL9. BCL-2L12/7A/9/11A/11B was found to be down regulated w.r.t EXOSC7. These are reflected in rankings of 1551 (linear) and 1099 (rbf) for EXOSC7 - BCL2L12; 1282 (laplace), 831 (linear) and 1218 (rbf) for EXOSC7 - BCL7A; 1234 (linear) and 328 (rbf) for EXOSC7 - BCL9; 520 (laplace), 117 (linear) and 686 (rbf) for EXOSC7 - BCL11A; and 1529 (laplace) and 1418 (rbf) for EXOSC7 - BCL11B; BCL-6B/11A was found to be down regulated with EXOSC8. These are reflected in rankings of 190 (laplace), 1630 (linear) and 472 (rbf) for EXOSC8 - BCL6B; and 944 (laplace) and 532 (rbf) for EXOSC8 - BCL11A. Finally, BCL-6B/9/11A/11B was found to be down regulated with EXOSC9. These are reflected in rankings of 634 (laplace), 304 (linear) and 146 (rbf) for EXOSC9 - BCL6B; 1197 (laplace) and 1279 (rbf) for EXOSC9 - BCL9; 481 (laplace), 441 (linear) and 1372 (rbf) for EXOSC9 - BCL11A; and 1454 (linear) and 133 (rbf) for EXOSC9 - BCL11B.
Table 121 shows the derived influences which can be represented graphically, with the following influences - • EXOSC w.r.t BCL with EXOSC2 <- BCL-2L12/6B/7A/9/11A/11B; EXOSC3 <- BCL-11B; EXOSC5 <- BCL-2L12/6B/7A/9/11A/11B; EXOSC6 <- BCL-7A/9/11A; EXOSC7 <- BCL-6B/7A/11A; EXOSC8 <- BCL-7A/11A/11B and EXOSC9 <- BCL-2L12/6B/7A/9/11B; and • BCL w.r.t EXOSC with EXOSC2 -> BCL-6B/11A/11B; EXOSC3 -> BCL-6B/7A/11A; EXOSC5 -> BCL-6B/11A/11B; EXOSC6 -> BCL-2L12/9; EXOSC7 -> BCL-2L12/7A/9/11A/11B; EXOSC8 -> BCL-6B/11A and EXOSC9 -> BCL-6B/9/11A/11B.

3.9. Poliovirus-Receptor Related Synergies

3.9.1. PVR - Interferon Cross Family Analysis

Brown et al. [239] show that cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs. Stamm et al. [240] show that immune checkpoints PVR and PVRL2 are prognostic markers in AML and their blockade represents a new therapeutic option. Stamm et al. [241] observe that expression of novel immune checkpoint molecules PVR and PVRL2 confers a negative prognosis to patients with acute myeloid leukemia and their blockade augments T-Cell mediated lysis of AML cells alone or in combination with the BiTE® antibody construct AMG 330. In a latest development, Whelan et al. [242] observe that poliovirus receptor related immunoglobulin domain containing (PVRIG) and poliovirus receptor-related 2 (PVRL2) are induced in cancer and inhibit CD8+ T-cell function. For colorectal cancer, the were highest percentage of PVR+PVRL2 cells. In CRC cells treated with ETC-1922159, it was found that PVR, PVRL2 and PVRL4 were up regulated. Whelan et al. [242] report that when they compared the combination of receptor blockade (i.e., anti-PVRIG and anti-TIGIT) with the combination of ligand blockade (i.e., anti-PVR and anti-PVRL2), similar increases in IFN-γ were observed, suggesting no additional functional interactions are present among these proteins. This might also suggest that expression of PVRL2 blocks the production of IFN-γ. Using the search engine, rankings at 2nd order indicate similar patterns of combinatorial synergy. These ranks are tabulated in Table 122. Note that high numerical valued ranks indicate a synergy between PVR and IFN family. However, low numercial valued ranks possibly indicate the negative role, i.e PVR family up regulation leads to blocking of IFN family production.
Here we depict the possible synergy of up regulation of PVR family with IFN family in CRC cells treated with ETC-1922159. However, of low numerical valued ranks might indicate the similar behaviour as found by Whelan et al. [242]. On the left we find PVR ranks w.r.t IFN and on the right vice versa. We found PVR to be up regulated w.r.t IFN-E/GR2/LR1. These are reflected in rankings of 2044 (linear) and 1975 (rbf) for PVR - IFNE; 1911 (laplace) and 1871 (linear) for PVR - IFNGR2; and 2212 (linear) and 1884 (rbf) for PVR - IFNLR1; PVRL2 was up regulated w.r.t IFN-E. This was reflected in rankings of 1851 (laplace) and 2120 (rbf) for PVRL2 - IFNE; Reversibly, in context of findings by Whelan et al. [242] all low numerical valued ranks point to the fact that PVR/PVRL2/PVRL4 up regulation might be blocking the production of IFN family members. On the right side, we found IFN-GR1/LR1 to be up regulated w.r.t PVR. These are reflected in rankings of 2268 (laplace), 2040 (linear) and 2235 (rbf) for PVR - IFNGR1 and 2119 (laplace) and 1918 (linear) for PVR - IFNLR1; IFN-GR2 was up regulated w.r.t PVRL2. These are reflected in rankings of 2049 (laplace) and 2056 (rbf) for PVRL2 - IFNGR2; IFN-E was up regulated w.r.t PVRL4. These are reflected in rankings of 2026 (laplace) and 1908 (linear). Again, reversibly, in context of findings by Whelan et al. [242] all low numerical valued ranks point to the fact that IFN family up regulation might indicate bloackage of PVR family members.
Table 123 shows the derived influences which can be represented graphically, with the following influences - • PVR w.r.t IFN with PVR <- IFN-E/GR2/LR1; PVRL2 <- IFN-E; and • IFN w.r.t PVR with IFN-GR1/LR1 -> PVR; IFN-GR2 -> PVRL2; IFN-E -> PVRL4;
Table 122. 2nd order combinatorial hypotheses between IFN and PVR family.
Table 122. 2nd order combinatorial hypotheses between IFN and PVR family.
Ranking PVR family vs IFN family
Ranking of PVR w.r.t IFN family Ranking of IFN family w.r.t PVR
laplace linear rbf laplace linear rbf
PVR - IFNAR2 1378 1651 1539 PVR - IFNAR2 1630 161 930
PVR - IFNE 1305 2044 1975 PVR - IFNE 1071 1486 362
PVR - IFNGR1 1331 268 1000 PVR - IFNGR1 2268 2040 2235
PVR - IFNGR2 1911 1871 1426 PVR - IFNGR2 598 1059 832
PVR - IFNLR1 717 2212 1884 PVR - IFNLR1 2119 1918 1499
PVR - IFNWP19 1648 1438 1547 PVR - IFNWP19 1699 168 2218
Ranking of PVRL2 w.r.t IFN family Ranking of IFN family w.r.t PVRL2
laplace linear rbf laplace linear rbf
PVRL2 - IFNAR2 1877 1085 492 PVRL2 - IFNAR2 623 1259 2073
PVRL2 - IFNE 1851 990 2120 PVRL2 - IFNE 683 328 1416
PVRL2 - IFNGR1 1174 510 526 PVRL2 - IFNGR1 1352 1885 1433
PVRL2 - IFNGR2 1608 173 1036 PVRL2 - IFNGR2 2049 490 2056
PVRL2 - IFNLR1 1577 701 1333 PVRL2 - IFNLR1 535 1258 295
PVRL2 - IFNWP19 1455 954 182 PVRL2 - IFNWP19 870 1803 1394
Ranking of PVRL4 w.r.t IFN family Ranking of IFN family w.r.t PVRL4
laplace linear rbf laplace linear rbf
PVRL4 - IFNAR2 1555 227 2433 PVRL4 - IFNAR2 490 2303 1701
PVRL4 - IFNE 64 781 1466 PVRL4 - IFNE 2026 1908 465
PVRL4 - IFNGR1 2218 651 188 PVRL4 - IFNGR1 560 793 889
PVRL4 - IFNGR2 220 31 873 PVRL4 - IFNGR2 213 2079 31
PVRL4 - IFNLR1 284 958 683 PVRL4 - IFNLR1 766 1432 2153
PVRL4 - IFNWP19 138 2271 384 PVRL4 - IFNWP19 788 1046 921
Table 123. 2nd order combinatorial hypotheses between PVR and IFN family.
Table 123. 2nd order combinatorial hypotheses between PVR and IFN family.
Unexplored combinatorial hypotheses
PVR w.r.t IFN
PVR IFN-E/GR2/LR1
PVRL2 IFN-E
IFN w.r.t PVR
IFN-GR1/LR1 PVR
IFN-GR2 PVRL2
IFN-E PVRL4

3.9.2. Interferon - Wnt Cross Family Analysis

The crosstalk between β-catenin signaling and type I, type II and type III interferons in lung cancer cells has been observed by Bai et al. [243]. Hillesheim et al. [244] show that β-catenin promotes the type I IFN synthesis and the IFN-dependent signaling response but is suppressed by influenza A virus-induced RIG-I/NF-κB signaling. Ohsugi et al. [245] show that decreased expression of interferon-induced protein 2 (IFIT2) by Wnt/β-catenin signaling confers anti-apoptotic properties to colorectal cancer cells. In CRC cells treated with ETC-1922159, members of Wnt and IFN family were up regulated. The search engine assigned high numerical valued ranks to a few of the 2nd order combinations. These are depicted in Table 124.
On the left, is the rankings of IFN family w.r.t Wnt family. On the right are the rankings of Wnt family w.r.t IFN family. On the left we found IFNE to be up regulated w.r.t WNT7B. These are depicted in rankings of 1872 (laplace) and 2341 (rbf) for IFNE - WNT7B. On the right, we found WNT-2B/4/7B to be up regulated w.r.t IFNGR1. These are reflected in ranking of 1849 (linear) and 2282 (rbf) for IFNGR1 - WNT2B; 2428 (laplace) and 2479 (rbf) for IFNGR1 - WNT4 and 2278 (linear) and 2164 (rbf) for IFNGR1 - WNT7B. WNT-2B was up regulated w.r.t IFNLR1. This is reflected in ranking of 2263 (laplace) and 2216 (rbf) for IFNLR1 - WNT2B; Finally, WNT4 was up regulated w.r.t IFNWP19. This is reflected in ranking of 2423 (linear) and 2330 (rbf) for IFNWP19 - WNT4. Table 125 shows the derived influences which can be represented graphically, with the following influences - • IFN w.r.t WNT with IFNE <- WNT7B; • WNT w.r.t IFN with IFNGR1 -> WNT2B; IFNGR1 -> WNT-2B/4/7B; IFNLR1 -> WNT2B; and IFNWP19 -> WNT4.
Table 124. 2nd order combinatorial hypotheses between WNT and IFN family.
Table 124. 2nd order combinatorial hypotheses between WNT and IFN family.
Ranking IFN family vs WNT family
Ranking of IFNAR2 w.r.t WNT family Ranking of WNT family w.r.t IFNAR2
laplace linear rbf laplace linear rbf
IFNAR2 - WNT2B 826 829 1463 IFNAR2 - WNT2B 785 1146 1642
IFNAR2 - WNT4 680 658 802 IFNAR2 - WNT4 1969 130 126
IFNAR2 - WNT7B 1009 1252 581 IFNAR2 - WNT7B 2208 1635 1647
IFNAR2 - WNT9A 532 180 1737 IFNAR2 - WNT9A 1223 1422 1632
Ranking of IFNE w.r.t WNT family Ranking of WNT family w.r.t IFNE
laplace linear rbf laplace linear rbf
IFNE - WNT2B 1612 1973 519 IFNE - WNT2B 1057 1146 239
IFNE - WNT4 1609 2262 1320 IFNE - WNT4 585 440 6
IFNE - WNT7B 1872 1240 2341 IFNE - WNT7B 2055 941 936
IFNE - WNT9A 2114 1029 267 IFNE - WNT9A 124 458 708
Ranking of IFNGR1 w.r.t WNT family Ranking of WNT family w.r.t IFNGR1
laplace linear rbf laplace linear rbf
IFNGR1 - WNT2B 1623 144 361 IFNGR1 - WNT2B 1057 1849 2282
IFNGR1 - WNT4 225 455 1773 IFNGR1 - WNT4 2428 1226 2479
IFNGR1 - WNT7B 1004 1259 1135 IFNGR1 - WNT7B 710 2278 2164
IFNGR1 - WNT9A 601 958 1864 IFNGR1 - WNT9A 1668 1725 1462
Ranking of IFNGR2 w.r.t WNT family Ranking of WNT family w.r.t IFNGR2
laplace linear rbf laplace linear rbf
IFNGR2 - WNT2B 1224 1322 2156 IFNGR2 - WNT2B 828 1599 400
IFNGR2 - WNT4 584 1117 59 IFNGR2 - WNT4 498 33 168
IFNGR2 - WNT7B 1185 745 242 IFNGR2 - WNT7B 1964 1020 638
IFNGR2 - WNT9A 754 501 676 IFNGR2 - WNT9A 261 1711 654
Ranking of IFNLR1 w.r.t WNT family Ranking of WNT family w.r.t IFNLR1
laplace linear rbf laplace linear rbf
IFNLR1 - WNT2B 1621 851 510 IFNLR1 - WNT2B 2263 1683 2216
IFNLR1 - WNT4 1538 250 220 IFNLR1 - WNT4 2364 231 503
IFNLR1 - WNT7B 1012 173 506 IFNLR1 - WNT7B 406 573 446
IFNLR1 - WNT9A 347 134 2160 IFNLR1 - WNT9A 1815 1709 106
Ranking of IFNWP19 w.r.t WNT family Ranking of WNT family w.r.t IFNWP19
laplace linear rbf laplace linear rbf
IFNWP19 - WNT2B 826 176 787 IFNWP19 - WNT2B 1600 2096 1650
IFNWP19 - WNT4 680 1507 391 IFNWP19 - WNT4 1441 2423 2330
IFNWP19 - WNT7B 1009 1101 1327 IFNWP19 - WNT7B 1838 966 1478
IFNWP19 - WNT9A 532 1404 431 IFNWP19 - WNT9A 1354 1968 703
Table 125. 2nd order combinatorial hypotheses between IFN and WNT family.
Table 125. 2nd order combinatorial hypotheses between IFN and WNT family.
Unexplored combinatorial hypotheses
IFN w.r.t WNT
IFNE WNT7B
WNT w.r.t IFN
IFNGR1 WNT2B
IFNGR1 WNT4/WNT7B
IFNLR1 WNT2B
IFNWP19 WNT4

3.9.3. PVR - WNT Cross Family Analysis

Mutations in PVRL4, encoding cell adhesion molecule nectin-4, causes Ectodermal dysplasia-syndactyly syndrome, Brancati et al. [1]. Interaction with cadherins also implies an influence of nectin-4 on Wnt signaling, which plays a relevant role in limb development (Brancati et al. [1]). However, not much work has been done to explore the relation of Wnts and PVR family. In CRC cells treated with ETC-1922159, both were found up regulated. The search engine alloted high numerical valued rankings to some combinations thus indicating a possibility of high combinatorial synergy also. Table 126 shows the rankings of PVR family w.r.t to Wnts on the left and vice versa on the right. We found, PVR up regulated w.r.t WNT9A and this is reflected in rankings of 2322 (laplace) and 2202 (rbf). On the right, we found WNT-7B/9A to be up regulated w.r.t PVR. These are reflected in rankings of 2216 (laplace), 1844 (linear) and 2096 (rbf) for PVR - WNT7B; and 2152 (laplace) and 2120 (rbf) for PVR - WNT9A. Also, WNT-4 was up regulated w.r.t PVRL2. This is reflected in rankings of 2324 (laplace) and 2462 (linear) for PVRL2 - WNT4.
Table 127 shows the derived influences which can be represented graphically, with the following influences - • PVR w.r.t WNT with PVR <- WNT9A; and • WNT w.r.t PVR with WNT-7B/9A <- PVR and WNT4 <- PVRL2; In the light of the recent findings of PVR with IFN and the known interactions between IFN and Wnts, there might be a possibilty to explore the bridge of PVR, IFN and WNTs. The above 3 fold (PVR - IFN; IFN - WNT; WNT - PVR), 2 way cross family analysis might shed light on the possible combinations that might be of import.
Table 126. 2nd order combinatorial hypotheses between WNT and PVR family.
Table 126. 2nd order combinatorial hypotheses between WNT and PVR family.
Ranking PVR family vs WNT family
Ranking of PVR w.r.t WNT family Ranking of WNT family w.r.t PVR
laplace linear rbf laplace linear rbf
PVR - WNT2B 2204 733 1 PVR - WNT2B 1205 2257 607
PVR - WNT4 1295 970 878 PVR - WNT4 38 2470 1094
PVR - WNT7B 1237 770 1887 PVR - WNT7B 2216 1844 2096
PVR - WNT9A 2322 649 2202 PVR - WNT9A 2152 2120 1131
Ranking of PVRL2 w.r.t WNT family Ranking of WNT family w.r.t PVRL2
laplace linear rbf laplace linear rbf
PVRL2 - WNT2B 616 375 2381 PVRL2 - WNT2B 1901 1044 621
PVRL2 - WNT4 1110 1584 1391 PVRL2 - WNT4 2324 216 2462
PVRL2 - WNT7B 2186 1122 349 PVRL2 - WNT7B 560 560 953
PVRL2 - WNT9A 110 1367 1858 PVRL2 - WNT9A 1044 1502 794
Ranking of PVRL4 w.r.t WNT family Ranking of WNT family w.r.t PVRL4
laplace linear rbf laplace linear rbf
PVRL4 - WNT2B 949 565 95 PVRL4 - WNT2B 78 966 1938
PVRL4 - WNT4 885 1672 2149 PVRL4 - WNT4 611 1922 1488
PVRL4 - WNT7B 299 241 798 PVRL4 - WNT7B 1192 1159 2505
PVRL4 - WNT9A 1375 1306 492 PVRL4 - WNT9A 1383 634 224
Table 127. 2nd order combinatorial hypotheses between PVR and WNT family.
Table 127. 2nd order combinatorial hypotheses between PVR and WNT family.
Unexplored combinatorial hypotheses
PVR w.r.t WNT
PVR WNT9A
WNT w.r.t PVR
WNT-7B/9A PVR
WNT4 PVRL2

3.9.4. PVR - Integrin Cross Family Analysis

PVRL4 promotes anchorage-independence by driving cell-to-cell attachment and matrix-independent integrin β4/SHP-2/c-Src activation, as observed by Pavlova et al. [246]. Integrins are the major metazoan receptors for cell adhesion to extracellular matrix proteins and, in vertebrates, also play important roles in certain cell-cell adhesions Hynes [247]. It has been recently shown that human NK cells recognize PVR through the receptor DNAM-1, which triggers NK cell stimulation in association with b e t a 2 integrin. Fuchs et al. [248] additionally show that NK cells recognize PVR through an additional receptor, CD96, or T cell-activated increased late expression (Tactile). Ferroptosis is a type of programmed cell death dependent on iron and characterized by the accumulation of lipid peroxides, and is genetically and biochemically distinct from other forms of regulated cell death such as apoptosis (Wikipedia contributors [249]). Cell clustering mediated by the adhesion protein PVRL4 is necessary for α6β4 integrin–promoted ferroptosis resistance in matrix-detached cells, as observed by Brown et al. [250]. These findings suggest the possibility to synergy between PVR and Integrin family. In CRC cells treated with ETC-1922159, PVR and integrin families were up regulated. The search engine alloted high numerical valued ranks to some of the 2nd order combinations of PVR and integrin family members thus pointing to possible synergy in CRC cells. Table 128 shows the rankings of PVR along with integrin family members.
On the left side, we found PVRL2 to be up regulated w.r.t ITG-B4. This is reflected in the rankings of 1857 (laplace) and 1750 (rbf) for ITGB4-PVRL2. PVRL4 was up regulated w.r.t ITGB5. This is reflected in rankings of 2418 (linear) and 1802 (rbf) for ITGB5-PVRL4. On the right side, ITG-A2/B8 were found up regulated w.r.t PVR. These are reflected in rankings of 2062 (linear) and 2106 (rbf) for ITGA2-PVR; and 2498 (linear) and 2366 (rbf) for ITGB8-PVR. ITG-B1BP1/B6/B8 were found up regulated w.r.t PVRL2. These are reflected in rankings of 2470 (linear) and 2408 (rbf) for ITGB1BP1-PVRL2; 2428 (linear) and 2364 (rbf) for ITGB6-PVRL2; and 2046 (laplace), 2385 (linear) and 2110 (rbf) for ITGB8-PVRL2. ITG-B1BP1/B5 were found up regulated w.r.t PVRL4. These are reflected in rankings of 1815 (laplace) and 2362 (rbf) for ITGB1BP1-PVRL4; and 1818 (laplace) and 2256 (rbf) for ITGB5-PVRL4.
Table 129 shows the derived influences which can be represented graphically, with the following influences - • PVR w.r.t ITG with PVRL2 <- ITGB4; and PVRL4 <- ITGB5 and • ITG w.r.t PVR with ITG-A2/B8 <- PVR; ITG-B1BP1/B6/B8 <- PVRL2; and ITG-B1BP1/B5 <- PVRL4.
Table 128. 2nd order combinatorial hypotheses between ITG and PVR family.
Table 128. 2nd order combinatorial hypotheses between ITG and PVR family.
Ranking PVR family vs ITG family
Ranking of PVR w.r.t ITG family Ranking of ITG family w.r.t PVR
laplace linear rbf laplace linear rbf
ITGA2-PVR 294 564 1996 ITGA2-PVR 627 2062 2106
ITGA3-PVR 1739 117 1420 ITGA3-PVR 2172 99 827
ITGA6-PVR 214 1328 435 ITGA6-PVR 576 2199 817
ITGB1-PVR 1896 136 1121 ITGB1-PVR 1506 1093 2203
ITGB1BP1-PVR 1876 1724 1505 ITGB1BP1-PVR 1241 1108 535
ITGB4-PVR 783 1495 1044 ITGB4-PVR 1499 120 873
ITGB5-PVR 1719 981 490 ITGB5-PVR 1269 1433 914
ITGB6-PVR 1457 664 1744 ITGB6-PVR 1686 988 879
ITGB8-PVR 283 290 334 ITGB8-PVR 1407 2498 2366
Ranking of PVRL2 w.r.t ITG family Ranking of ITG family w.r.t PVRL2
laplace linear rbf laplace linear rbf
ITGA2-PVRL2 1072 501 851 ITGA2-PVRL2 1883 327 1141
ITGA3-PVRL2 960 1905 1160 ITGA3-PVRL2 1199 1937 39
ITGA6-PVRL2 352 993 212 ITGA6-PVRL2 2102 709 1337
ITGB1-PVRL2 720 1751 836 ITGB1-PVRL2 922 568 1546
ITGB1BP1-PVRL2 1436 1313 88 ITGB1BP1-PVRL2 168 2470 2408
ITGB4-PVRL2 1857 1269 1750 ITGB4-PVRL2 565 440 1197
ITGB5-PVRL2 238 100 1314 ITGB5-PVRL2 543 1738 1605
ITGB6-PVRL2 1873 582 1492 ITGB6-PVRL2 1052 2428 2364
ITGB8-PVRL2 695 612 1500 ITGB8-PVRL2 2046 2385 2110
Ranking of PVRL4 w.r.t ITG family Ranking of ITG family w.r.t PVRL4
laplace linear rbf laplace linear rbf
ITGA2-PVRL4 69 951 917 ITGA2-PVRL4 2154 666 1266
ITGA3-PVRL4 66 1648 825 ITGA3-PVRL4 2355 357 801
ITGA6-PVRL4 994 528 109 ITGA6-PVRL4 2359 299 157
ITGB1-PVRL4 1631 1724 917 ITGB1-PVRL4 2100 1282 526
ITGB1BP1-PVRL4 1369 90 462 ITGB1BP1-PVRL4 1815 1287 2362
ITGB4-PVRL4 743 1602 2443 ITGB4-PVRL4 126 1844 703
ITGB5-PVRL4 2418 1802 119 ITGB5-PVRL4 1818 834 2256
ITGB6-PVRL4 500 1187 122 ITGB6-PVRL4 1618 2425 402
ITGB8-PVRL4 861 699 780 ITGB8-PVRL4 1641 394 1282
Table 129. 2nd order combinatorial hypotheses between PVR and ITG family.
Table 129. 2nd order combinatorial hypotheses between PVR and ITG family.
Unexplored combinatorial hypotheses
PVR w.r.t ITG
PVRL2 ITGB4
PVRL4 ITGB5
ITG w.r.t PVR
ITG-A2/B8 PVR
ITG-B1BP1/B6/B8 PVRL2
ITG-B1BP1/B5 PVRL4

3.9.5. PVR - TNF Cross Family Analysis

Abdullah et al. [251] show that wild-type measles virus infection upregulates poliovirus receptor-related 4 and causes apoptosis in brain endothelial cells by induction of Tumor Necrosis Factor-related apoptosis-inducing ligand. Fabre-Lafay et al. [252] show that Nectin-4 (PVRL4), a new serological breast cancer marker, is a substrate for tumor necrosis factor-α-converting enzyme (TACE)/ADAM-17. These and other findings indicate the role of poliovirus receptor along with TNF family members. In CRC cells treated with ETC-1922159, PVR and TNF families were up regulated. The search engine alloted high numerical valued ranks to some of the 2nd order combinations of PVR and TNF family members thus pointing to possible synergy in CRC cells. Table 130 shows the rankings of PVR along with TNF family members.
On the left side, we found PVR to be up regulated w.r.t TNF and TNF-AIP1/AIP2/RSF1A/RSF10A. This is reflected in the rankings of 1963 (laplace), 2422 (linear) and 1822 (rbf) for TNF-PVR; 2210 (linear) and 2243 (rbf) for TNFAIP1-PVR; 2028 (laplace) and 2451 (rbf) for TNFAIP2-PVR; 2029 (laplace) and 2078 (rbf) for TNFRSF1A-PVR and 1978 (linear) and 1942 (rbf) for TNFRSF10A-PVR. PVRL2 to be up regulated w.r.t TNF-AIP2. This is reflected in the rankings of 2515 (laplace) and 2423 (linear) for TNFAIP2-PVRL2. On the right side, TNFRSF14 to be up regulated w.r.t PVR. This is reflected in rankigns of 2351 (laplace) and 2289 (linear) for TNFRSF14-PVR. TNF-AIP1/AIP2/RSF1A/RSF10B/RSF21 to be up regulated w.r.t PVRL2. These are reflected in rankings of 2244 (laplace) and 1932 (rbf) for TNFAIP1-PVRL2; 2337 (laplace), 2483 (linear) and 2401 (rbf) for TNFAIP2-PVRL2; 2355 (laplace) and 1810 (rbf) for TNFRSF1A-PVRL2; and 2120 (laplace) and 1782 (rbf) for TNFRSF21-PVRL2. TNF-AIP2/RSF10D/RSF12A/RSF21 to be up regulated w.r.t PVRL4. These are reflected in rankings of 2270 (laplace) and 2429 (linear) for TNFAIP2-PVRL4; 1799 (laplace) and 2430 (rbf) for TNFRSF10D-PVRL4; 2386 (laplace) and 2064 (rbf) for TNFRSF12A-PVRL4; and 2441 (laplace) and 1917 (linear) for TNFRSF21-PVRL4.
Table 131 shows the derived influences which can be represented graphically, with the following influences - • PVR w.r.t TNF with PVR <- TNF, TNF-AIP1/AIP2/RSF1A/RSF10A; and PVRL2 <- TNF-AIP2; and • TNF w.r.t PVR with TNFRSF14 <- PVR; TNF-AIP1/AIP2/RSF1A/RSF10B/RSF21 <- PVRL2; and TNF-AIP2/RSF10D/RSF12A/RSF21 <- PVRL4.
Table 130. 2nd order combinatorial hypotheses between PVR and TNF family.
Table 130. 2nd order combinatorial hypotheses between PVR and TNF family.
Ranking PVR vs TNF family
Ranking of PVR w.r.t TNF family Ranking of TNF family w.r.t PVR
laplace linear rbf laplace linear rbf
TNF-PVR 1963 2422 1822 TNF-PVR 451 54 209
TNFAIP1-PVR 88 2210 2243 TNFAIP1-PVR 527 474 743
TNFAIP2-PVR 2028 300 2451 TNFAIP2-PVR 1422 632 1486
TNFAIP3-PVR 2454 1065 1293 TNFAIP3-PVR 517 1476 1611
TNFRSF1A-PVR 2029 500 2078 TNFRSF1A-PVR 1530 778 1865
TNFRSF10A-PVR 1140 1978 1942 TNFRSF10A-PVR 2124 1648 1420
TNFRSF10B-PVR 1529 1608 463 TNFRSF10B-PVR 151 1266 649
TNFRSF10D-PVR 1321 2136 1561 TNFRSF10D-PVR 1997 732 1614
TNFRSF12A-PVR 507 93 1816 TNFRSF12A-PVR 1149 1358 2417
TNFRSF14-PVR 983 1419 409 TNFRSF14-PVR 2351 2289 1577
TNFRSF21-PVR 485 541 1910 TNFRSF21-PVR 1414 969 1247
TNFSF10-PVR 1482 317 297 TNFSF10-PVR 681 1150 1983
TNFSF15-PVR 210 194 56 TNFSF15-PVR 635 2086 1054
Ranking of PVRL2 w.r.t TNF family Ranking of TNF family w.r.t PVRL2
laplace linear rbf laplace linear rbf
TNF-PVRL2 831 367 526 TNF-PVRL2 2494 652 966
TNFAIP1-PVRL2 867 1568 1962 TNFAIP1-PVRL2 2244 27 1932
TNFAIP2-PVRL2 2515 2423 1062 TNFAIP2-PVRL2 2337 2483 2401
TNFAIP3-PVRL2 973 595 988 TNFAIP3-PVRL2 1334 777 896
TNFRSF1A-PVRL2 742 1326 1798 TNFRSF1A-PVRL2 1741 2355 1810
TNFRSF10A-PVRL2 830 1008 478 TNFRSF10A-PVRL2 1027 1672 3
TNFRSF10B-PVRL2 27 2160 1210 TNFRSF10B-PVRL2 253 1794 168
TNFRSF10D-PVRL2 312 1154 1229 TNFRSF10D-PVRL2 564 1719 170
TNFRSF12A-PVRL2 1282 382 1056 TNFRSF12A-PVRL2 594 1870 1376
TNFRSF14-PVRL2 288 922 264 TNFRSF14-PVRL2 2148 1496 232
TNFRSF21-PVRL2 1590 771 1034 TNFRSF21-PVRL2 2120 734 1782
TNFSF10-PVRL2 472 1160 1056 TNFSF10-PVRL2 98 695 714
TNFSF15-PVRL2 373 2154 420 TNFSF15-PVRL2 768 296 2448
Ranking of PVRL4 w.r.t TNF family Ranking of TNF family w.r.t PVRL4
laplace linear rbf laplace linear rbf
TNF-PVRL4 540 680 284 TNF-PVRL4 983 2010 1345
TNFAIP1-PVRL4 1885 5 131 TNFAIP1-PVRL4 965 1896 1196
TNFAIP2-PVRL4 72 2496 120 TNFAIP2-PVRL4 2270 2429 239
TNFAIP3-PVRL4 1926 599 794 TNFAIP3-PVRL4 1442 1809 1269
TNFRSF1A-PVRL4 615 1904 641 TNFRSF1A-PVRL4 1328 2481 1316
TNFRSF10A-PVRL4 337 974 1802 TNFRSF10A-PVRL4 1375 324 1822
TNFRSF10B-PVRL4 1762 1126 483 TNFRSF10B-PVRL4 76 40 1225
TNFRSF10D-PVRL4 2232 1056 92 TNFRSF10D-PVRL4 1799 1327 2430
TNFRSF12A-PVRL4 601 1722 1566 TNFRSF12A-PVRL4 2386 1670 2064
TNFRSF14-PVRL4 444 1007 193 TNFRSF14-PVRL4 1514 402 447
TNFRSF21-PVRL4 12 552 1875 TNFRSF21-PVRL4 2441 1917 1689
TNFSF10-PVRL4 1149 1554 341 TNFSF10-PVRL4 150 1907 743
TNFSF15-PVRL4 936 1057 1160 TNFSF15-PVRL4 2019 1452 760
Table 131. 2nd order combinatorial hypotheses between PVR and TNF family.
Table 131. 2nd order combinatorial hypotheses between PVR and TNF family.
Unexplored combinatorial hypotheses
PVR w.r.t TNF
PVR TNF, TNF-AIP1/AIP2/RSF1A/RSF10A
PVRL2 TNF-AIP2
TNF w.r.t PVR
TNFRSF14 PVR
TNF-AIP1/AIP2/RSF1A/RSF10B/RSF21 PVRL2
TNF-AIP2/RSF10D/RSF12A/RSF21 PVRL4

3.9.6. PVR - IL Cross Family Analysis

Fabre-Lafay et al. [252] show that Nectin-4 (PVRL4), is a new serological breast cancer marker and a substrate for tumor necrosis factor-α-converting enzyme (TACE)/ADAM-17. Among the 24 ADAMs, tumor necrosis factor-α-converting enzyme (TACE)/ADAM-17 is involved in various biological processes and cleaves numerous substrates including tumor necrosis factor (TNF)-α, TNF receptor, epidermal growth factor receptor L, c-fms, c-kit, p75NTR, growth hormone receptor, interleukin-6 receptor, interleukin-1 receptor, vascular cell adhesion molecule-1, L-selectin, collagen VII, MUC1, Notch, CX3CL-1, CD40, β-amyloid precursor, and prion protein. Thus there exists an indirect synergy between PVRL4 and interleukin. In CRC cells treated with ETC-1922159, members of PVR family and interleukin family were found up regulated. Our search engine alloted high numerical valued ranks to some of the combinations of both families, thereby indicating possible synergy.
Table 132, shows the rankings of PVR and IL family with respect to each other. On the left we found, PVR to be up regulated w.r.t IL-2RG/8/10RB/15/17C/17REL. These are reflected in rankings of 2007 (laplace) and 2476 (rbf) for IL2RG-PVR, 2429 (laplace) and 2507 (linear) for IL8-PVR, 2310 (laplace) and 2190 (linear) for IL10RB-PVR, 2065 (laplace), 2008 (linear) and 2385 (rbf) for IL15-PVR, 2114 (laplace) and 2301 (linear) for IL17C-PVR and 2317 (linear) and 1971 (rbf) for IL17REL-PVR. On the right side we found, IL-1RAP/6ST/15RA/17REL to be up regulated w.r.t PVR. These are reflected in the rankings of 2194 (linear) and 2026 (rbf), for IL1RAP-PVR; 2434 (linear) and 1767 (rbf) for IL6ST-PVR; 1865 (linear) and 2405 (rbf) for IL15RA-PVR; and 2408 (linear) and 2028 (rbf) for IL17REL-PVR. IL-1A/1B/2RG/6ST was up regulated w.r.t PVRL2. These are reflected in rankings of 2168 (laplace) and 2431 (linear) for IL1A-PVRL2; 2390 (linear) and 2067 (rbf) for IL1B-PVRL2; 1908 (laplace) and 1959 (rbf) for IL2RG-PVRL2; 2349 (laplace) and 2158 (rbf) for IL6ST-PVRL2; 1968 (laplace) and 2084 (rbf) for IL10RB-PVRL2; and 2137 (laplace) and 2004 (rbf) for IL17REL-PVRL2. IL-15RA/17C/17REL was up regulated w.r.t PVRL4. These are reflected in rankings of 2429 (laplace) and 1758 (rbf) for IL15RA-PVRL4; 1782 (laplace) and 2245 (linear) for IL17C-PVRL4 and 1934 (laplace) and 2140 (linear) for IL17REL-PVRL4.
Table 133 shows the derived influences which can be represented graphically, with the following influences - • PVR w.r.t IL with PVR <- IL-2RG/8/10RB/15/17C/17REL; and b u l l e t IL w.r.t PVR with IL-1RAP/6ST/15RA/17REL <- PVR; IL-1A/1B/2RG/6ST <- PVRL2; and IL-15RA/17C/17REL <- PVRL4.
Table 132. 2nd order combinatorial hypotheses between IL and PVR family.
Table 132. 2nd order combinatorial hypotheses between IL and PVR family.
Ranking PVR vs IL family
Ranking of PVR w.r.t IL family Ranking of IL family w.r.t PVR
laplace linear rbf laplace linear rbf
IL1A-PVR 295 854 2060 IL1A-PVR 2419 822 1099
IL1B-PVR 708 1282 1092 IL1B-PVR 1739 405 155
IL1RAP-PVR 980 714 197 IL1RAP-PVR 370 2194 2026
IL1RN-PVR 1273 25 2065 IL1RN-PVR 2025 266 796
IL2RG-PVR 2007 704 2476 IL2RG-PVR 250 740 988
IL6ST-PVR 1125 356 1368 IL6ST-PVR 706 2434 1767
IL8-PVR 2429 2507 257 IL8-PVR 92 1468 812
IL10RB-PVR 2310 2190 1140 IL10RB-PVR 1362 798 881
IL15-PVR 2065 2008 2385 IL15-PVR 1612 134 658
IL15RA-PVR 376 1621 1736 IL15RA-PVR 752 1865 2405
IL17C-PVR 2114 2301 1160 IL17C-PVR 894 26 350
IL17REL-PVR 482 2317 1971 IL17REL-PVR 1010 2408 2028
Ranking of PVRL2 w.r.t IL family Ranking of IL family w.r.t PVRL2
laplace linear rbf laplace linear rbf
IL1A-PVRL2 493 849 1517 IL1A-PVRL2 2168 2431 774
IL1B-PVRL2 1234 180 1177 IL1B-PVRL2 1425 2390 2067
IL1RAP-PVRL2 2029 1039 943 IL1RAP-PVRL2 1393 1104 670
IL1RN-PVRL2 1168 295 347 IL1RN-PVRL2 959 2382 481
IL2RG-PVRL2 356 1752 1964 IL2RG-PVRL2 1908 990 1959
IL6ST-PVRL2 243 770 513 IL6ST-PVRL2 2349 384 2158
IL8-PVRL2 1138 641 532 IL8-PVRL2 612 489 1686
IL10RB-PVRL2 1746 639 2502 IL10RB-PVRL2 1968 839 2084
IL15-PVRL2 1107 1263 759 IL15-PVRL2 1841 1579 399
IL15RA-PVRL2 1216 1194 330 IL15RA-PVRL2 473 811 1472
IL17C-PVRL2 507 920 402 IL17C-PVRL2 1167 1469 43
IL17REL-PVRL2 79 1306 2210 IL17REL-PVRL2 2137 962 2004
Ranking of PVRL4 w.r.t IL family Ranking of IL family w.r.t PVRL4
laplace linear rbf laplace linear rbf
IL1A-PVRL4 338 1487 666 IL1A-PVRL4 1409 1219 2410
IL1B-PVRL4 1713 110 481 IL1B-PVRL4 908 305 399
IL1RAP-PVRL4 864 269 523 IL1RAP-PVRL4 1704 2070 309
IL1RN-PVRL4 2496 643 144 IL1RN-PVRL4 964 1264 697
IL2RG-PVRL4 858 1229 2101 IL2RG-PVRL4 18 1504 727
IL6ST-PVRL4 117 605 744 IL6ST-PVRL4 1954 976 204
IL8-PVRL4 1041 1291 975 IL8-PVRL4 1441 234 1826
IL10RB-PVRL4 73 523 278 IL10RB-PVRL4 2137 1296 506
IL15-PVRL4 2062 549 556 IL15-PVRL4 1029 1377 281
IL15RA-PVRL4 302 1519 2186 IL15RA-PVRL4 2429 1246 1758
IL17C-PVRL4 25 110 14 IL17C-PVRL4 1782 2245 54
IL17REL-PVRL4 1487 1107 1148 IL17REL-PVRL4 1934 2140 107
Table 133. 2nd order combinatorial hypotheses between PVR and IL family.
Table 133. 2nd order combinatorial hypotheses between PVR and IL family.
Unexplored combinatorial hypotheses
PVR w.r.t IL
PVR IL-2RG/8/10RB/15/17C/17REL
IL w.r.t PVR
IL-1RAP/6ST/15RA/17REL PVR
IL-1A/1B/2RG/6ST PVRL2
IL-15RA/17C/17REL PVRL4

3.9.7. PVR - Collagen Cross Family Analysis

Fabre-Lafay et al. [252] show that Nectin-4 (PVRL4), is a new serological breast cancer marker and a substrate for tumor necrosis factor-α-converting enzyme (TACE)/ADAM-17. Among the 24 ADAMs, tumor necrosis factor-α-converting enzyme (TACE)/ADAM-17 is involved in various biological processes and cleaves numerous substrates including tumor necrosis factor (TNF)-α, TNF receptor, epidermal growth factor receptor L, c-fms, c-kit, p75NTR, growth hormone receptor, interleukin-6 receptor, interleukin-1 receptor, vascular cell adhesion molecule-1, L-selectin, collagen VII, MUC1, Notch, CX3CL-1, CD40, β-amyloid precursor, and prion protein. Thus there exists an indirect synergy between PVRL4 and collagen. In CRC cells treated with ETC-1922159, members of PVR family and collagen family were found up regulated. Our search engine alloted high numerical valued ranks to some of the combinations of both families, thereby indicating possible synergy.
Table 134, shows the rankings of PVR and COL family with respect to each other. On the left we found, PVR to be up regulated w.r.t COL6A1. This is reflected in rankings of 2259 (laplace) and 2385 (rbf) for COL6A1-PVR. On the right side, we found COL5A3 up regulated w.r.t PVR. This is reflected in rankings of 2341 (laplace) and 2472 (rbf) for COL5A3-PVR. COL9A2 was up regulated w.r.t PVRL2. This is reflected in rankings of 2483 (laplace) and 2363 (rbf) for COL9A2-PVRL2.
Table 135 shows the derived influences which can be represented graphically, with the following influences - • PVR w.r.t COL with PVR <- COL6A1; and • COL w.r.t PVR with COL5A3 <- PVR; and COL9A2 <- PVRL2.
Table 134. 2nd order combinatorial hypotheses between COL and PVR family.
Table 134. 2nd order combinatorial hypotheses between COL and PVR family.
Ranking PVR vs COL family
Ranking of PVR w.r.t COL family Ranking of COL family w.r.t PVR
laplace linear rbf laplace linear rbf
COL5A3-PVR 193 790 616 COL5A3-PVR 2341 1172 2472
COL6A1-PVR 2259 1740 2385 COL6A1-PVR 2213 70 1280
COL7A1-PVR 1448 1166 424 COL7A1-PVR 144 1008 1701
COL9A2-PVR 218 166 1375 COL9A2-PVR 244 2501 351
COL17A1-PVR 1800 1167 1528 COL17A1-PVR 1145 559 685
COL28A1-PVR 263 1273 177 COL28A1-PVR 1255 2266 1034
Ranking of PVRL2 w.r.t COL family Ranking of COL family w.r.t PVRL2
laplace linear rbf laplace linear rbf
COL5A3-PVRL2 1275 1132 515 COL5A3-PVRL2 962 1588 640
COL6A1-PVRL2 533 1954 826 COL6A1-PVRL2 2372 850 1193
COL7A1-PVRL2 594 2111 1299 COL7A1-PVRL2 22 662 2168
COL9A2-PVRL2 1336 939 970 COL9A2-PVRL2 2483 1548 2363
COL17A1-PVRL2 1157 1080 1232 COL17A1-PVRL2 173 1103 728
COL28A1-PVRL2 991 348 1618 COL28A1-PVRL2 955 864 1981
Ranking of PVRL4 w.r.t COL family Ranking of COL family w.r.t PVRL4
laplace linear rbf laplace linear rbf
COL5A3-PVRL4 692 1155 1446 COL5A3-PVRL4 499 405 331
COL6A1-PVRL4 221 1906 571 COL6A1-PVRL4 1701 2059 1315
COL7A1-PVRL4 859 1320 1088 COL7A1-PVRL4 1364 2205 65
COL9A2-PVRL4 1893 754 1155 COL9A2-PVRL4 1397 1797 1053
COL17A1-PVRL4 1124 1647 431 COL17A1-PVRL4 1401 1174 596
COL28A1-PVRL4 417 1536 433 COL28A1-PVRL4 642 2446 1540
Table 135. 2nd order combinatorial hypotheses between PVR and MUC family.
Table 135. 2nd order combinatorial hypotheses between PVR and MUC family.
Unexplored combinatorial hypotheses
PVR w.r.t COL
PVR COL6A1
COL w.r.t PVR
COL5A3 PVR
COL9A2 PVRL2

3.9.8. PVR - MUCIN Cross Family Analysis

[252] show that Nectin-4 (PVRL4), is a new serological breast cancer marker and a substrate for tumor necrosis factor-α-converting enzyme (TACE)/ADAM-17. Among the 24 ADAMs, tumor necrosis factor-α-converting enzyme (TACE)/ADAM-17 is involved in various biological processes and cleaves numerous substrates including tumor necrosis factor (TNF)-α, TNF receptor, epidermal growth factor receptor L, c-fms, c-kit, p75NTR, growth hormone receptor, interleukin-6 receptor, interleukin-1 receptor, vascular cell adhesion molecule-1, L-selectin, collagen VII, MUC1, Notch, CX3CL-1, CD40, β-amyloid precursor, and prion protein. Thus there exists an indirect synergy between PVRL4 and Mucin. In CRC cells treated with ETC-1922159, members of PVR family and Mucin family were found up regulated. Our search engine alloted high numerical valued ranks to some of the combinations of both families, thereby indicating possible synergy.
Table 136, shows the rankings of PVR and MUC family with respect to each other. On the left we found, PVR to be up regulated w.r.t 1772 (laplace) and 2085 (rbf) for MUC20-PVR. PVRL2 was up regulated w.r.t MUC17. This is reflected in rankings of 2098 (linear) and 1869 (rbf) for MUC17-PVRL2. PVRL4 was up regulated w.r.t MUC13. This is reflected in rankings of 2160 (laplace) and 1937 (rbf) for MUC13-PVRL4. On the right side, MUC-1/3A were found up regulated w.r.t PVRL4. These are reflected in rankings of 2272 (laplace) and 1827 (linear) for MUC1-PVRL4; and 2103 (linear) and 1835 (rbf) for MUC3A-PVRL4.
Table 137 shows the derived influences which can be represented graphically, with the following influences - • PVR w.r.t MUC with PVR <- MUC20; PVRL2 <- MUC17 and PVRL4 <- MUC13 • MUC w.r.t PVR with MUC1 <- PVRL4; and MUC3A <- PVRL4.
Table 136. 2nd order combinatorial hypotheses between MUC and PVR family.
Table 136. 2nd order combinatorial hypotheses between MUC and PVR family.
Ranking PVR vs MUC family
Ranking of PVR w.r.t MUC family Ranking of MUC family w.r.t PVR
laplace linear rbf laplace linear rbf
MUC1-PVR 2173 1184 1021 MUC1-PVR 2106 377 426
MUC3A-PVR 64 130 1828 MUC3A-PVR 136 1217 1004
MUC4-PVR 2000 804 1026 MUC4-PVR 2494 366 586
MUC12-PVR 1449 1589 1899 MUC12-PVR 2370 224 18
MUC13-PVR 1701 1292 1226 MUC13-PVR 1230 144 59
MUC17-PVR 209 684 881 MUC17-PVR 2388 320 1048
MUC20-PVR 1772 1242 2085 MUC20-PVR 1380 188 1039
Ranking of PVRL2 w.r.t MUC family Ranking of MUC family w.r.t PVRL2
laplace linear rbf laplace linear rbf
MUC1-PVRL2 828 454 2362 MUC1-PVRL2 1690 923 1060
MUC3A-PVRL2 584 708 2332 MUC3A-PVRL2 2031 164 546
MUC4-PVRL2 91 1214 478 MUC4-PVRL2 1315 1150 230
MUC12-PVRL2 1129 1655 1439 MUC12-PVRL2 1820 1417 94
MUC13-PVRL2 1052 179 329 MUC13-PVRL2 471 1760 240
MUC17-PVRL2 328 2098 1869 MUC17-PVRL2 873 2111 1462
MUC20-PVRL2 1407 1350 1612 MUC20-PVRL2 1348 325 133
Ranking of PVRL4 w.r.t MUC family Ranking of MUC family w.r.t PVRL4
laplace linear rbf laplace linear rbf
MUC1-PVRL4 569 99 155 MUC1-PVRL4 2272 1827 1457
MUC3A-PVRL4 1088 1214 2498 MUC3A-PVRL4 1698 2103 1835
MUC4-PVRL4 18 13 714 MUC4-PVRL4 1518 1251 789
MUC12-PVRL4 526 449 1420 MUC12-PVRL4 311 1059 2065
MUC13-PVRL4 2160 1404 1937 MUC13-PVRL4 1540 45 1570
MUC17-PVRL4 731 221 234 MUC17-PVRL4 1736 2206 219
MUC20-PVRL4 22 1820 361 MUC20-PVRL4 626 722 2232
Table 137. 2nd order combinatorial hypotheses between PVR and MUC family.
Table 137. 2nd order combinatorial hypotheses between PVR and MUC family.
Unexplored combinatorial hypotheses
PVR w.r.t MUC
PVR MUC20
PVRL2 MUC17
PVRL4 MUC13
MUC w.r.t PVR
MUC1 PVRL4
MUC3A PVRL4

3.10. Anthrax Toxin Receptor Related Synergies

3.10.1. ANTXR2 - Collagen Cross Family Analysis

Anthrax toxin receptor ANTRX is known to capture the Bacillus anthracis toxin and form the cause of the anthrax disease. Regulatory mechanism of the ANTXR1 has been demostrated essential component in the fibrosis processes in fibroproliferative diseases. Loss of ANTXR1 (a.k.a TEM8) in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs Besschetnova et al. [253]. TEM8 interacts with the cleaved C5 domain of collagen 3 (VI) Nanda et al. [254]. Hotchkiss et al. [255] also indicate the interaction of TEM8 and collagens. Bell et al. [256] indicate that a recombinant portion of ANTXR2 (a.k.a CMG2) was found to bind collagen type IV and laminin, suggesting a potential role in basement membrane matrix synthesis and assembly. Bürgi et al. [257] show that CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. A distinctive early childhood-onset disorder, systemic hyalinosis, is characterized by mutations in the anthrax toxin receptor 2 gene (ANTRX2) as shown by Shieh et al. [258]. Not much is known about the behaviour of ANTRX2 with collagens in colorectal cancer. In CRC cells treated with ETC-1922159 these were up regulated. Our search engine was able to rank the 2nd order combinations between these two to see if there is a possible existing synergy based on the already explored pathological functionality in the above works. At in silico level we found possible high numerical valued ranks pointed to some of the combinations of ANTXR2 and collagen family.
On the left side of Table 138 we found ANTXR2 to be up regulated w.r.t COL-5A3/28A1 (probably COL-7A1 also). These are reflected in rankings of 2006 (laplace) and 2217 (rbf) for COL5A3-ANTXR2; 2259 (linear) and 2296 (rbf) for COL28A1-ANTXR2 and probably 2119 (linear) and 1690 (rbf) for COL7A1-ANTXR2. On the right side, we found, COL-7A1/28A1 up regulated w.r.t ANTXR2. These are reflected in rankings of 1722 (laplace) and 2121 (rbf) for COL7A1-ANTXR2 and 1731 (linear) and 2362 (rbf) for COL28A1-ANTXR2. Table 139 shows the derived influences which can be represented graphically, with the following influences - • ANTXR2 w.r.t COL with COL5A3 -> ANTXR2 and COL28A1 -> ANTXR2; and • COL w.r.t ANTXR2 with COL7A1 <- ANTXR2 and COL28A1 <- ANTXR2.

3.10.2. ANTXR2 - Integrin Cross Family Analysis

To define whether there is a possible functional cooperation between TEM8/ANTXR1 and integrins to accomplish cell spreading, Werner et al. [259] sought to disrupt the function of collagen binding integrins, which mostly belong to β1 family of integrins, with β1 integrin-blocking antibodies. Their experiments suggest that the participation of β1 integrins can be excluded in TEM8-mediated cell spreading on collagen in primary fibroblasts. However, collectively, they indicate that the participation of these integrins in TEM8 spreading on collagen vary with cell type. The cytoplasmic domain of ANTXR1 affects binding of the protective antigen which is similar to integrin I domains that convert between open and closed conformations that bind ligand with high and low affinities, respectively. These findings are observed by Go et al. [260]. Scobie et al. [261] observe similar behaviour. Abnormal clustering of TEM8/ANTXR1 with integrin β1 and vascular endothelial growth factor receptor 2 (VEGFR2) occurs in endothelial cells within cutaneous infantile hemangiomas, the most common vascular anomaly in childhood Besschetnova et al. [253]. These findings suggest the possibility to synergy between ANTXR2 and Integrin family. In CRC cells treated with ETC-1922159, ANTXR2 and integrin families were up regulated. The search engine alloted high numerical valued ranks to some of the 2nd order combinations of ANTXR2 and integrin family members thus pointing to possible synergy in CRC cells. Table 140 shows the rankings of ANTRX2 along with integrin family members.
On the left side, we found ANTRX2 to be up regulated w.r.t ITG-A2/A3/B1BP1/B5/B8. These are reflected in the rankings of 2261 (laplace) and 2444 (rbf) for ITGA2-ANTXR2; 2027 (laplace) and 2134 (linear) for ITGA3-ANTXR2; 2444 (laplace) and 2128 (rbf) for ITGB1BP1-ANTXR2; 1860 (linear) and 2315 (rbf) for ITGB5-ANTXR2; and 2354 (linear)and 2136 (rbf) for ITGB8-ANTXR2. On the right side, we found ITGB6 to be up regulated w.r.t ANTRX2. These are reflected in the rankings of 2000 (linear) and 1896 (rbf) for ITGB6-ANTXR2; Table 141 shows the derived influences which can be represented graphically, with the following influences - • ANTXR2 w.r.t ITG with ITG-A2/A3 -> ANTXR2 and ITG-B1BP1/B5/B8 -> ANTXR2; and • ITG w.r.t ANTXR2 with ITGB6 <- ANTXR2.
Table 140. 2nd order combinatorial hypotheses between ANTRX2 and ITG family.
Table 140. 2nd order combinatorial hypotheses between ANTRX2 and ITG family.
Ranking ANTRX2 vs ITG family
Ranking of ANTRX2 w.r.t ITG family Ranking of ITG family w.r.t ANTXR2
laplace linear rbf laplace linear rbf
ITGA2-ANTXR2 2261 1129 2444 ITGA2-ANTXR2 657 1662 215
ITGA3-ANTXR2 2027 2134 179 ITGA3-ANTXR2 305 1402 278
ITGA6-ANTXR2 1065 1850 1660 ITGA6-ANTXR2 352 2029 583
ITGB1-ANTXR2 2192 1273 1431 ITGB1-ANTXR2 1538 987 1593
ITGB1BP1-ANTXR2 2444 498 2128 ITGB1BP1-ANTXR2 1743 152 534
ITGB4-ANTXR2 1484 699 249 ITGB4-ANTXR2 123 1420 2116
ITGB5-ANTXR2 1318 1860 2315 ITGB5-ANTXR2 2216 718 1182
ITGB6-ANTXR2 1205 1262 1244 ITGB6-ANTXR2 1200 2000 1896
ITGB8-ANTXR2 1710 2354 2136 ITGB8-ANTXR2 296 1724 1485
Table 141. 2nd order combinatorial hypotheses between ANTRX2 and ITG family.
Table 141. 2nd order combinatorial hypotheses between ANTRX2 and ITG family.
Unexplored combinatorial hypotheses
ANTXR2 w.r.t ITG
ANTXR2 ITG-A2/A3
ANTXR2 ITG-B1BP1/B5/B8
ITG w.r.t ANTXR2
ITGB6 ANTXR2

3.10.3. ANTXR2 - MMP Cross Family Analysis

Compromised interactions between TEM8/ANTXR1-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2 Besschetnova et al. [253]. They observe experimentally that loss of MMP2 activity requires loss of TEM8/ANTXR1 function in both endothelial and fibroblastic cells. Matrix metalloproteinases (MMP) are members of the metzincin group of proteases which share the conserved zinc-binding motif in their catalytic active site Löffek et al. [262]. these enzymes are capable of degrading all kinds of extracellular matrix proteins, but also can process a number of bioactive molecules as well as play a major role in cell behaviors such as proliferation, migration, differention, apoptosis and host defense, Wikipedia contributors [263]. In CRC cells treated with ETC-1922159, ANTXR2 and integrin families were up regulated. The search engine alloted high numerical valued ranks to some of the 2nd order combinations of ANTXR2 and integrin family members thus pointing to possible synergy in CRC cells. Table 142 shows the rankings of ANTRX2 along with MMP family members.
On the left side, we found ANTXR2 to be upregulated w.r.t MMP28. This is reflected in rankings of 2468 (laplace) and 1765 (linear) for MMP28-ANTXR2. On the right side we found MMP-1/15/28 up regulated w.r.t ANTXR2. These are reflected in rankings of 2009 (linear) and 2142 (rbf) for MMP1-ANTXR2; 2219 (linear) and 1926 (rbf) for MMP15-ANTXR2; and 1857 (linear) and 2092 (rbf) for MMP28-ANTXR2. Table 143 shows the derived influences which can be represented graphically, with the following influences - • ANTXR2 w.r.t MMP with ANTXR2 <- MMP28 and • MMP w.r.t ANTXR2 with MMP-1/15/28 <- ANTXR2.
Table 142. 2nd order combinatorial hypotheses between ANTRX2 and MMP family.
Table 142. 2nd order combinatorial hypotheses between ANTRX2 and MMP family.
Ranking ANTRX2 vs MMP family
Ranking of ANTRX2 w.r.t MMP family Ranking of MMP family w.r.t ANTXR2
laplace linear rbf laplace linear rbf
MMP1-ANTXR2 1428 1407 1620 MMP1-ANTXR2 244 2009 2142
MMP14-ANTXR2 1067 1141 900 MMP14-ANTXR2 866 971 443
MMP15-ANTXR2 1457 740 1881 MMP15-ANTXR2 121 2219 1926
MMP28-ANTXR2 2468 1765 1202 MMP28-ANTXR2 11 1857 2092
Table 143. 2nd order combinatorial hypotheses between ANTRX2 and MMP family.
Table 143. 2nd order combinatorial hypotheses between ANTRX2 and MMP family.
Unexplored combinatorial hypotheses
ANTXR2 w.r.t MMP
ANTXR2 MMP28
MMP w.r.t ANTXR2
MMP-1/15/28 ANTXR2

3.10.4. ANTXR2 - WNT Cross Family Analysis

Abrami et al. [264] show that LRP6 can indeed form a complex with ATRs (anthrax toxin receptors), and that this interaction plays a role both in Wnt signalling and in anthrax toxin endocytosis. Through the ATR-LRP6 interaction, adhesion to the extracellular matrix could locally control Wnt signalling. The authors demonstrated that physical and functional interaction between CMG2/ANTXR2 and LRP6 also raised the possibility that the complex clinical manifestation of Systemic Hyalinosis might be due in part to defects in Wnt signalling. Fluorescence microscopy and biochemical analyses showed that LRP6 enables toxin internalization by interacting at the cell surface with PA receptors TEM8/ATR and/or CMG2/ANTXR2 to form a multi-component complex that enters cells upon PA binding (Wei et al. [265]). Verma et al. [266] postulate that the developmentally controlled expression of TEM8 modulates endothelial cell response to canonical Wnt signaling to regulate vessel patterning and density. These findings definitely indicate the synergy of ANTRX with Wnts. In CRC cells treated with ETC-1922159, ANTXR2 and WNT families were up regulated. The search engine alloted high numerical valued ranks to some of the 2nd order combinations of ANTXR2 and WNT family members thus pointing to possible synergy in CRC cells. Table 144 shows the rankings of ANTRX2 along with WNT family members.
On the left side, we found ANTXR2 to be upregulated w.r.t WNT4. This is reflected in rankings of 1833 (linear) and 2341 (rbf) for WNT4-ANTXR2. Table 145 shows the derived influences which can be represented graphically, with the following influences - • ANTXR2 w.r.t WNT with ANTXR2 <- WNT4. This synergistic upregulation of the WNT4 with ANTXR2 might indicate possible control over the signalling in CRC cells treated with ETC-1922159.
Table 144. 2nd order combinatorial hypotheses between ANTRX2 and WNT family.
Table 144. 2nd order combinatorial hypotheses between ANTRX2 and WNT family.
Ranking ANTRX2 vs WNT family
Ranking of ANTRX2 w.r.t WNT family Ranking of WNT family w.r.t ANTXR2
laplace linear rbf laplace linear rbf
WNT2B-ANTXR2 1160 1013 2286 WNT2B-ANTXR2 1577 1367 944
WNT4-ANTXR2 1735 1833 2341 WNT4-ANTXR2 175 1643 97
WNT7B-ANTXR2 2453 304 1196 WNT7B-ANTXR2 2106 242 1144
WNT9A-ANTXR2 1618 487 1766 WNT9A-ANTXR2 2317 162 845
Table 145. 2nd order combinatorial hypotheses between ANTRX2 and WNT family.
Table 145. 2nd order combinatorial hypotheses between ANTRX2 and WNT family.
Unexplored combinatorial hypotheses
ANTXR2 w.r.t WNT
ANTXR2 WNT4

3.10.5. ANTXR2 - TNF Cross Family Analysis

The author could not find much about TNF-ANTXR2 combinations in pathological cases in existing literature, however, Lee et al. [267] report the "both LeTx and EdTx markedly inhibited LPS-induced transcription of tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 in J774A.1 cells. In contrast, EdTx synergised with LPS to increase the transcription of IL-6 and IL-8 in HAECs. We showed that HAECs are suitable for anthrax toxin research and express higher levels of the two anthrax toxin receptors - tumour endothelial marker 8 (TEM8/ANTXR1) and capillary morphogenesis protein 2 (CMG2/ANTXR2) - than do J774A.1 cells". The high expression of the ANTXR-1/2 is shown, however, the possible synergy between ANTXR and TNFs in not shown. Our search engine pointed to some of the combinations in CRC cells treated with ETC-1922159 treatment. In Table 146, on the left we found ANTXR2 to be up regulated w.r.t TNF-AIP1/RSF10B. These are reflected in rankings of 1769 (linear) and 1946 (rbf) for TNFAIP1-ANTXR2 and 2278 (linear) and 2218 (rbf) for TNFRSF10B-ANTXR2. On the right we found, TNF-RSF10A/RSF10D/RSF12A/RSF14 was up regulated w.r.t ANTXR2. These are reflected in rankings of 2260 (laplace) and 2377 (rbf) for TNFRSF10A-ANTXR2, 2258 (laplace) and 2363 (rbf) for TNFRSF10D-ANTXR2, 2190 (laplace) and 2061 (rbf) for TNFRSF12A-ANTXR2 and 2370(laplace) and 1777 (linear) for TNFRSF14-ANTXR2.
Table 147 shows the derived influences which can be represented graphically, with the following influences - • ANTXR2 w.r.t TNF with ANTXR2 <- TNFAIP1 and ANTXR2 <- TNFRSF10B and • TNF w.r.t ANTXR2 with TNFRSF10A <- ANTXR2; TNFRSF10D <- ANTXR2; TNFRSF12A <- ANTXR2 and TNFRSF14 <- ANTXR2. This synergistic upregulation of the TNF with ANTXR2 might indicate possible control over the signalling in CRC cells treated with ETC-1922159.
Table 146. 2nd order combinatorial hypotheses between ANTRX2 and TNF family.
Table 146. 2nd order combinatorial hypotheses between ANTRX2 and TNF family.
Ranking ANTRX2 vs TNF family
Ranking of ANTRX2 w.r.t TNF family Ranking of TNF family w.r.t ANTXR2
laplace linear rbf laplace linear rbf
TNF-ANTXR2 1439 1568 1285 TNF-ANTXR2 709 1758 1479
TNFAIP1-ANTXR2 1552 1769 1946 TNFAIP1-ANTXR2 1252 2177 218
TNFAIP2-ANTXR2 125 962 2134 TNFAIP2-ANTXR2 659 1156 2109
TNFAIP3-ANTXR2 1184 1253 1558 TNFAIP3-ANTXR2 1429 2485 1731
TNFRSF1A-ANTXR2 1063 310 2145 TNFRSF1A-ANTXR2 1557 2471 935
TNFRSF10A-ANTXR2 351 1358 1280 TNFRSF10A-ANTXR2 2260 32 2377
TNFRSF10B-ANTXR2 2278 2218 982 TNFRSF10B-ANTXR2 852 715 216
TNFRSF10D-ANTXR2 1352 891 1685 TNFRSF10D-ANTXR2 2258 454 2363
TNFRSF12A-ANTXR2 551 1283 1794 TNFRSF12A-ANTXR2 2190 1150 2061
TNFRSF14-ANTXR2 999 442 498 TNFRSF14-ANTXR2 2370 1777 1014
TNFRSF21-ANTXR2 897 997 298 TNFRSF21-ANTXR2 1474 343 510
TNFRSF10-ANTXR2 2151 966 324 TNFRSF10-ANTXR2 2065 112 339
TNFRSF15-ANTXR2 868 967 1590 TNFRSF15-ANTXR2 664 1211 1669
Table 147. 2nd order combinatorial hypotheses between ANTRX2 and TNF family.
Table 147. 2nd order combinatorial hypotheses between ANTRX2 and TNF family.
Unexplored combinatorial hypotheses
ANTXR2 w.r.t TNF
ANTXR2 TNFAIP1
ANTXR2 TNFRSF10B
TNF w.r.t ANTXR2
TNFRSF10A ANTXR2
TNFRSF10D ANTXR2
TNFRSF12A ANTXR2
TNFRSF14 ANTXR2

3.10.6. ANTXR2 - IL Cross Family Analysis

The author could not find much about TNF-ANTXR2 combinations in pathological cases in existing literature, however, Lee et al. [267] report the "both LeTx and EdTx markedly inhibited LPS-induced transcription of tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 in J774A.1 cells. In contrast, EdTx synergised with LPS to increase the transcription of IL-6 and IL-8 in HAECs. We showed that HAECs are suitable for anthrax toxin research and express higher levels of the two anthrax toxin receptors - tumour endothelial marker 8 (TEM8/ANTXR1) and capillary morphogenesis protein 2 (CMG2/ANTXR2) – than do J774A.1 cells". The high expression of the ANTXR-1/2 is shown, however, the possible synergy between ANTXR and IL in not shown. Our search engine pointed to some of the combinations in CRC cells treated with ETC-1922159 treatment. In Table 148, on the left we found ANTXR2 to be up regulated w.r.t IL-1RN/6ST/17C/17REL. These are reflected in rankings of 1914 (linear) and 1894 (rbf) for IL1RN-ANTXR2; 1944 (laplace), 2219 (linear) and 1914 (rbf) for IL6ST-ANTXR2; 1832 (laplace) and 2334 (linear) for IL17C-ANTXR2 and 1889 (linear) and 2303 (rbf) for IL17REL-ANTXR2. On the right we found, IL-1A/1B/6ST/17C was up regulated w.r.t ANTXR2. These are reflected in rankings of 2356 (linear) and 1859 (rbf) for IL1A-ANTXR2; 1780 (linear) and 1865 (rbf) for IL6ST-ANTXR2; 1924 (laplace) and 1901 (rbf) for IL15RA-ANTXR2; and 2121 (linear) and 2437 (rbf) for IL17C-ANTXR2.
Table 149 shows the derived influences which can be represented graphically, with the following influences - • ANTXR2 w.r.t IL with ANTXR2 <- IL1RN; ANTXR2 <- IL6ST; ANTXR2 <- IL17C and ANTXR2 <- IL17REL; and • IL w.r.t ANTXR2 with IL1A <- ANTXR2; IL1B <- ANTXR2; IL6ST <- ANTXR2; and IL17C <- ANTXR2.
Table 148. 2nd order combinatorial hypotheses between ANTRX2 and IL family.
Table 148. 2nd order combinatorial hypotheses between ANTRX2 and IL family.
Ranking ANTRX2 vs IL family
Ranking of ANTRX2 w.r.t IL family Ranking of IL family w.r.t ANTXR2
laplace linear rbf laplace linear rbf
IL1A-ANTXR2 1733 454 2253 IL1A-ANTXR2 275 2356 1859
IL1B-ANTXR2 1222 1302 714 IL1B-ANTXR2 330 2011 1762
IL1RAP-ANTXR2 1288 367 80 IL1RAP-ANTXR2 2339 442 747
IL1RN-ANTXR2 1389 1914 1894 IL1RN-ANTXR2 349 1031 1919
IL2RG-ANTXR2 1897 25 432 IL2RG-ANTXR2 368 1867 450
IL6ST-ANTXR2 1944 2219 1914 IL6ST-ANTXR2 46 1780 1865
IL8-ANTXR2 1169 1281 1398 IL8-ANTXR2 1343 2002 434
IL10RB-ANTXR2 1737 496 1545 IL10RB-ANTXR2 1403 800 754
IL15-ANTXR2 787 1812 927 IL15-ANTXR2 1002 1340 481
IL15RA-ANTXR2 840 800 1695 IL15RA-ANTXR2 1924 636 1901
IL17C-ANTXR2 1832 2334 1191 IL17C-ANTXR2 339 2121 2437
IL17REL-ANTXR2 29 1889 2303 IL17REL-ANTXR2 2406 111 960
Table 149. 2nd order combinatorial hypotheses between ANTRX2 and IL family.
Table 149. 2nd order combinatorial hypotheses between ANTRX2 and IL family.
Unexplored combinatorial hypotheses
ANTXR2 w.r.t IL
ANTXR2 IL1RN
ANTXR2 IL6ST
ANTXR2 IL17C
ANTXR2 IL17REL
IL w.r.t ANTXR2
IL1A ANTXR2
IL1B ANTXR2
IL6ST ANTXR2
IL17C ANTXR2

Conclusion

We present here a range of multiple synergistic 2nd combinations that were ranked via a search engine and later conduct two-cross family analysis between components of these combinations. Via majority voting across the ranking methods, we were able to find plausible unexplored synergistic combinations that might be prevalent in CRC cells after treatment with ETC-1922159 drug. The two-way cross family analysis also assists in deriving influences between components which serve as hypotheses for further tests. In short, we are now able to locate possible synergies via this ranking search engine and two-way cross family analysis for 2nd order combinations in CRC cells treated with ETC-1922159. Further wet lab tests on these combinations for verification is needed. Also, if found true, it paves way for biologists/oncologists to further investigate and understand the mechanism behind the synergy through wet experiments.

Author Contributions

Concept, design, in silico implementation - SS. Analysis and interpretation of results - SS. Manuscript writing - SS. Manuscript revision - SS. Approval of manuscript - SS

Data Availability Statement

Data used in this research work was released in a publication in Madan et al. [268]. The ETC-1922159 was released in Singapore in July 2015 under the flagship of the Agency for Science, Technology and Research (A*STAR) and Duke-National University of Singapore Graduate Medical School (Duke-NUS).

Acknowledgments

Special thanks to Mrs. Rita Sinha and Mr. Prabhat Sinha for supporting the author financially, without which this work could not have been made possible. Marco Wiering and Silja Renooij for continued support during the years of independent research work.

Conflicts of Interest

There are no conflicts to declare.

Appendix A

Appendix A.1. Choice of Sensitivity Indices

The sensitivity package (Faivre et al. [269] and Iooss and Lemaıtre [270]) in R langauge provides a range of functions to compute the indices and the following indices will be taken into account for addressing the posed questions in this manuscript.
  • sensiFdiv - conducts a density-based sensitivity analysis where the impact of an input variable is defined in terms of dissimilarity between the original output density function and the output density function when the input variable is fixed. The dissimilarity between density functions is measured with Csiszar f-divergences. Estimation is performed through kernel density estimation and the function kde of the package ks. Borgonovo [271] and Da Veiga [272]
  • sensiHSIC - conducts a sensitivity analysis where the impact of an input variable is defined in terms of the distance between the input/output joint probability distribution and the product of their marginals when they are embedded in a Reproducing Kernel Hilbert Space (RKHS). This distance corresponds to HSIC proposed by Gretton et al. [273] and serves as a dependence measure between random variables.
  • soboljansen - implements the Monte Carlo estimation of the Sobol indices for both first-order and total indices at the same time (all together 2p indices), at a total cost of (p+2) × n model evaluations. These are called the Jansen estimators. Jansen [274] and Saltelli et al. [275]
  • sobol2002 - implements the Monte Carlo estimation of the Sobol indices for both first-order and total indices at the same time (all together 2p indices), at a total cost of (p+2) × n model evaluations. These are called the Saltelli estimators. This estimator suffers from a conditioning problem when estimating the variances behind the indices computations. This can seriously affect the Sobol indices estimates in case of largely non-centered output. To avoid this effect, you have to center the model output before applying "sobol2002". Functions ”soboljansen" and "sobolmartinez" do not suffer from this problem. Saltelli [276]
  • sobol2007 - implements the Monte Carlo estimation of the Sobol indices for both first-order and total indices at the same time (all together 2p indices), at a total cost of (p+2) × n model evaluations. These are called the Mauntz estimators. Saltelli and Annoni [277]
  • sobolmartinez - implements the Monte Carlo estimation of the Sobol indices for both first-order and total indices using correlation coefficients-based formulas, at a total cost of (p + 2) × n model evaluations. These are called the Martinez estimators.
  • sobol - implements the Monte Carlo estimation of the Sobol sensitivity indices. Allows the estimation of the indices of the variance decomposition up to a given order, at a total cost of (N + 1) × n where N is the number of indices to estimate. Sobol’ [278]

References

  1. Brancati, F.; Fortugno, P.; Bottillo, I.; Lopez, M.; Josselin, E.; Boudghene-Stambouli, O.; Agolini, E.; Bernardini, L.; Bellacchio, E.; Iannicelli, M.; et al. Mutations in PVRL4, encoding cell adhesion molecule nectin-4, cause ectodermal dysplasia-syndactyly syndrome. The American Journal of Human Genetics 2010, 87, 265–273. [Google Scholar] [CrossRef]
  2. Sinha, S. Inchoative Discovery of Plausible (Un)explored Synergistic Combinatorial Biological Hypotheses for Static/Time Series Wnt Measurements via Ranking Search Engine: BioSearch Engine Design. Preprints 2018. [Google Scholar]
  3. Sinha, S. Sensitivity analysis based ranking reveals unknown biological hypotheses for down regulated genes in time buffer during administration of PORCN-WNT inhibitor ETC-1922159 in CRC. bioRxiv 2017, 180927. [Google Scholar]
  4. Sinha, S. Prioritizing 2nd order interactions via support vector ranking using sensitivity indices on time series Wnt measurements. bioRxiv 2017, 060228. [Google Scholar]
  5. Sharma, R. Wingless a new mutant in Drosophila melanogaster. Drosophila information service 1973, 50, 134–134. [Google Scholar]
  6. Thorstensen, L.; Lind, G.E.; Løvig, T.; Diep, C.B.; Meling, G.I.; Rognum, T.O.; Lothe, R.A. Genetic and epigenetic changes of components affecting the WNT pathway in colorectal carcinomas stratified by microsatellite instability. Neoplasia 2005, 7, 99–108. [Google Scholar] [CrossRef]
  7. Baron, R.; Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nature medicine 2013, 19, 179–192. [Google Scholar] [CrossRef]
  8. Clevers, H. Wnt/[β]-catenin signaling in development and disease. Cell 2006, 127, 469–480. [Google Scholar] [CrossRef]
  9. Sokol, S. Wnt Signaling in Embryonic Development; Elsevier, 2011; Volume 17. [Google Scholar]
  10. Pinto, D.; Gregorieff, A.; Begthel, H.; Clevers, H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes & development 2003, 17, 1709–1713. [Google Scholar]
  11. Zhong, Z.; Ethen, N.J.; Williams, B.O. WNT signaling in bone development and homeostasis. Wiley Interdisciplinary Reviews: Developmental Biology 2014, 3, 489–500. [Google Scholar] [CrossRef]
  12. Pećina-Šlaus, N. Wnt signal transduction pathway and apoptosis: a review. Cancer Cell International 2010, 10, 1–5. [Google Scholar] [CrossRef]
  13. Kahn, M. Can we safely target the WNT pathway? Nature Reviews Drug Discovery 2014, 13, 513–532. [Google Scholar] [CrossRef] [PubMed]
  14. Garber, K. Drugging the Wnt pathway: problems and progress. Journal of the National Cancer Institute 2009, 101, 548–550. [Google Scholar] [CrossRef]
  15. Voronkov, A.; Krauss, S. Wnt/beta-catenin signaling and small molecule inhibitors. Current pharmaceutical design 2012, 19, 634. [Google Scholar] [CrossRef]
  16. Blagodatski, A.; Poteryaev, D.; Katanaev, V. Targeting the Wnt pathways for therapies. Mol Cell Ther 2014, 2, 28. [Google Scholar] [CrossRef]
  17. Curtin, J.C.; Lorenzi, M.V. Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget 2010, 1, 552. [Google Scholar] [CrossRef]
  18. Tanaka, K.; Okabayashi, K.; Asashima, M.; Perrimon, N.; Kadowaki, T. The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. The FEBS Journal 2000, 267, 4300–4311. [Google Scholar] [CrossRef]
  19. Bänziger, C.; Soldini, D.; Schütt, C.; Zipperlen, P.; Hausmann, G.; Basler, K. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 2006, 125, 509–522. [Google Scholar] [CrossRef]
  20. Bartscherer, K.; Pelte, N.; Ingelfinger, D.; Boutros, M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 2006, 125, 523–533. [Google Scholar] [CrossRef]
  21. Kurayoshi, M.; Yamamoto, H.; Izumi, S.; Kikuchi, A. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochemical Journal 2007, 402, 515–523. [Google Scholar] [CrossRef]
  22. Gao, X.; Hannoush, R.N. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nature chemical biology 2014, 10, 61–68. [Google Scholar] [CrossRef] [PubMed]
  23. Chen, B.; Dodge, M.E.; Tang, W.; Lu, J.; Ma, Z.; Fan, C.W.; Wei, S.; Hao, W.; Kilgore, J.; Williams, N.S.; et al. Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature chemical biology 2009, 5, 100–107. [Google Scholar] [CrossRef]
  24. Wang, X.; Moon, J.; Dodge, M.E.; Pan, X.; Zhang, L.; Hanson, J.M.; Tuladhar, R.; Ma, Z.; Shi, H.; Williams, N.S.; et al. The development of highly potent inhibitors for porcupine. Journal of medicinal chemistry 2013, 56, 2700–2704. [Google Scholar] [CrossRef]
  25. Proffitt, K.D.; Madan, B.; Ke, Z.; Pendharkar, V.; Ding, L.; Lee, M.A.; Hannoush, R.N.; Virshup, D.M. Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer research 2013, 73, 502–507. [Google Scholar] [CrossRef]
  26. Liu, J.; Pan, S.; Hsieh, M.H.; Ng, N.; Sun, F.; Wang, T.; Kasibhatla, S.; Schuller, A.G.; Li, A.G.; Cheng, D.; et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proceedings of the National Academy of Sciences 2013, 110, 20224–20229. [Google Scholar] [CrossRef] [PubMed]
  27. Duraiswamy, A.J.; Lee, M.A.; Madan, B.; Ang, S.H.; Tan, E.S.W.; Cheong, W.W.V.; Ke, Z.; Pendharkar, V.; Ding, L.J.; Chew, Y.S.; et al. Discovery and optimization of a porcupine inhibitor. Journal of medicinal chemistry 2015, 58, 5889–5899. [Google Scholar] [CrossRef]
  28. Wu, X.D.; Bie, Q.L.; Zhang, B.; Yan, Z.H.; Han, Z.J. Wnt10B is critical for the progression of gastric cancer. Oncology Letters 2017, 13, 4231–4237. [Google Scholar] [CrossRef]
  29. Stevens, J.R.; Miranda-Carboni, G.A.; Singer, M.A.; Brugger, S.M.; Lyons, K.M.; Lane, T.F. Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. Journal of Bone and Mineral Research 2010, 25, 2138–2147. [Google Scholar] [CrossRef]
  30. Tassew, N.G.; Charish, J.; Shabanzadeh, A.P.; Luga, V.; Harada, H.; Farhani, N.; D’Onofrio, P.; Choi, B.; Ellabban, A.; Nickerson, P.E.; et al. Exosomes Mediate Mobilization of Autocrine Wnt10b to Promote Axonal Regeneration in the Injured CNS. Cell reports 2017, 20, 99–111. [Google Scholar] [CrossRef]
  31. Cawthorn, W.P.; Bree, A.J.; Yao, Y.; Du, B.; Hemati, N.; Martinez-Santibañez, G.; MacDougald, O.A. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 2012, 50, 477–489. [Google Scholar] [CrossRef]
  32. Collins, F.L.; Rios-Arce, N.D.; McCabe, L.R.; Parameswaran, N. Cytokine and hormonal regulation of bone marrow immune cell Wnt10b expression. PloS one 2017, 12, e0181979. [Google Scholar] [CrossRef]
  33. Wu, G.; Fan, X.; Sun, L. Silencing of Wnt10B reduces viability of heptocellular carcinoma HepG2 cells. American journal of cancer research 2015, 5, 1911. [Google Scholar]
  34. Wend, P.; Runke, S.; Wend, K.; Anchondo, B.; Yesayan, M.; Jardon, M.; Hardie, N.; Loddenkemper, C.; Ulasov, I.; Lesniak, M.S.; et al. WNT10B/β-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO molecular medicine 2013, 5, 264–279. [Google Scholar] [CrossRef]
  35. Chen, Y.; Zeng, C.; Zhan, Y.; Wang, H.; Jiang, X.; Li, W. Aberrant low expression of p85α in stromal fibroblasts promotes breast cancer cell metastasis through exosome-mediated paracrine Wnt10b. Oncogene 2017, 36, 4692. [Google Scholar] [CrossRef]
  36. Chen, H.; Wang, Y.; Xue, F. Expression and the clinical significance of Wnt10a and Wnt10b in endometrial cancer are associated with the Wnt/β-catenin pathway. Oncology reports 2013, 29, 507–514. [Google Scholar] [CrossRef]
  37. Yoshikawa, H.; Matsubara, K.; Zhou, X.; Okamura, S.; Kubo, T.; Murase, Y.; Shikauchi, Y.; Esteller, M.; Herman, J.G.; Wang, X.W.; et al. WNT10B functional dualism: β-catenin/Tcf-dependent growth promotion or independent suppression with deregulated expression in cancer. Molecular biology of the cell 2007, 18, 4292–4303. [Google Scholar] [CrossRef]
  38. Zhu, R.; Yang, Y.; Tian, Y.; Bai, J.; Zhang, X.; Li, X.; Peng, Z.; He, Y.; Chen, L.; Pan, Q.; et al. Ascl2 knockdown results in tumor growth arrest by miRNA-302b-related inhibition of colon cancer progenitor cells. PloS one 2012, 7, e32170. [Google Scholar] [CrossRef]
  39. Giakountis, A.; Moulos, P.; Zarkou, V.; Oikonomou, C.; Harokopos, V.; Hatzigeorgiou, A.G.; Reczko, M.; Hatzis, P. A Positive regulatory loop between a Wnt-Regulated non-coding RNA and ASCL2 controls intestinal stem cell fate. Cell reports 2016, 15, 2588–2596. [Google Scholar] [CrossRef]
  40. Schuijers, J.; Junker, J.P.; Mokry, M.; Hatzis, P.; Koo, B.K.; Sasselli, V.; Van Der Flier, L.G.; Cuppen, E.; van Oudenaarden, A.; Clevers, H. Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts. Cell stem cell 2015, 16, 158–170. [Google Scholar] [CrossRef]
  41. Reddy, V.K.; Short, S.P.; Barrett, C.W.; Mittal, M.K.; Keating, C.E.; Thompson, J.J.; Harris, E.I.; Revetta, F.; Bader, D.M.; Brand, T.; et al. BVES regulates intestinal stem cell programs and intestinal crypt viability after radiation. Stem Cells 2016, 34, 1626–1636. [Google Scholar] [CrossRef]
  42. Hlavata, I.; Mohelnikova-Duchonova, B.; Vaclavikova, R.; Liska, V.; Pitule, P.; Novak, P.; Bruha, J.; Vycital, O.; Holubec, L.; Treska, V.; et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis 2012, 27, 187–196. [Google Scholar] [CrossRef]
  43. Kobayashi, M.; Funayama, R.; Ohnuma, S.; Unno, M.; Nakayama, K. Wnt-β-catenin signaling regulates ABCC3 (MRP3) transporter expression in colorectal cancer. Cancer science 2016, 107, 1776–1784. [Google Scholar] [CrossRef]
  44. Kaler, P.; Godasi, B.N.; Augenlicht, L.; Klampfer, L. The NF-κB/AKT-dependent induction of Wnt signaling in colon cancer cells by macrophages and IL-1β. Cancer Microenvironment 2009, 2, 69. [Google Scholar] [CrossRef]
  45. Zhong, L.; Schivo, S.; Huang, X.; Leijten, J.; Karperien, M.; Post, J.N. Nitric Oxide Mediates Crosstalk between Interleukin 1β and WNT Signaling in Primary Human Chondrocytes by Reducing DKK1 and FRZB Expression. International journal of molecular sciences 2017, 18, 2491. [Google Scholar] [CrossRef]
  46. Lin, Y.; Xu, J.; Su, H.; Zhong, W.; Yuan, Y.; Yu, Z.; Fang, Y.; Zhou, H.; Li, C.; Huang, K. Interleukin-17 is a favorable prognostic marker for colorectal cancer. Clinical and Translational Oncology 2015, 17, 50–56. [Google Scholar] [CrossRef]
  47. Housseau, F.; Wu, S.; Wick, E.C.; Fan, H.; Wu, X.; Llosa, N.J.; Smith, K.N.; Tam, A.; Ganguly, S.; Wanyiri, J.W.; et al. Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis. Cancer research 2016, 76, 2115–2124. [Google Scholar] [CrossRef]
  48. Starnes, T.; Broxmeyer, H.E.; Robertson, M.J.; Hromas, R. Cutting edge: IL-17D, a novel member of the IL-17 family, stimulates cytokine production and inhibits hemopoiesis. The Journal of Immunology 2002, 169, 642–646. [Google Scholar] [CrossRef]
  49. Ma, B.; Hottiger, M.O. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Frontiers in immunology 2016, 7, 378. [Google Scholar] [CrossRef]
  50. Ma, B.; van Blitterswijk, C.A.; Karperien, M. A Wnt/β-catenin negative feedback loop inhibits interleukin-1–induced matrix metalloproteinase expression in human articular chondrocytes. Arthritis & Rheumatism 2012, 64, 2589–2600. [Google Scholar]
  51. Masckauchán, T.N.H.; Shawber, C.J.; Funahashi, Y.; Li, C.M.; Kitajewski, J. Wnt/β-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis 2005, 8, 43–51. [Google Scholar] [CrossRef]
  52. Pfalzer, A.C.; Crott, J.W.; Koh, G.Y.; Smith, D.E.; Garcia, P.E.; Mason, J.B. Interleukin-1 Signaling Mediates Obesity-Promoted Elevations in Inflammatory Cytokines, Wnt Activation, and Epithelial Proliferation in the Mouse Colon. Journal of Interferon & Cytokine Research 2018, 38, 445–451. [Google Scholar]
  53. Aumiller, V.; Balsara, N.; Wilhelm, J.; Günther, A.; Königshoff, M. WNT/β-catenin signaling induces IL-1β expression by alveolar epithelial cells in pulmonary fibrosis. American journal of respiratory cell and molecular biology 2013, 49, 96–104. [Google Scholar] [CrossRef]
  54. Chen, D.; Li, W.; Liu, S.; Su, Y.; Han, G.; Xu, C.; Liu, H.; Zheng, T.; Zhou, Y.; Mao, C. Interleukin-23 promotes the epithelial-mesenchymal transition of oesophageal carcinoma cells via the Wnt/β-catenin pathway. Scientific reports 2015, 5, 8604. [Google Scholar] [CrossRef]
  55. Malysheva, K.; Rooij, K.d.; WGM Löwik, C.; L Baeten, D.; Rose-John, S. Interleukin 6/Wnt interactions in rheumatoid arthritis: interleukin 6 inhibits Wnt signaling in synovial fibroblasts and osteoblasts. Croatian medical journal 2016, 57, 89–98. [Google Scholar] [CrossRef]
  56. Mukai, A.; Yamamoto-Hino, M.; Awano, W.; Watanabe, W.; Komada, M.; Goto, S. Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt. The EMBO journal 2010, 29, 2114–2125. [Google Scholar] [CrossRef]
  57. Zhang, L.; Wrana, J.L. The emerging role of exosomes in Wnt secretion and transport. Current opinion in genetics & development 2014, 27, 14–19. [Google Scholar]
  58. Tassew, N.G.; Charish, J.; Shabanzadeh, A.P.; Luga, V.; Harada, H.; Farhani, N.; D’Onofrio, P.; Choi, B.; Ellabban, A.; Nickerson, P.E.; et al. Exosomes mediate mobilization of autocrine Wnt10b to promote axonal regeneration in the injured CNS. Cell reports 2017, 20, 99–111. [Google Scholar] [CrossRef]
  59. Koles, K.; Budnik, V. Exosomes go with the Wnt. Cellular logistics 2012, 2, 169–173. [Google Scholar] [CrossRef]
  60. Wu, X.; Deng, G.; Hao, X.; Li, Y.; Zeng, J.; Ma, C.; He, Y.; Liu, X.; Wang, Y. A caspase-dependent pathway is involved in Wnt/β-catenin signaling promoted apoptosis in Bacillus Calmette-Guerin infected RAW264. 7 macrophages. International journal of molecular sciences 2014, 15, 5045–5062. [Google Scholar] [CrossRef]
  61. Abdul-Ghani, M.; Dufort, D.; Stiles, R.; De Repentigny, Y.; Kothary, R.; Megeney, L.A. Wnt11 promotes cardiomyocyte development by caspase-mediated suppression of canonical Wnt signals. Molecular and cellular biology 2011, 31, 163–178. [Google Scholar] [CrossRef]
  62. Bisson, J.A.; Mills, B.; Helt, J.C.P.; Zwaka, T.P.; Cohen, E.D. Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. Developmental biology 2015, 398, 80–96. [Google Scholar] [CrossRef]
  63. Singh, V.; Holla, S.; Ramachandra, S.G.; Balaji, K.N. WNT-inflammasome signaling mediates NOD2-induced development of acute arthritis in mice. The Journal of Immunology 2015, 194, 3351–3360. [Google Scholar] [CrossRef]
  64. Flanagan, L.; Meyer, M.; Fay, J.; Curry, S.; Bacon, O.; Duessmann, H.; John, K.; Boland, K.C.; McNamara, D.A.; Kay, E.W.; et al. Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach. Cell death & disease 2016, 7, e2087. [Google Scholar]
  65. Yao, Q.; Wang, W.; Jin, J.; Min, K.; Yang, J.; Zhong, Y.; Xu, C.; Deng, J.; Zhou, Y. Synergistic role of Caspase-8 and Caspase-3 expressions: Prognostic and predictive biomarkers in colorectal cancer. Cancer Biomarkers 2018, 1–10. [Google Scholar] [CrossRef]
  66. Sadot, E.; Geiger, B.; Oren, M.; Ben-Ze’ev, A. Down-regulation of β-catenin by activated p53. Molecular and cellular biology 2001, 21, 6768–6781. [Google Scholar] [CrossRef]
  67. Peng, X.; Yang, L.; Chang, H.; Dai, G.; Wang, F.; Duan, X.; Guo, L.; Zhang, Y.; Chen, G. Wnt/β-catenin signaling regulates the proliferation and differentiation of mesenchymal progenitor cells through the p53 pathway. PloS one 2014, 9, e97283. [Google Scholar] [CrossRef]
  68. Zhukova, N.; Ramaswamy, V.; Remke, M.; Martin, D.C.; Castelo-Branco, P.; Zhang, C.H.; Fraser, M.; Tse, K.; Poon, R.; Shih, D.J.; et al. WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. Acta neuropathologica communications 2014, 2, 174. [Google Scholar] [CrossRef]
  69. Liu, W.; Xu, X.; Fan, Z.; Sun, G.; Han, Y.; Zhang, D.; Xu, L.; Wang, M.; Wang, X.; Zhang, S.; et al. Wnt Signaling Activates TP53-Induced Glycolysis and Apoptosis Regulator and Protects Against Cisplatin-Induced Spiral Ganglion Neuron Damage in the Mouse Cochlea. Antioxidants & redox signaling 2018. [Google Scholar]
  70. Okayama, S.; Kopelovich, L.; Balmus, G.; Weiss, R.S.; Herbert, B.S.; Dannenberg, A.J.; Subbaramaiah, K. p53 protein regulates Hsp90 ATPase activity and thereby Wnt signaling by modulating Aha1 expression. Journal of Biological Chemistry 2014, 289, 6513–6525. [Google Scholar] [CrossRef]
  71. Wang, H.; Fan, L.; Xia, X.; Rao, Y.; Ma, Q.; Yang, J.; Lu, Y.; Wang, C.; Ma, D.; Huang, X. Silencing Wnt2B by siRNA interference inhibits metastasis and enhances chemotherapy sensitivity in ovarian cancer. International Journal of Gynecological Cancer 2012, 22, 755–761. [Google Scholar] [CrossRef]
  72. Takada, K.; Zhu, D.; Bird, G.H.; Sukhdeo, K.; Zhao, J.J.; Mani, M.; Lemieux, M.; Carrasco, D.E.; Ryan, J.; Horst, D.; et al. Targeted disruption of the BCL9/β-catenin complex inhibits oncogenic Wnt signaling. Science translational medicine 2012, 4, 148ra117. [Google Scholar] [CrossRef]
  73. Chen, J.; Rajasekaran, M.; Xia, H.; Kong, S.N.; Deivasigamani, A.; Sekar, K.; Gao, H.; Swa, H.L.; Gunaratne, J.; Ooi, L.L.; et al. CDK1-mediated BCL9 phosphorylation inhibits clathrin to promote mitotic Wnt signalling. The EMBO journal 2018, 37, e99395. [Google Scholar] [CrossRef]
  74. Green, D.R.; Oberst, A.; Dillon, C.P.; Weinlich, R.; Salvesen, G.S. RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts. Molecular cell 2011, 44, 9–16. [Google Scholar] [CrossRef] [PubMed]
  75. Lin, Y.; Devin, A.; Rodriguez, Y.; Liu, Z.g. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes & development 1999, 13, 2514–2526. [Google Scholar]
  76. Estornes, Y.; Aguileta, M.; Dubuisson, C.; De Keyser, J.; Goossens, V.; Kersse, K.; Samali, A.; Vandenabeele, P.; Bertrand, M. RIPK1 promotes death receptor-independent caspase-8-mediated apoptosis under unresolved ER stress conditions. Cell death & disease 2014, 5, e1555. [Google Scholar]
  77. Weng, D.; Marty-Roix, R.; Ganesan, S.; Proulx, M.K.; Vladimer, G.I.; Kaiser, W.J.; Mocarski, E.S.; Pouliot, K.; Chan, F.K.M.; Kelliher, M.A.; et al. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proceedings of the National Academy of Sciences 2014, 111, 7391–7396. [Google Scholar] [CrossRef]
  78. Moriwaki, K.; Bertin, J.; Gough, P.J.; Chan, F.K.M. A RIPK3–caspase 8 complex mediates atypical pro–IL-1β processing. The Journal of Immunology 2015, 194, 1938–1944. [Google Scholar] [CrossRef]
  79. Declercq, W.; Berghe, T.V.; Vandenabeele, P. RIP kinases at the crossroads of cell death and survival. Cell 2009, 138, 229–232. [Google Scholar] [CrossRef]
  80. Chaudhary, P.M.; Eby, M.T.; Jasmin, A.; Kumar, A.; Liu, L.; Hood, L. Activation of the NF-κB pathway by caspase 8 and its homologs. Oncogene 2000, 19, 4451. [Google Scholar] [CrossRef]
  81. Sheng, Y.H.; He, Y.; Hasnain, S.Z.; Wang, R.; Tong, H.; Clarke, D.T.; Lourie, R.; Oancea, I.; Wong, K.; Lumley, J.W.; et al. MUC13 protects colorectal cancer cells from death by activating the NF-κB pathway and is a potential therapeutic target. Oncogene 2017, 36, 700. [Google Scholar] [CrossRef]
  82. Sen, R.; Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. cell 1986, 46, 705–716. [Google Scholar] [CrossRef]
  83. Tanaka, S.; Nakano, H. NF-κB2 (p100) limits TNF-α–induced osteoclastogenesis. The Journal of clinical investigation 2009, 119, 2879–2881. [Google Scholar] [CrossRef] [PubMed]
  84. Imamura, H.; Yoshina, S.; Ikari, K.; Miyazawa, K.; Momohara, S.; Mitani, S. Impaired NFKBIE gene function decreases cellular uptake of methotrexate by down-regulating SLC19A1 expression in a human rheumatoid arthritis cell line. Modern rheumatology 2016, 26, 507–516. [Google Scholar] [CrossRef]
  85. Lee, R.E.; Walker, S.R.; Savery, K.; Frank, D.A.; Gaudet, S. Fold change of nuclear NF-κB determines TNF-induced transcription in single cells. Molecular cell 2014, 53, 867–879. [Google Scholar] [CrossRef]
  86. Grivennikov, S.I.; Karin, M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine & growth factor reviews 2010, 21, 11–19. [Google Scholar]
  87. Liu, Z.; Hazan-Halevy, I.; Harris, D.M.; Li, P.; Ferrajoli, A.; Faderl, S.; Keating, M.J.; Estrov, Z. STAT-3 activates NF-κB in chronic lymphocytic leukemia cells. Molecular Cancer Research 2011, 9, 507–515. [Google Scholar] [CrossRef]
  88. Lam, L.T.; Wright, G.; Davis, R.E.; Lenz, G.; Farinha, P.; Dang, L.; Chan, J.W.; Rosenwald, A.; Gascoyne, R.D.; Staudt, L.M. Cooperative signaling through the STAT3 and NF-κB pathways in subtypes of diffuse large B cell lymphoma. Blood 2007. [Google Scholar]
  89. Lee, T.L.; Yeh, J.; Friedman, J.; Yan, B.; Yang, X.; Yeh, N.T.; Van Waes, C.; Chen, Z. A signal network involving coactivated NF-κB and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. International journal of cancer 2008, 122, 1987–1998. [Google Scholar] [CrossRef]
  90. Ng, S.L.; Friedman, B.A.; Schmid, S.; Gertz, J.; Myers, R.M.; Maniatis, T.; et al. IκB kinase ε (IKKε) regulates the balance between type I and type II interferon responses. Proceedings of the National Academy of Sciences 2011, 108, 21170–21175. [Google Scholar] [CrossRef]
  91. Guo, J.; Kim, D.; Gao, J.; Kurtyka, C.; Chen, H.; Yu, C.; Wu, D.; Mittal, A.; Beg, A.; Chellappan, S.; et al. IKBKE is induced by STAT3 and tobacco carcinogen and determines chemosensitivity in non-small cell lung cancer. Oncogene 2013, 32, 151. [Google Scholar] [CrossRef]
  92. Shen, R.R.; Zhou, A.Y.; Kim, E.; Lim, E.; Habelhah, H.; Hahn, W.C. IκB kinase ε phosphorylates TRAF2 to promote mammary epithelial cell transformation. Molecular and cellular biology 2012, 32, 4756–4768. [Google Scholar] [CrossRef] [PubMed]
  93. Zhou, A.Y.; Shen, R.R.; Kim, E.; Lock, Y.J.; Xu, M.; Chen, Z.J.; Hahn, W.C. IKKε-mediated tumorigenesis requires K63-linked polyubiquitination by a cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex. Cell reports 2013, 3, 724–733. [Google Scholar] [CrossRef] [PubMed]
  94. Nakanishi, K.; Akira, S. NF-κB activation through IKK-i-dependent I-TRAF/TANK phosphorylation. Genes to Cells 2000, 5, 191–202. [Google Scholar]
  95. Gerbod-Giannone, M.C.; Li, Y.; Holleboom, A.; Han, S.; Hsu, L.C.; Tabas, I.; Tall, A.R. TNFα induces ABCA1 through NF-κB in macrophages and in phagocytes ingesting apoptotic cells. Proceedings of the National Academy of Sciences 2006, 103, 3112–3117. [Google Scholar] [CrossRef]
  96. Van Eck, M.; Bos, I.S.T.; Kaminski, W.E.; Orsó, E.; Rothe, G.; Twisk, J.; Böttcher, A.; Van Amersfoort, E.S.; Christiansen-Weber, T.A.; Fung-Leung, W.P.; et al. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proceedings of the National Academy of Sciences 2002, 99, 6298–6303. [Google Scholar] [CrossRef]
  97. Tang, C.; Liu, Y.; Kessler, P.S.; Vaughan, A.M.; Oram, J.F. The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. Journal of Biological Chemistry 2009, 284, 32336–32343. [Google Scholar] [CrossRef]
  98. Zhu, X.; Owen, J.S.; Wilson, M.D.; Li, H.; Griffiths, G.L.; Thomas, M.J.; Hiltbold, E.M.; Fessler, M.B.; Parks, J.S. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. Journal of lipid research 2010, 51, 3196–3206. [Google Scholar] [CrossRef]
  99. Tian, B.; Widen, S.G.; Yang, J.; Wood, T.G.; Kudlicki, A.; Zhao, Y.; Brasier, A.R. The NFκB subunit RELA is a master transcriptional regulator of the committed epithelial-mesenchymal transition in airway epithelial cells. Journal of Biological Chemistry 2018, 293, 16528–16545. [Google Scholar] [CrossRef]
  100. Ke, B.; Zhao, Z.; Ye, X.; Gao, Z.; Manganiello, V.; Wu, B.; Ye, J. Inactivation of NF-κB p65 (RelA) in liver improves insulin sensitivity and inhibits cAMP/PKA pathway. Diabetes 2015, 64, 3355–3362. [Google Scholar] [CrossRef]
  101. Weichert, W.; Boehm, M.; Gekeler, V.; Bahra, M.; Langrehr, J.; Neuhaus, P.; Denkert, C.; Imre, G.; Weller, C.; Hofmann, H.; et al. High expression of RelA/p65 is associated with activation of nuclear factor-κB-dependent signaling in pancreatic cancer and marks a patient population with poor prognosis. British journal of cancer 2007, 97, 523. [Google Scholar] [CrossRef]
  102. Brooks, R.S.; Ciappio, E.D.; Bennett, G.; Crott, J.W.; Mason, J.B.; Liu, Z. TNF-α induced alterations in the Wnt signaling cascade: a potential mechanism for obesity-associated colorectal tumorigenesis. The FASEB Journal 2010, 24, lb384. [Google Scholar] [CrossRef]
  103. Adami, G.; Orsolini, G.; Adami, S.; Viapiana, O.; Idolazzi, L.; Gatti, D.; Rossini, M. Effects of TNF inhibitors on parathyroid hormone and Wnt signaling antagonists in rheumatoid arthritis. Calcified tissue international 2016, 99, 360–364. [Google Scholar] [CrossRef] [PubMed]
  104. Hiyama, A.; Yokoyama, K.; Nukaga, T.; Sakai, D.; Mochida, J. A complex interaction between Wnt signaling and TNF-α in nucleus pulposus cells. Arthritis research & therapy 2013, 15, R189. [Google Scholar]
  105. Roubert, A.; Gregory, K.; Li, Y.; Pfalzer, A.C.; Li, J.; Schneider, S.S.; Wood, R.J.; Liu, Z. The influence of tumor necrosis factor-α on the tumorigenic Wnt-signaling pathway in human mammary tissue from obese women. Oncotarget 2017, 8, 36127. [Google Scholar] [CrossRef]
  106. Jang, J.; Jung, Y.; Chae, S.; Chung, S.I.; Kim, S.M.; Yoon, Y. WNT/β-catenin pathway modulates the TNF-α-induced inflammatory response in bronchial epithelial cells. Biochemical and biophysical research communications 2017, 484, 442–449. [Google Scholar] [CrossRef] [PubMed]
  107. Dharmani, P.; Leung, P.; Chadee, K. Tumor necrosis factor-α and Muc2 mucin play major roles in disease onset and progression in dextran sodium sulphate-induced colitis. PloS one 2011, 6, e25058. [Google Scholar] [CrossRef]
  108. Levine, S.J.; Larivee, P.; Logun, C.; Angus, C.W.; Ognibene, F.P.; Shelhamer, J.H. Tumor necrosis factor-alpha induces mucin hypersecretion and MUC-2 gene expression by human airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology 1995, 12, 196–204. [Google Scholar] [CrossRef]
  109. Sikder, M.A.; Lee, H.J.; Mia, M.Z.; Park, S.H.; Ryu, J.; Kim, J.H.; Min, S.Y.; Hong, J.H.; Seok, J.H.; Lee, C.J. Inhibition of TNF-α-Induced MUC5AC Mucin Gene Expression and Production by Wogonin Through the Inactivation of NF-κB Signaling in Airway Epithelial Cells. Phytotherapy Research 2014, 28, 62–68. [Google Scholar] [CrossRef]
  110. Shao, M.X.; Nadel, J.A. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-α-converting enzyme. The Journal of Immunology 2005, 175, 4009–4016. [Google Scholar] [CrossRef]
  111. Lora, J.M.; Zhang, D.M.; Liao, S.M.; Burwell, T.; King, A.M.; Barker, P.A.; Singh, L.; Keaveney, M.; Morgenstern, J.; Gutiérrez-Ramos, J.C.; et al. Tumor necrosis factor-α triggers mucus production in airway epithelium through an IκB kinase β-dependent mechanism. Journal of Biological Chemistry 2005, 280, 36510–36517. [Google Scholar] [CrossRef]
  112. Fischer, B.M.; Rochelle, L.G.; Voynow, J.A.; Akley, N.J.; Adler, K.B. Tumor necrosis factor-α stimulates mucin secretion and cyclic GMP production by guinea pig tracheal epithelial cells in vitro. American Journal of Respiratory Cell and Molecular Biology 1999, 20, 413–422. [Google Scholar] [CrossRef] [PubMed]
  113. Lin, J.; Haruta, A.; Kawano, H.; Ho, S.B.; Adams, G.L.; Juhn, S.K.; Kim, Y. Induction of Mucin Gene Expression in Middle Ear of Rats by Tumor Necrosis Factor—α: Potential Cause for Mucoid Otitis Media. The Journal of infectious diseases 2000, 182, 882–887. [Google Scholar] [CrossRef]
  114. Yoon, J.H.; Kim, K.S.; Kim, H.U.; Linton, J.A.; Lee, J.G. Effects of TNF-a and IL-1 ß on Mucin, Lysozyme, IL-6 and IL-8 in passage-2 Normal human nasal epithelial cells. Acta oto-laryngologica 1999, 119, 905–910. [Google Scholar] [PubMed]
  115. Mercogliano, M.F.; De Martino, M.; Venturutti, L.; Rivas, M.A.; Proietti, C.J.; Inurrigarro, G.; Frahm, I.; Allemand, D.H.; Deza, E.G.; Ares, S.; et al. TNFα-induced mucin 4 expression elicits trastuzumab resistance in HER2-positive breast cancer. Clinical Cancer Research 2017, 23, 636–648. [Google Scholar] [CrossRef]
  116. Scarl, R.T.; Lawrence, C.M.; Gordon, H.M.; Nunemaker, C.S. STEAP4: its emerging role in metabolism and homeostasis of cellular iron and copper. Journal of Endocrinology 2017, 234, R123–R134. [Google Scholar] [CrossRef]
  117. Moldes, M.; Lasnier, F.; Gauthereau, X.; Klein, C.; Pairault, J.; Fève, B.; Chambaut-Guérin, A.M. Tumor necrosis factor-α-induced adipose-related protein (TIARP), a cell-surface protein that is highly induced by tumor necrosis factor-α and adipose conversion. Journal of Biological Chemistry 2001, 276, 33938–33946. [Google Scholar] [CrossRef] [PubMed]
  118. Zhang, F.; Tao, Y.; Zhang, Z.; Guo, X.; An, P.; Shen, Y.; Wu, Q.; Yu, Y.; Wang, F. Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica 2012, 97, 1826–1835. [Google Scholar] [CrossRef]
  119. Tanaka, Y.; Matsumoto, I.; Iwanami, K.; Inoue, A.; Umeda, N.; Sugihara, M.; Hayashi, T.; Ito, S.; Sumida, T. Six-transmembrane epithelial antigen of prostate 4 (STEAP4) is expressed on monocytes/neutrophils, and is regulated by TNF antagonist in patients with rheumatoid arthritis. Clinical and experimental rheumatology 2012, 30, 99–102. [Google Scholar]
  120. Tanaka, Y.; Matsumoto, I.; Iwanami, K.; Inoue, A.; Minami, R.; Umeda, N.; Kanamori, A.; Ochiai, N.; Miyazawa, K.; Sugihara, M. Six-transmembrane epithelial antigen of prostate4 (STEAP4) is a tumor necrosis factor alpha-induced protein that regulates IL-6, IL-8, and cell proliferation in synovium from patients with rheumatoid arthritis. Modern rheumatology 2012, 22, 128–136. [Google Scholar] [CrossRef]
  121. Gauss, G.H.; Kleven, M.D.; Sendamarai, A.K.; Fleming, M.D.; Lawrence, C.M. The crystal structure of six-transmembrane epithelial antigen of the prostate 4 (Steap4), a ferri/cuprireductase, suggests a novel interdomain flavin-binding site. Journal of Biological Chemistry 2013, 288, 20668–20682. [Google Scholar] [CrossRef]
  122. ZHANG, C.m.; Chi, X.; Wang, B.; Zhang, M.; NI, Y.h.; CHEN, R.h.; LI, X.n.; GUO, X.r. Downregulation of STEAP4, a highly-expressed TNF-α-inducible gene in adipose tissue, is associated with obesity in humans 1. Acta Pharmacologica Sinica 2008, 29, 587–592. [Google Scholar] [CrossRef] [PubMed]
  123. Liang, Y.; Xing, X.; Beamer, M.A.; Swindell, W.R.; Sarkar, M.K.; Roberts, L.W.; Voorhees, J.J.; Kahlenberg, J.M.; Harms, P.W.; Johnston, A.; et al. Six-transmembrane epithelial antigens of the prostate comprise a novel inflammatory nexus in patients with pustular skin disorders. Journal of Allergy and Clinical Immunology 2017, 139, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
  124. Gomes, I.M.; Maia, C.J.; Santos, C.R. STEAP proteins: from structure to applications in cancer therapy. Molecular Cancer Research 2012, 10, 573–587. [Google Scholar] [CrossRef] [PubMed]
  125. Fu, B.; Li, S.; Wang, L.; Berman, M.A.; Dorf, M.E. The ubiquitin conjugating enzyme UBE2L3 regulates TNFα-induced linear ubiquitination. Cell research 2014, 24, 376. [Google Scholar] [CrossRef]
  126. Li, Y.P.; Lecker, S.H.; Chen, Y.; Waddell, I.D.; Goldberg, A.L.; Reid, M.B. TNF-α increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. The FASEB Journal 2003, 17, 1048–1057. [Google Scholar] [CrossRef]
  127. Shembade, N.; Ma, A.; Harhaj, E.W. Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010, 327, 1135–1139. [Google Scholar] [CrossRef]
  128. Tamatani, M.; Che, Y.H.; Matsuzaki, H.; Ogawa, S.; Okado, H.; Miyake, S.i.; Mizuno, T.; Tohyama, M. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFκB activation in primary hippocampal neurons. Journal of Biological Chemistry 1999, 274, 8531–8538. [Google Scholar] [CrossRef] [PubMed]
  129. Ho, S.; Winkler-Lowen, B.; Morrish, D.; Dakour, J.; Li, H.; Guilbert, L. The role of Bcl-2 expression in EGF inhibition of TNF-α/IFN-γ-induced villous trophoblast apoptosis. Placenta 1999, 20, 423–430. [Google Scholar] [CrossRef]
  130. Genestier, L.; Bonnefoy-Berard, N.; Rouault, J.P.; Flacher, M.; Revillard, J.P. Tumor necrosis factor-α up-regulates Bcl-2 expression and decreases calcium-dependent apoptosis in human B cell lines. International immunology 1995, 7, 533–540. [Google Scholar] [CrossRef]
  131. Jäättelä, M.; Benedict, M.; Tewari, M.; Shayman, J.; Dixit, V. Bcl-x and Bcl-2 inhibit TNF and Fas-induced apoptosis and activation of phospholipase A2 in breast carcinoma cells. Oncogene 1995, 10, 2297–2305. [Google Scholar]
  132. Kim, J.; Lee, S.; Park, J.; Yoo, Y. TNF-α-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X L. Cell death and differentiation 2010, 17, 1420. [Google Scholar] [CrossRef] [PubMed]
  133. Kuwata, H.; Watanabe, Y.; Miyoshi, H.; Yamamoto, M.; Kaisho, T.; Takeda, K.; Akira, S. IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-α production in macrophages. Blood 2003, 102, 4123–4129. [Google Scholar] [CrossRef] [PubMed]
  134. Esche, C.; Shurin, G.V.; Kirkwood, J.M.; Wang, G.Q.; Rabinowich, H.; Pirtskhalaishvili, G.; Shurin, M.R. Tumor necrosis factor-α-promoted expression of Bcl-2 and inhibition of mitochondrial cytochrome c release mediate resistance of mature dendritic cells to melanoma-induced apoptosis. Clinical cancer research 2001, 7, 974s–979s. [Google Scholar] [PubMed]
  135. Thacker, J.; Zdzienicka, M.Z. The mammalian XRCC genes: their roles in DNA repair and genetic stability. DNA repair 2003, 2, 655–672. [Google Scholar] [CrossRef]
  136. Thacker, J.; Zdzienicka, M.Z. The XRCC genes: expanding roles in DNA double-strand break repair. DNA repair 2004, 3, 1081–1090. [Google Scholar] [CrossRef]
  137. Sultana, R.; Abdel-Fatah, T.; Perry, C.; Moseley, P.; Albarakti, N.; Mohan, V.; Seedhouse, C.; Chan, S.; Madhusudan, S. Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PloS one 2013, 8, e57098. [Google Scholar] [CrossRef]
  138. Della-Maria, J.; Zhou, Y.; Tsai, M.S.; Kuhnlein, J.; Carney, J.P.; Paull, T.T.; Tomkinson, A.E. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIα/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. Journal of Biological Chemistry 2011, 286, 33845–33853. [Google Scholar] [CrossRef]
  139. Morales, J.C.; Richard, P.; Patidar, P.L.; Motea, E.A.; Dang, T.T.; Manley, J.L.; Boothman, D.A. XRN2 links transcription termination to DNA damage and replication stress. PLoS genetics 2016, 12, e1006107. [Google Scholar] [CrossRef]
  140. Saintigny, Y.; Dumay, A.; Lambert, S.; Lopez, B.S. A novel role for the Bcl-2 protein family: specific suppression of the RAD51 recombination pathway. The EMBO journal 2001, 20, 2596–2607. [Google Scholar] [CrossRef]
  141. Meng, J.; Liu, X.; Cao, X. A new cytosolic DNA-recognition pathway for DNA-induced inflammatory responses. Cellular & Molecular Immunology 2014, 11, 506. [Google Scholar]
  142. Marin-Vicente, C.; Domingo-Prim, J.; Eberle, A.B.; Visa, N. RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination. J Cell Sci 2015, 128, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
  143. Shtam, T.A.; Kovalev, R.A.; Varfolomeeva, E.Y.; Makarov, E.M.; Kil, Y.V.; Filatov, M.V. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Communication and Signaling 2013, 11, 88. [Google Scholar] [CrossRef] [PubMed]
  144. Walden, H.; Deans, A.J. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. Annual review of biophysics 2014, 43, 257–278. [Google Scholar] [CrossRef]
  145. Cohn, M.A.; D’Andrea, A.D. Chromatin recruitment of DNA repair proteins: lessons from the fanconi anemia and double-strand break repair pathways. Molecular cell 2008, 32, 306–312. [Google Scholar] [CrossRef] [PubMed]
  146. Romick-Rosendale, L.E.; Lui, V.W.; Grandis, J.R.; Wells, S.I. The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2013, 743, 78–88. [Google Scholar] [CrossRef]
  147. Michl, J.; Zimmer, J.; Tarsounas, M. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. The EMBO journal 2016, 35, 909–923. [Google Scholar] [CrossRef]
  148. Liang, F.; Longerich, S.; Miller, A.S.; Tang, C.; Buzovetsky, O.; Xiong, Y.; Maranon, D.G.; Wiese, C.; Kupfer, G.M.; Sung, P. Promotion of RAD51-mediated homologous DNA pairing by the RAD51AP1-UAF1 complex. Cell reports 2016, 15, 2118–2126. [Google Scholar] [CrossRef]
  149. Taniguchi, T.; Garcia-Higuera, I.; Andreassen, P.R.; Gregory, R.C.; Grompe, M.; D’Andrea, A.D. S-phase–specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 2002, 100, 2414–2420. [Google Scholar] [CrossRef]
  150. Zadorozhny, K.; Sannino, V.; Beláň, O.; Mlčoušková, J.; Špírek, M.; Costanzo, V.; Krejčí, L. Fanconi-anemia-associated mutations destabilize RAD51 filaments and impair replication fork protection. Cell reports 2017, 21, 333–340. [Google Scholar] [CrossRef]
  151. Geng, L.; Huntoon, C.J.; Karnitz, L.M. RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network. The Journal of cell biology 2010, 191, 249–257. [Google Scholar] [CrossRef]
  152. Palle, K.; Vaziri, C. Rad18 E3 ubiquitin ligase activity mediates Fanconi anemia pathway activation and cell survival following DNA Topoisomerase 1 inhibition. Cell Cycle 2011, 10, 1625–1638. [Google Scholar] [CrossRef]
  153. García-Luis, J.; Machín, F. Fanconi Anaemia-Like Mph1 Helicase Backs up Rad54 and Rad5 to Circumvent Replication Stress-Driven Chromosome Bridges. Genes 2018, 9, 558. [Google Scholar] [CrossRef]
  154. Lipinska, N.; Romaniuk, A.; Paszel-Jaworska, A.; Toton, E.; Kopczynski, P.; Rubis, B. Telomerase and drug resistance in cancer. Cellular and Molecular Life Sciences 2017, 74, 4121–4132. [Google Scholar] [CrossRef]
  155. Wang, J.; Liu, X.; Fang, J. Expression and clinical significance of telomerase catalytic subunit gene in lung cancer and its correlations with genes related to drug resistance and apoptosis. Zhonghua zhong liu za zhi [Chinese journal of oncology] 1999, 21, 350–353. [Google Scholar]
  156. Sakin, V.; Eskiocak, U.; Kars, M.; Iseri, Ö.; Gunduz, U. hTERT gene expression levels and telomerase activity in drug resistant MCF-7 cells. Experimental oncology 2008. [Google Scholar]
  157. Keshet, G.I.; Goldstein, I.; Itzhaki, O.; Cesarkas, K.; Shenhav, L.; Yakirevitch, A.; Treves, A.J.; Schachter, J.; Amariglio, N.; Rechavi, G. MDR1 expression identifies human melanoma stem cells. Biochemical and biophysical research communications 2008, 368, 930–936. [Google Scholar] [CrossRef]
  158. Zhou, X.; Engel, T.; Goepfert, C.; Erren, M.; Assmann, G.; von Eckardstein, A. The ATP binding cassette transporter A1 contributes to the secretion of interleukin 1β from macrophages but not from monocytes. Biochemical and biophysical research communications 2002, 291, 598–604. [Google Scholar] [CrossRef]
  159. Haskó, G.; Deitch, E.A.; Németh, Z.H.; Kuhel, D.G.; Szabó, C. Inhibitors of ATP-binding cassette transporters suppress interleukin-12 p40 production and major histocompatibility complex II up-regulation in macrophages. Journal of Pharmacology and Experimental Therapeutics 2002, 301, 103–110. [Google Scholar] [CrossRef]
  160. Park, S.Y.; Han, J.; Kim, J.B.; Yang, M.G.; Kim, Y.J.; Lim, H.J.; An, S.Y.; Kim, J.H. Interleukin-8 is related to poor chemotherapeutic response and tumourigenicity in hepatocellular carcinoma. European Journal of Cancer 2014, 50, 341–350. [Google Scholar] [CrossRef]
  161. Marty, V.; Médina, C.; Combe, C.; Parnet, P.; Amédée, T. ATP binding cassette transporter ABC1 is required for the release of interleukin-1β by P2X7-stimulated and lipopolysaccharide-primed mouse Schwann cells. Glia 2005, 49, 511–519. [Google Scholar] [CrossRef]
  162. Lottaz, D.; Beleznay, Z.; Bickel, M. Inhibition of ATP-binding cassette transporter downregulates interleukin-1β-mediated autocrine activation of human dermal fibroblasts. Journal of investigative dermatology 2001, 117, 871–876. [Google Scholar] [CrossRef] [PubMed]
  163. Ruzickova, E.; Janska, R.; Dolezel, P.; Mlejnek, P. Clinically relevant interactions of anti-apoptotic Bcl-2 protein inhibitors with ABC transporters. Die Pharmazie-An International Journal of Pharmaceutical Sciences 2017, 72, 751–758. [Google Scholar]
  164. Alla, V.; Kowtharapu, B.S.; Engelmann, D.; Emmrich, S.; Schmitz, U.; Steder, M.; Pützer, B.M. E2F1 confers anticancer drug resistance by targeting ABC transporter family members and Bcl-2 via the p73/DNp73-miR-205 circuitry. Cell cycle 2012, 11, 3067–3078. [Google Scholar] [CrossRef] [PubMed]
  165. Yasui, K.; Mihara, S.; Zhao, C.; Okamoto, H.; Saito-Ohara, F.; Tomida, A.; Funato, T.; Yokomizo, A.; Naito, S.; Imoto, I.; et al. Alteration in copy numbers of genes as a mechanism for acquired drug resistance. Cancer research 2004, 64, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
  166. Hu, H.; Wang, M.; Guan, X.; Yuan, Z.; Liu, Z.; Zou, C.; Wang, G.; Gao, X.; Wang, X. Loss of ABCB4 attenuates the caspase-dependent apoptosis regulating resistance to 5-Fu in colorectal cancer. Bioscience reports 2018, 38, BSR20171428. [Google Scholar] [CrossRef]
  167. Ihlefeld, K.; Vienken, H.; Claas, R.F.; Blankenbach, K.; Rudowski, A.; Ter Braak, M.; Koch, A.; Van Veldhoven, P.P.; Pfeilschifter, J.; zu Heringdorf, D.M. Upregulation of ABC transporters contributes to chemoresistance of sphingosine 1-phosphate lyase-deficient fibroblasts. Journal of lipid research 2015, 56, 60–69. [Google Scholar] [CrossRef]
  168. Hörber, S.; Hildebrand, D.G.; Lieb, W.S.; Lorscheid, S.; Hailfinger, S.; Schulze-Osthoff, K.; Essmann, F. The atypical inhibitor of NF-κB, IκBζ, controls macrophage interleukin-10 expression. Journal of Biological Chemistry 2016, 291, 12851–12861. [Google Scholar] [CrossRef]
  169. Yamazaki, S.; Muta, T.; Matsuo, S.; Takeshige, K. Stimulus-specific induction of a novel nuclear factor-κB regulator, IκB-ζ, via Toll/Interleukin-1 receptor is mediated by mRNA stabilization. Journal of Biological Chemistry 2005, 280, 1678–1687. [Google Scholar] [CrossRef]
  170. Kurzrock, R.; Estrov, Z.; Ku, S.; Leonard, M.; Talpaz, M. Interleukin-1 increases expression of the LYT-10 (NFκB2) proto-oncogene/transcription factor in renal cell carcinoma lines. Journal of Laboratory and Clinical Medicine 1998, 131, 261–268. [Google Scholar] [CrossRef]
  171. Lee, S.; Sabath, D.; Deutsch, C.; Prystowsky, M.B. Increased voltage-gated potassium conductance during interleukin 2-stimulated proliferation of a mouse helper T lymphocyte clone. The Journal of cell biology 1986, 102, 1200–1208. [Google Scholar] [CrossRef]
  172. Martin, G.; O’connell, R.J.; Pietrzykowski, A.Z.; Treistman, S.N.; Ethier, M.F.; Madison, J.M. Interleukin-4 activates large-conductance, calcium-activated potassium (BKCa) channels in human airway smooth muscle cells. Experimental physiology 2008, 93, 908–918. [Google Scholar] [CrossRef] [PubMed]
  173. Kerschner, J.E.; Meyer, T.K.; Yang, C.; Burrows, A. Middle ear epithelial mucin production in response to interleukin-6 exposure in vitro. Cytokine 2004, 26, 30–36. [Google Scholar] [CrossRef]
  174. Chen, Y.; Thai, P.; Zhao, Y.H.; Ho, Y.S.; DeSouza, M.M.; Wu, R. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. Journal of Biological Chemistry 2003, 278, 17036–17043. [Google Scholar] [CrossRef] [PubMed]
  175. Shan, Y.S.; Hsu, H.P.; Lai, M.D.; Yen, M.C.; FANg, J.H.; Weng, T.Y.; Chen, Y.L. Suppression of mucin 2 promotes interleukin-6 secretion and tumor growth in an orthotopic immune-competent colon cancer animal model. Oncology reports 2014, 32, 2335–2342. [Google Scholar] [CrossRef] [PubMed]
  176. Yokoigawa, N.; Takeuchi, N.; Toda, M.; Inoue, M.; Kaibori, M.; Yanagida, H.; Tanaka, H.; Ogura, T.; Takada, H.; Okumura, T.; et al. Enhanced production of interleukin 6 in peripheral blood monocytes stimulated with mucins secreted into the bloodstream. Clinical cancer research 2005, 11, 6127–6132. [Google Scholar] [CrossRef]
  177. Gray, T.; Nettesheim, P.; Loftin, C.; Koo, J.S.; Bonner, J.; Peddada, S.; Langenbach, R. Interleukin-1β–Induced Mucin Production in Human Airway Epithelium Is Mediated by Cyclooxygenase-2, Prostaglandin E2 Receptors, and Cyclic AMP-Protein Kinase A Signaling. Molecular Pharmacology 2004, 66, 337–346. [Google Scholar] [CrossRef] [PubMed]
  178. Hsu, H.P.; Lai, M.D.; Lee, J.C.; Yen, M.C.; Weng, T.Y.; Chen, W.C.; Fang, J.H.; Chen, Y.L. Mucin 2 silencing promotes colon cancer metastasis through interleukin-6 signaling. Scientific reports 2017, 7, 5823. [Google Scholar] [CrossRef]
  179. Brighenti, E.; Calabrese, C.; Liguori, G.; Giannone, F.; Trere, D.; Montanaro, L.; Derenzini, M. Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: a new pathway connecting inflammation to cancer. Oncogene 2014, 33, 4396. [Google Scholar] [CrossRef]
  180. Tan, X.; Carretero, J.; Chen, Z.; Zhang, J.; Wang, Y.; Chen, J.; Li, X.; Ye, H.; Tang, C.; Cheng, X.; et al. Loss of p53 attenuates the contribution of IL-6 deletion on suppressed tumor progression and extended survival in Kras-driven murine lung cancer. PloS one 2013, 8, e80885. [Google Scholar] [CrossRef]
  181. Pützer, B.; Bramson, J.; Addison, C.; Hitt, M.; Siegel, P.; Muller, W.; Graham, F. Combination therapy with interleukin-2 and wild-type p53 expressed by adenoviral vectors potentiates tumor regression in a murine model of breast cancer. Human gene therapy 1998, 9, 707–718. [Google Scholar] [CrossRef]
  182. Dijsselbloem, N.; Goriely, S.; Albarani, V.; Gerlo, S.; Francoz, S.; Marine, J.C.; Goldman, M.; Haegeman, G.; Berghe, W.V. A critical role for p53 in the control of NF-κB-dependent gene expression in TLR4-stimulated dendritic cells exposed to genistein. The Journal of immunology 2007, 178, 5048–5057. [Google Scholar] [CrossRef] [PubMed]
  183. Schauer, I.G.; Zhang, J.; Xing, Z.; Guo, X.; Mercado-Uribe, I.; Sood, A.K.; Huang, P.; Liu, J. Interleukin-1β promotes ovarian tumorigenesis through a p53/NF-κB-mediated inflammatory response in stromal fibroblasts. Neoplasia 2013, 15, 409–IN18. [Google Scholar] [CrossRef] [PubMed]
  184. Jones, M.R.; Quinton, L.J.; Simms, B.T.; Lupa, M.M.; Kogan, M.S.; Mizgerd, J.P. Roles of interleukin-6 in activation of STAT proteins and recruitment of neutrophils during Escherichia coli pneumonia. The Journal of infectious diseases 2006, 193, 360–369. [Google Scholar] [CrossRef] [PubMed]
  185. Kotanides, H.; Moczygemba, M.; White, M.F.; Reich, N.C. Characterization of the interleukin-4 nuclear activated factor/STAT and its activation independent of the insulin receptor substrate proteins. Journal of Biological Chemistry 1995, 270, 19481–19486. [Google Scholar] [CrossRef]
  186. Adam, N.; Rabe, B.; Suthaus, J.; Grötzinger, J.; Rose-John, S.; Scheller, J. Unraveling viral interleukin-6 binding to gp130 and activation of STAT-signaling pathways independently of the interleukin-6 receptor. Journal of virology 2009, 83, 5117–5126. [Google Scholar] [CrossRef]
  187. Frank, D.A.; Robertson, M.J.; Bonni, A.; Ritz, J.; Greenberg, M.E. Interleukin 2 signaling involves the phosphorylation of Stat proteins. Proceedings of the National Academy of Sciences 1995, 92, 7779–7783. [Google Scholar] [CrossRef]
  188. Boyd, Z.S.; Kriatchko, A.; Yang, J.; Agarwal, N.; Wax, M.B.; Patil, R.V. Interleukin-10 receptor signaling through STAT-3 regulates the apoptosis of retinal ganglion cells in response to stress. Investigative ophthalmology & visual science 2003, 44, 5206–5211. [Google Scholar]
  189. Kurgonaite, K.; Gandhi, H.; Kurth, T.; Pautot, S.; Schwille, P.; Weidemann, T.; Bökel, C. Essential role of endocytosis for interleukin-4-receptor-mediated JAK/STAT signalling. J Cell Sci 2015, 128, 3781–3795. [Google Scholar] [CrossRef]
  190. Kondo, M.; Yamaoka, K.; Sakata, K.; Sonomoto, K.; Lin, L.; Nakano, K.; Tanaka, Y. Contribution of the interleukin-6/STAT-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells. Arthritis & rheumatology 2015, 67, 1250–1260. [Google Scholar]
  191. Tanaka, N.; Hoshino, Y.; Gold, J.; Hoshino, S.; Martiniuk, F.; Kurata, T.; Pine, R.; Levy, D.; Rom, W.N.; Weiden, M. Interleukin-10 induces inhibitory C/EBPβ through STAT-3 and represses HIV-1 transcription in macrophages. American journal of respiratory cell and molecular biology 2005, 33, 406–411. [Google Scholar] [CrossRef]
  192. Jobst, B.; Weigl, J.; Michl, C.; Vivarelli, F.; Pinz, S.; Amslinger, S.; Rascle, A. Inhibition of interleukin-3-and interferon-α-induced JAK/STAT signaling by the synthetic α-X-2’, 3, 4, 4’-tetramethoxychalcones α-Br-TMC and α-CF3-TMC. Biological chemistry 2016, 397, 1187–1204. [Google Scholar] [CrossRef] [PubMed]
  193. Greene, C.; O’Neill, L. Interleukin-1 receptor-associated kinase and TRAF-6 mediate the transcriptional regulation of interleukin-2 by interleukin-1 via NFκB but unlike interleukin-1 are unable to stabilise interleukin-2 mRNA. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1999, 1451, 109–121. [Google Scholar] [CrossRef]
  194. Cao, Z.; Xiong, J.; Takeuchi, M.; Kurama, T.; Goeddel, D.V. TRAF6 is a signal transducer for interleukin-1. Nature 1996, 383, 443. [Google Scholar] [CrossRef] [PubMed]
  195. Schwandner, R.; Yamaguchi, K.; Cao, Z. Requirement of tumor necrosis factor receptor–associated factor (TRAF) 6 in interleukin 17 signal transduction. Journal of Experimental Medicine 2000, 191, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
  196. Lomaga, M.A.; Yeh, W.C.; Sarosi, I.; Duncan, G.S.; Furlonger, C.; Ho, A.; Morony, S.; Capparelli, C.; Van, G.; Kaufman, S.; et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes & development 1999, 13, 1015–1024. [Google Scholar]
  197. Jefferies, C.; Bowie, A.; Brady, G.; Cooke, E.L.; Li, X.; O’Neill, L.A. Transactivation by the p65 subunit of NF-κB in response to interleukin-1 (IL-1) involves MyD88, IL-1 receptor-associated kinase 1, TRAF-6, and Rac1. Molecular and cellular biology 2001, 21, 4544–4552. [Google Scholar] [CrossRef]
  198. Wu, H.; Arron, J.R. TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays 2003, 25, 1096–1105. [Google Scholar] [CrossRef]
  199. Ramadoss, P.; Chiappini, F.; Bilban, M.; Hollenberg, A.N. Regulation of hepatic six transmembrane epithelial antigen of prostate 4 (STEAP4) expression by STAT3 and CCAAT/enhancer-binding protein α. Journal of Biological Chemistry 2010, 285, 16453–16466. [Google Scholar] [CrossRef]
  200. Hamon, Y.; Luciani, M.F.; Becq, F.; Verrier, B.; Rubartelli, A.; Chimini, G. Interleukin-1β secretion is impaired by inhibitors of the ATP binding cassette transporter, ABC1. Blood 1997, 90, 2911–2915. [Google Scholar] [CrossRef]
  201. Neta, R.; Sayers, T.; Oppenheim, J. Relationship of TNF to interleukins. Immunology series 1992, 56, 499–566. [Google Scholar]
  202. Rieckmann, P.; Tuscano, J.; Kehrl, J. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in B-lymphocyte function. Methods 1997, 11, 128–132. [Google Scholar] [CrossRef] [PubMed]
  203. Bethea, J.R.; Gillespie, G.Y.; Benveniste, E.N. Interleukin-1β induction of TNF-α gene expression: Involvement of protein kinase C. Journal of cellular physiology 1992, 152, 264–273. [Google Scholar] [CrossRef] [PubMed]
  204. McLaughlin, F.; Hayes, B.P.; Horgan, C.M.; Beesley, J.E.; Campbell, C.J.; Randi, A.M. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β down-regulate intercellular adhesion molecule (ICAM)-2 expression on the endothelium. Cell adhesion and communication 1998, 6, 381–400. [Google Scholar] [CrossRef] [PubMed]
  205. Zhai, R.; Liu, G.; Ge, X.; Bao, W.; Wu, C.; Yang, C.; Liang, D. Serum levels of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and their soluble receptors in coal workers’ pneumoconiosis. Respiratory medicine 2002, 96, 829–834. [Google Scholar] [CrossRef]
  206. Havlir, D.V.; Torriani, F.J.; Schrier, R.D.; Huang, J.Y.; Lederman, M.M.; Chervenak, K.A.; Boom, W.H. Serum interleukin-6 (IL-6), IL-10, tumor necrosis factor (TNF) alpha, soluble type II TNF receptor, and transforming growth factor beta levels in human immunodeficiency virus type 1-infected individuals with Mycobacterium avium complex disease. Journal of clinical microbiology 2001, 39, 298–303. [Google Scholar] [CrossRef]
  207. Tissi, L.; Puliti, M.; Barluzzi, R.; Orefici, G.; von Hunolstein, C.; Bistoni, F. Role of tumor necrosis factor alpha, interleukin-1β, and interleukin-6 in a mouse model of group B streptococcal arthritis. Infection and immunity 1999, 67, 4545–4550. [Google Scholar] [CrossRef]
  208. Ismail, N.; Stevenson, H.L.; Walker, D.H. Role of tumor necrosis factor alpha (TNF-α) and interleukin-10 in the pathogenesis of severe murine monocytotropic ehrlichiosis: increased resistance of TNF receptor p55-and p75-deficient mice to fatal ehrlichial infection. Infection and immunity 2006, 74, 1846–1856. [Google Scholar] [CrossRef] [PubMed]
  209. Yap, S.; Moshage, H.; Hazenberg, B.; Roelofs, H.; Bijzet, J.; Limburg, P.; Aarden, L.; Van Rijswijk, M. Tumor necrosis factor (TNF) inhibits interleukin (IL)-1 and/or IL-6 stimulated synthesis of C-reactive protein (CRP) and serum amyloid A (SAA) in primary cultures of human hepatocytes. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1991, 1091, 405–408. [Google Scholar] [CrossRef]
  210. Qin, B.; Zhou, Z.; He, J.; Yan, C.; Ding, S. IL-6 inhibits starvation-induced autophagy via the STAT3/Bcl-2 signaling pathway. Scientific reports 2015, 5, 15701. [Google Scholar] [CrossRef]
  211. Gabellini, C.; Gómez-Abenza, E.; Ibáñez-Molero, S.; Tupone, M.G.; Pérez-Oliva, A.B.; de Oliveira, S.; Del Bufalo, D.; Mulero, V. Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. International journal of cancer 2018, 142, 584–596. [Google Scholar] [CrossRef]
  212. Guruprasath, P.; Kim, J.; Gunassekaran, G.R.; Chi, L.; Kim, S.; Park, R.W.; Kim, S.H.; Baek, M.C.; Bae, S.M.; Kim, S.Y.; et al. Interleukin-4 receptor-targeted delivery of Bcl-xL siRNA sensitizes tumors to chemotherapy and inhibits tumor growth. Biomaterials 2017, 142, 101–111. [Google Scholar] [CrossRef] [PubMed]
  213. Maraskovsky, E.; O’Reilly, L.A.; Teepe, M.; Corcoran, L.M.; Peschon, J.J.; Strasser, A. Bcl-2 can rescue t lymphocyte development in interleukin-7 receptor–deficient mice but not in mutant rag-1-/- mice. Cell 1997, 89, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
  214. Akashi, K.; Kondo, M.; von Freeden-Jeffry, U.; Murray, R.; Weissman, I.L. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor–deficient mice. Cell 1997, 89, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
  215. Weber-Nordt, R.; Henschler, R.; Schott, E.; Wehinger, J.; Behringer, D.; Mertelsmann, R.; Finke, J. Interleukin-10 increases Bcl-2 expression and survival in primary human CD34+ hematopoietic progenitor cells. Blood 1996, 88, 2549–2558. [Google Scholar] [CrossRef]
  216. Qin, J.Z.; Zhang, C.L.; Kamarashev, J.; Dummer, R.; Burg, G.; Döbbeling, U. Interleukin-7 and interleukin-15 regulate the expression of thebcl-2 and c-myb genes in cutaneous T-cell lymphoma cells. Blood 2001, 98, 2778–2783. [Google Scholar] [CrossRef]
  217. Escandell, J.; Recio, M.; Giner, R.; Máñez, S.; Ríos, J. Bcl-2 is a negative regulator of interleukin-1β secretion in murine macrophages in pharmacological-induced apoptosis. British journal of pharmacology 2010, 160, 1844–1856. [Google Scholar] [CrossRef]
  218. Alas, S.; Emmanouilides, C.; Bonavida, B. Inhibition of interleukin 10 by rituximab results in down-regulation of bcl-2 and sensitization of B-cell non-Hodgkin’s lymphoma to apoptosis. Clinical Cancer Research 2001, 7, 709–723. [Google Scholar]
  219. Deng, Z.; Fu, H.; Xiao, Y.; Zhang, B.; Sun, G.; Wei, Q.; Ai, B.; Hu, Q. Effects of selenium on lead-induced alterations in Aβ production and Bcl-2 family proteins. Environmental toxicology and pharmacology 2015, 39, 221–228. [Google Scholar] [CrossRef]
  220. Yaming, W.; Hai, B.; Haijian, Y.; Xiyan, Z. Effects of selenium dioxide on apoptosis, Bcl-2 and p53 expression, intracellular reactive oxygen species and calcium level in three human lung cancer cell lines. The Chinese-German Journal of Clinical Oncology 2004, 3, 141–146. [Google Scholar]
  221. Mauro, M.; Sartori, D.; Oliveira, R.J.; Ishii, P.L.; Mantovani, M.S.; Ribeiro, L.R. Activity of selenium on cell proliferation, cytotoxicity, and apoptosis and on the expression of CASP9, BCL-XL and APC in intestinal adenocarcinoma cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2011, 715, 7–12. [Google Scholar] [CrossRef]
  222. Hemann, M.; Lowe, S. The p53–Bcl-2 connection. 2006. [Google Scholar] [CrossRef] [PubMed]
  223. Tomita, Y.; Marchenko, N.; Erster, S.; Nemajerova, A.; Dehner, A.; Klein, C.; Pan, H.; Kessler, H.; Pancoska, P.; Moll, U.M. WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. Journal of Biological Chemistry 2006, 281, 8600–8606. [Google Scholar] [CrossRef]
  224. Jiang, M.; Milner, J. Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes & development 2003, 17, 832–837. [Google Scholar]
  225. Li, X.; Miao, X.; Wang, H.; Xu, Z.; Li, B. The tissue dependent interactions between p53 and Bcl-2 in vivo. Oncotarget 2015, 6, 35699. [Google Scholar] [CrossRef] [PubMed]
  226. Pan, R.; Ruvolo, V.; Mu, H.; Leverson, J.D.; Nichols, G.; Reed, J.C.; Konopleva, M.; Andreeff, M. Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: mechanisms and superior antileukemic efficacy. Cancer Cell 2017, 32, 748–760. [Google Scholar] [CrossRef]
  227. Zaidi, A.U.; McDonough, J.S.; Klocke, B.J.; Latham, C.B.; Korsmeyer, S.J.; Flavell, R.A.; Schmidt, R.E.; Roth, K.A. Chloroquine-induced neuronal cell death is p53 and Bcl-2 family-dependent but caspase-independent. Journal of Neuropathology & Experimental Neurology 2001, 60, 937–945. [Google Scholar]
  228. Wilson, W.H.; Teruya-Feldstein, J.; Fest, T.; Harris, C.; Steinberg, S.M.; Jaffe, E.S.; Raffeld, M. Relationship of p53, bcl-2, and tumor proliferation to clinical drug resistance in non-Hodgkin’s lymphomas. Blood 1997, 89, 601–609. [Google Scholar] [CrossRef]
  229. Exley, G.E.; Tang, C.; McElhinny, A.S.; Warner, C.M. Expression of caspase and BCL-2 apoptotic family members in mouse preimplantation embryos. Biology of reproduction 1999, 61, 231–239. [Google Scholar] [CrossRef]
  230. Swanton, E.; Savory, P.; Cosulich, S.; Clarke, P.; Woodman, P. Bcl-2 regulates a caspase-3/caspase-2 apoptotic cascade in cytosolic extracts. Oncogene 1999, 18, 1781. [Google Scholar] [CrossRef]
  231. Pellegrini, M.; Strasser, A. Caspases, Bcl-2 family proteins and other components of the death machinery: their role in the regulation of the immune response. In Madame Curie Bioscience Database [Internet]; Landes Bioscience, 2013. [Google Scholar]
  232. Moriishi, K.; Huang, D.C.; Cory, S.; Adams, J.M. Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1. Proceedings of the National Academy of Sciences 1999, 96, 9683–9688. [Google Scholar] [CrossRef]
  233. Demirag, F.; Cakir, E.; Bayiz, H.; Eren Yazici, U. MUC1 and bcl-2 expression in preinvasive lesions and adenosquamous carcinoma of the lung. Acta Chirurgica Belgica 2013, 113, 19–24. [Google Scholar] [CrossRef] [PubMed]
  234. Sheng, Y.H.; He, Y.; Hasnain, S.Z.; Wang, R.; Tong, H.; Clarke, D.T.; Lourie, R.; Oancea, I.; Wong, K.; Lumley, J.W.; et al. MUC13 protects colorectal cancer cells from death by activating the NF-κB pathway and is a potential therapeutic target. Oncogene 2017, 36, 700. [Google Scholar] [CrossRef]
  235. Deng, M.; Yuan, H.; Liu, S.; Hu, Z.; Xiao, H. Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression. Cytotherapy 2019, 21, 96–106. [Google Scholar] [CrossRef]
  236. Xu, X.D.; Wu, X.H.; Fan, Y.R.; Tan, B.; Quan, Z.; Luo, C.L. Exosome-derived microRNA-29c induces apoptosis of BIU-87 cells by down regulating BCL-2 and MCL-1. Asian Pacific Journal of Cancer Prevention 2014, 15, 3471–3476. [Google Scholar] [CrossRef] [PubMed]
  237. Yang, L.; Wu, X.H.; Wang, D.; Luo, C.L.; Chen, L.X. Bladder cancer cell-derived exosomes inhibit tumor cell apoptosis and induce cell proliferation in vitro. Molecular medicine reports 2013, 8, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
  238. Wang, J.; Li, D.; Zhuang, Y.; Fu, J.; Li, X.; Shi, Q.; Ju, X. Exosomes derived from bone marrow stromal cells decrease the sensitivity of leukemic cells to etoposide. Oncology letters 2017, 14, 3082–3088. [Google Scholar] [CrossRef]
  239. Brown, M.C.; Holl, E.K.; Boczkowski, D.; Dobrikova, E.; Mosaheb, M.; Chandramohan, V.; Bigner, D.D.; Gromeier, M.; Nair, S.K. Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen–specific CTLs. Science translational medicine 2017, 9, eaan4220. [Google Scholar] [CrossRef]
  240. Stamm, H.; Klingler, F.; Grossjohann, E.M.; Muschhammer, J.; Vettorazzi, E.; Heuser, M.; Mock, U.; Thol, F.; Vohwinkel, G.; Latuske, E.; et al. Immune checkpoints PVR and PVRL2 are prognostic markers in AML and their blockade represents a new therapeutic option. Oncogene 2018, 37, 5269. [Google Scholar] [CrossRef]
  241. Stamm, H.; Klingler, F.; Pende, D.; Vettorazzi, E.; Heuser, M.; Mock, U.; Bokemeyer, C.; Kischel, R.; Stienen, S.; Friedrich, M.; et al. Expression of Novel Immune Checkpoint Molecules PVR and PVRL2 Confers a Negative Prognosis to Patients with Acute Myeloid Leukemia and Their Blockade Augments T-Cell Mediated Lysis of AML Cells Alone or in Combination with the BiTE® Antibody Construct AMG 330. Blood 2015, 789. [Google Scholar]
  242. Whelan, S.; Ophir, E.; Kotturi, M.F.; Levy, O.; Ganguly, S.; Leung, L.; Vaknin, I.; Kumar, S.; Dassa, L.; Hansen, K.; et al. PVRIG and PVRL2 Are Induced in Cancer and Inhibit CD8+ T-cell Function. Cancer immunology research 2019, 7, 257–268. [Google Scholar] [CrossRef]
  243. Bai, M.; Li, W.; Yu, N.; Zhang, H.; Long, F.; Zeng, A. The crosstalk between β-catenin signaling and type I, type II and type III interferons in lung cancer cells. American journal of translational research 2017, 9, 2788. [Google Scholar] [PubMed]
  244. Hillesheim, A.; Nordhoff, C.; Boergeling, Y.; Ludwig, S.; Wixler, V. β-catenin promotes the type I IFN synthesis and the IFN-dependent signaling response but is suppressed by influenza A virus-induced RIG-I/NF-κB signaling. Cell communication and signaling 2014, 12, 29. [Google Scholar] [CrossRef] [PubMed]
  245. Ohsugi, T.; Yamaguchi, K.; Zhu, C.; Ikenoue, T.; Furukawa, Y. Decreased expression of interferon-induced protein 2 (IFIT2) by Wnt/β-catenin signaling confers anti-apoptotic properties to colorectal cancer cells. Oncotarget 2017, 8, 100176. [Google Scholar] [CrossRef] [PubMed]
  246. Pavlova, N.N.; Pallasch, C.; Elia, A.E.; Braun, C.J.; Westbrook, T.F.; Hemann, M.; Elledge, S.J. A role for PVRL4-driven cell–cell interactions in tumorigenesis. Elife 2013, 2, e00358. [Google Scholar] [CrossRef]
  247. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. cell 2002, 110, 673–687. [Google Scholar] [CrossRef]
  248. Fuchs, A.; Cella, M.; Giurisato, E.; Shaw, A.S.; Colonna, M. Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). The Journal of Immunology 2004, 172, 3994–3998. [Google Scholar] [CrossRef]
  249. Wikipedia contributors. Ferroptosis — Wikipedia, The Free Encyclopedia. 2019. Available online: https://en.wikipedia.org/w/index.php?title=Ferroptosis&oldid=882553314 (accessed on 11 May 2019).
  250. Brown, C.W.; Amante, J.J.; Mercurio, A.M. Cell clustering mediated by the adhesion protein PVRL4 is necessary for α6β4 integrin–promoted ferroptosis resistance in matrix-detached cells. Journal of Biological Chemistry 2018, 293, 12741–12748. [Google Scholar] [CrossRef]
  251. Abdullah, H.; Brankin, B.; Brady, C.; Cosby, S.L. Wild-type Measles Virus Infection Upregulates Poliovirus Receptor-Related 4 and Causes Apoptosis in Brain Endothelial Cells by Induction of Tumor Necrosis Factor-Related Apoptosis-lnducing Ligand. Journal of Neuropathology & Experimental Neurology 2013, 72, 681–696. [Google Scholar]
  252. Fabre-Lafay, S.; Garrido-Urbani, S.; Reymond, N.; Gonçalves, A.; Dubreuil, P.; Lopez, M. Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-α-converting enzyme (TACE)/ADAM-17. Journal of Biological Chemistry 2005, 280, 19543–19550. [Google Scholar] [CrossRef]
  253. Besschetnova, T.Y.; Ichimura, T.; Katebi, N.; Croix, B.S.; Bonventre, J.V.; Olsen, B.R. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biology 2015, 42, 56–73. [Google Scholar] [CrossRef]
  254. Nanda, A.; Carson-Walter, E.B.; Seaman, S.; Barber, T.D.; Stampfl, J.; Singh, S.; Vogelstein, B.; Kinzler, K.W.; Croix, B.S. TEM8 interacts with the cleaved C5 domain of collagen α3 (VI). Cancer Research 2004, 64, 817–820. [Google Scholar] [CrossRef] [PubMed]
  255. Hotchkiss, K.A.; Basile, C.M.; Spring, S.C.; Bonuccelli, G.; Lisanti, M.P.; Terman, B.I. TEM8 expression stimulates endothelial cell adhesion and migration by regulating cell–matrix interactions on collagen. Experimental cell research 2005, 305, 133–144. [Google Scholar] [CrossRef] [PubMed]
  256. Bell, S.E.; Mavila, A.; Salazar, R.; Bayless, K.J.; Kanagala, S.; Maxwell, S.A.; Davis, G.E. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. Journal of cell science 2001, 114, 2755–2773. [Google Scholar] [CrossRef] [PubMed]
  257. Bürgi, J.; Kunz, B.; Abrami, L.; Deuquet, J.; Piersigilli, A.; Scholl-Bürgi, S.; Lausch, E.; Unger, S.; Superti-Furga, A.; Bonaldo, P.; et al. CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. Nature communications 2017, 8, 15861. [Google Scholar] [CrossRef]
  258. Shieh, J.T.; Swidler, P.; Martignetti, J.A.; Ramirez, M.C.M.; Balboni, I.; Kaplan, J.; Kennedy, J.; Abdul-Rahman, O.; Enns, G.M.; Sandborg, C.; et al. Systemic hyalinosis: a distinctive early childhood–onset disorder characterized by mutations in the anthrax toxin receptor 2 gene (ANTRX2). Pediatrics 2006, 118, e1485–e1492. [Google Scholar] [CrossRef]
  259. Werner, E.; Kowalczyk, A.P.; Faundez, V. Anthrax toxin receptor 1/tumor endothelium marker 8 mediates cell spreading by coupling extracellular ligands to the actin cytoskeleton. Journal of Biological Chemistry 2006, 281, 23227–23236. [Google Scholar] [CrossRef]
  260. Go, M.Y.; Chow, E.M.; Mogridge, J. The cytoplasmic domain of anthrax toxin receptor 1 affects binding of the protective antigen. Infection and immunity 2009, 77, 52–59. [Google Scholar] [CrossRef]
  261. Scobie, H.M.; Rainey, G.J.A.; Bradley, K.A.; Young, J.A. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proceedings of the National Academy of Sciences 2003, 100, 5170–5174. [Google Scholar] [CrossRef]
  262. Löffek, S.; Schilling, O.; Franzke, C.W. Biological role of matrix metalloproteinases: a critical balance, 2011. European Respiratory Journal 2011, 38, 191–208. [Google Scholar] [CrossRef]
  263. Wikipedia contributors. Matrix metallopeptidase — Wikipedia, The Free Encyclopedia. 2019. Available online: https://en.wikipedia.org/w/index.php?title=Matrix_metallopeptidase&oldid=893034699 (accessed on 11 May 2019).
  264. Abrami, L.; Kunz, B.; Deuquet, J.; Bafico, A.; Davidson, G.; Van Der Goot, F.G. Functional interactions between anthrax toxin receptors and the WNT signalling protein LRP6. Cellular microbiology 2008, 10, 2509–2519. [Google Scholar] [CrossRef]
  265. Wei, W.; Lu, Q.; Chaudry, G.J.; Leppla, S.H.; Cohen, S.N. The LDL receptor-related protein LRP6 mediates internalization and lethality of anthrax toxin. Cell 2006, 124, 1141–1154. [Google Scholar] [CrossRef] [PubMed]
  266. Verma, K.; Gu, J.; Werner, E. Tumor endothelial marker 8 amplifies canonical Wnt signaling in blood vessels. PloS one 2011, 6, e22334. [Google Scholar] [CrossRef]
  267. Lee, H.S.; Lee, S.Y.; Rajasekaran, N.; Joe, H.E.; Shin, Y.K.; Kim, S.M.; Park, S.G.; Kang, T.J.; Kim, J.C. Human aortic endothelial cells compare favourably with macrophages for the study of anthrax toxins. International Journal of Nanotechnology 2013, 10. [Google Scholar] [CrossRef]
  268. Madan, B.; Ke, Z.; Harmston, N.; Ho, S.Y.; Frois, A.; Alam, J.; Jeyaraj, D.A.; Pendharkar, V.; Ghosh, K.; Virshup, I.H.; et al. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene 2016, 35, 2197. [Google Scholar] [CrossRef]
  269. Faivre, R.; Iooss, B.; Mahévas, S.; Makowski, D.; Monod, H. Analyse de sensibilité et exploration de modèles: application aux sciences de la nature et de l’environnement; Editions Quae; 2013. [Google Scholar]
  270. Iooss, B.; Lemaître, P. A review on global sensitivity analysis methods. arXiv 2014, arXiv:1404.2405. [Google Scholar]
  271. Borgonovo, E. A new uncertainty importance measure. Reliability Engineering & System Safety 2007, 92, 771–784. [Google Scholar]
  272. Da Veiga, S. Global sensitivity analysis with dependence measures. Journal of Statistical Computation and Simulation 2015, 85, 1283–1305. [Google Scholar] [CrossRef]
  273. Gretton, A.; Bousquet, O.; Smola, A.; Schölkopf, B. Measuring statistical dependence with Hilbert-Schmidt norms. Algorithmic learning theory. Springer, 2005; pp. 63–77. [Google Scholar]
  274. Jansen, M.J. Analysis of variance designs for model output. Computer Physics Communications 1999, 117, 35–43. [Google Scholar] [CrossRef]
  275. Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications 2010, 181, 259–270. [Google Scholar] [CrossRef]
  276. Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications 2002, 145, 280–297. [Google Scholar] [CrossRef]
  277. Saltelli, A.; Annoni, P. How to avoid a perfunctory sensitivity analysis. Environmental Modelling & Software 2010, 25, 1508–1517. [Google Scholar]
  278. Sobol’, I.M. On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie 1990, 2, 112–118. [Google Scholar]
Figure 1. Cartoon of Wnt Signaling from [3].
Figure 1. Cartoon of Wnt Signaling from [3].
Preprints 118532 g001
Figure 2. Cartoon of Wnt Secretion from [3].
Figure 2. Cartoon of Wnt Secretion from [3].
Preprints 118532 g002
Table 1. 2nd order interaction ranking between ABC w.r.t WNT family members.
Table 1. 2nd order interaction ranking between ABC w.r.t WNT family members.
Ranking ABC family w.r.t WNT family
Ranking of ABC family w.r.t WNT-2B Ranking of ABC family w.r.t WNT4
laplace linear rbf laplace linear rbf
WNT2B - ABC-A5 2108 310 72 ABC-A5 - WNT4 359 1285 433
ABC-B11 - WNT2B 319 2132 18 ABC-B11 - WNT4 872 1284 867
WNT2B - ABC-C3 1853 262 2498 ABC-C3 - WNT4 10 617 296
WNT2B - ABC-C5 2213 1685 840 WNT4 - ABC-C5 1383 2119 215
WNT2B - ABC-C13 1149 1191 2175 WNT4 - ABC-C13 1649 1814 542
WNT2B - ABC-D1 1119 177 2163 ABC-D1 - WNT4 1041 1171 1740
WNT2B - ABC-G1 1068 1583 214 ABC-G1 - WNT4 1020 1146 2025
WNT2B - ABC-G2 1500 1533 172 ABC-G2 - WNT4 784 1431 435
Ranking of ABC family w.r.t WNT-7B Ranking of ABC family w.r.t WNT-9A
laplace linear rbf laplace linear rbf
ABC-A5 - WNT7B 1550 516 995 ABC-A5 - WNT9A 735 349 1479
ABC-B11 - WNT7B 968 599 324 ABC-B11 - WNT9A 843 1647 689
ABC-C3 - WNT7B 694 1668 695 ABC-C3 - WNT9A 1590 359 2136
WNT7B - ABC-C5 979 1715 2268 ABC-C5 - WNT9A 1295 368 2265
WNT7B - ABC-C13 950 2245 2298 ABC-C13 - WNT9A 1394 2294 1134
ABC-D1 - WNT7B 252 850 1215 ABC-D1 - WNT9A 910 2367 675
ABC-G1 - WNT7B 269 733 1160 ABC-G1 - WNT9A 426 2457 1074
ABC-G2 - WNT7B 1717 224 264 ABC-G2 - WNT9A 1108 2350 960
Table 2. 2nd order interaction ranking between WNT w.r.t ABC family members.
Table 2. 2nd order interaction ranking between WNT w.r.t ABC family members.
Ranking WNT family w.r.t ABC family
Ranking of WNT family w.r.t ABC-A5 Ranking of WNT family w.r.t ABC-B11
laplace linear rbf laplace linear rbf
ABC-A5 - WNT2B 1549 2018 2132 WNT2B - ABC-B11 1083 703 1887
ABC-A5 - WNT4 1375 2436 2449 WNT4 - ABC-B11 156 298 1517
ABC-A5 - WNT7B 2420 1527 460 WNT7B - ABC-B11 1134 204 2323
ABC-A5 - WNT9A 1989 2209 2365 WNT9A - ABC-B11 226 2134 1480
Ranking of WNT family w.r.t ABC-C3 Ranking of WNT family w.r.t ABC-C5
laplace linear rbf laplace linear rbf
ABC-C3 - WNT2B 1127 1482 1905 WNT2B - ABC-C5 1970 2309 2248
ABC-C3 - WNT4 897 1454 489 WNT4 - ABC-C5 2129 229 230
ABC-C3 - WNT7B 656 2080 772 WNT7B - ABC-C5 1539 756 1258
ABC-C3 - WNT9A 2339 1616 814 ABC-C5 - WNT9A 213 2183 2480
Ranking of WNT family w.r.t ABC-C13 Ranking of WNT family w.r.t ABC-D1
laplace linear rbf laplace linear rbf
WNT2B - ABC-C13 950 2150 2048 WNT2B - ABC-D1 1751 1370 1174
WNT4 - ABC-C13 538 326 2242 WNT4 - ABC-D1 45 1784 101
WNT7B - ABC-C13 2508 1830 1219 WNT7B - ABC-D1 2238 2021 1121
WNT9A - ABC-C13 738 2501 634 WNT9A - ABC-D1 732 1526 1759
Ranking of WNT family w.r.t ABC-G1 Ranking of WNT family w.r.t ABC-G2
laplace linear rbf laplace linear rbf
WNT2B - ABC-G1 318 775 2040 WNT2B - ABC-G2 1342 1987 1230
WNT4 - ABC-G1 2169 157 39 WNT4 - ABC-G2 862 1352 1985
WNT7B - ABC-G1 587 1808 1866 WNT7B - ABC-G2 2334 2145 1526
WNT9A - ABC-G1 856 2350 920 WNT9A - ABC-G2 1919 1284 2003
Table 3. 2nd order combinatorial hypotheses between ABC and WNT family members.
Table 3. 2nd order combinatorial hypotheses between ABC and WNT family members.
Unexplored combinatorial hypotheses
ABC w.r.t WNT
WNT-2B ABC-C3
WNT-7B ABC-C13
WNT w.r.t ABC
ABC-A5 WNT-2B/4/9A
WNT-2B/9A ABC-C5
WNT-2B/7B ABC-C13
WNT-7B ABC-D1
WNT-7B ABC-G1
WNT-7B/9A ABC-G2
Table 4. 2nd order interaction ranking between ABC w.r.t IL family members.
Table 4. 2nd order interaction ranking between ABC w.r.t IL family members.
Ranking IL family VS WNT family
Ranking of IL family w.r.t WNT-2B Ranking of WNT-2B w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - WNT2B 6 2363 924 IL1A - WNT2B 2290 1360 2427
IL1B - WNT2B 1015 1278 794 IL1B - WNT2B 847 2168 1369
IL1RAP - WNT2B 1481 1391 799 IL1RAP - WNT2B 2488 35 1892
IL1RN - WNT2B 1229 1967 1582 IL1RN - WNT2B 1307 43 2514
IL2RG - WNT2B 1434 1100 2335 IL2RG - WNT2B 1384 1255 1283
IL6ST - WNT2B 1157 1797 2088 IL6ST - WNT2B 776 242 1481
IL8 - WNT2B 2107 1817 2251 IL8 - WNT2B 2157 2025 593
IL10RB - WNT2B 961 2494 512 IL10RB - WNT2B 2419 856 1419
IL15 - WNT2B 1008 1214 1714 IL15 - WNT2B 1171 625 1215
IL15RA - WNT2B 728 1782 1382 IL15RA - WNT2B 2262 1021 657
IL17C - WNT2B 477 2357 1483 IL17C - WNT2B 1947 1304 1331
IL17REL - WNT2B 1824 12 2241 IL17REL - WNT2B 1980 919 1617
Ranking of IL family w.r.t WNT-4 Ranking of WNT-4 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - WNT4 2500 1346 955 IL1A - WNT4 507 221 91
IL1B - WNT4 1867 1976 1682 IL1B - WNT4 129 250 291
IL1RAP - WNT4 2302 1826 803 IL1RAP - WNT4 74 19 1553
IL1RN - WNT4 1314 856 104 IL1RN - WNT4 851 1218 2029
IL2RG - WNT4 1289 590 319 IL2RG - WNT4 520 920 424
IL6ST - WNT4 1315 273 2422 IL6ST - WNT4 991 1443 2454
IL8 - WNT4 1722 549 11 IL8 - WNT4 1980 2144 1267
IL10RB - WNT4 1700 153 1055 IL10RB - WNT4 1828 2259 1993
IL15 - WNT4 1012 871 1658 IL15 - WNT4 959 553 448
IL15RA - WNT4 1987 2265 819 IL15RA - WNT4 788 139 645
IL17C - WNT4 2018 1639 1881 IL17C - WNT4 406 276 232
IL17REL - WNT4 1019 425 893 IL17REL - WNT4 955 595 1689
Ranking of IL family w.r.t WNT-7B Ranking of WNT-7B w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - WNT7B 662 950 149 IL1A - WNT7B 1058 2134 2312
IL1B - WNT7B 290 167 502 IL1B - WNT7B 1683 1871 1575
IL1RAP - WNT7B 872 1976 789 IL1RAP - WNT7B 381 1728 1517
IL1RN - WNT7B 1882 1796 503 IL1RN - WNT7B 1907 2162 1605
IL2RG - WNT7B 1381 446 482 IL2RG - WNT7B 1070 1695 2245
IL6ST - WNT7B 819 1284 1528 IL6ST - WNT7B 1268 1881 2020
IL8 - WNT7B 2232 220 701 IL8 - WNT7B 1551 58 2149
IL10RB - WNT7B 1318 1198 656 IL10RB - WNT7B 375 2145 803
IL15 - WNT7B 1000 290 245 IL15 - WNT7B 2307 1524 1687
IL15RA - WNT7B 1535 1054 2204 IL15RA - WNT7B 1575 191 1949
IL17C - WNT7B 515 263 113 IL17C - WNT7B 1956 2388 1982
IL17REL - WNT7B 2053 2445 2489 IL17REL - WNT7B 322 859 1631
Ranking of IL family w.r.t WNT-9A Ranking of WNT-9A w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - WNT9A 199 2228 1270 IL1A - WNT9A 597 1322 469
IL1B - WNT9A 305 2266 466 IL1B - WNT9A 776 652 1010
IL1RAP - WNT9A 1773 2273 2159 IL1RAP - WNT9A 2003 2179 964
IL1RN - WNT9A 2479 1506 1503 IL1RN - WNT9A 1363 1829 1632
IL2RG - WNT9A 1489 598 865 IL2RG - WNT9A 186 260 1276
IL6ST - WNT9A 2229 761 1103 IL6ST - WNT9A 2099 1416 1674
IL8 - WNT9A 346 1103 1910 IL8 - WNT9A 589 1751 1529
IL10RB - WNT9A 1836 1556 1006 IL10RB - WNT9A 1021 2127 1534
IL15 - WNT9A 168 1445 855 IL15 - WNT9A 1357 1025 1709
IL15RA - WNT9A 1776 206 2380 IL15RA - WNT9A 2149 2362 737
IL17C - WNT9A 72 2442 569 IL17C - WNT9A 1532 2465 1607
IL17REL - WNT9A 2512 24 580 IL17REL - WNT9A 2101 1940 313
Table 5. 2nd order combinatorial hypotheses between IL and WNT family members.
Table 5. 2nd order combinatorial hypotheses between IL and WNT family members.
Unexplored combinatorial hypotheses
IL w.r.t WNT
IL-6ST/8/17REL WNT-2B
IL-1B/1RAP/15RA/17C WNT-4
IL-1RN/17REL WNT-7B
IL-1RAP/15RA WNT-9A
WNT w.r.t IL
IL-1A/1RAP/8 WNT-2B
IL-8/10RB WNT-4
IL-1A/1RN/6ST/17C WNT-7B
IL-1RAP/15RA/17REL WNT-9A
Table 6. 2nd order interaction ranking between WNT w.r.t UBE2 family members.
Table 6. 2nd order interaction ranking between WNT w.r.t UBE2 family members.
Ranking UBE2 family VS WNT family
Ranking of UBE2-A w.r.t WNT family Ranking of WNT family w.r.t UBE2-A
laplace linear rbf laplace linear rbf
WNT2B - UBE2A 1608 203 181 WNT2B - UBE2A 1677 899 1671
WNT4 - UBE2A 1293 2314 2279 WNT4 - UBE2A 424 1062 545
WNT7B - UBE2A 1139 1217 1961 WNT7B - UBE2A 392 2345 2151
WNT9A - UBE2A 443 1705 287 WNT9A - UBE2A 806 1581 1098
Ranking of UBE2-B w.r.t WNT family Ranking of WNT family w.r.t UBE2-B
laplace linear rbf laplace linear rbf
WNT2B - UBE2B 1473 2220 599 WNT2B - UBE2B 2020 553 73
WNT4 - UBE2B 2260 2008 2141 WNT4 - UBE2B 301 334 47
WNT7B - UBE2B 2116 2206 1454 WNT7B - UBE2B 1336 2052 1903
WNT9A - UBE2B 2291 79 1381 WNT9A - UBE2B 2300 2476 2326
Ranking of UBE2-F w.r.t WNT family Ranking of WNT family w.r.t UBE2-F
laplace linear rbf laplace linear rbf
WNT2B - UBE2F 1246 833 2387 WNT2B - UBE2F 1006 1917 49
WNT4 - UBE2F 2135 2505 1762 WNT4 - UBE2F 63 1109 664
WNT7B - UBE2F 2423 1673 2077 WNT7B - UBE2F 2236 1660 1751
WNT9A - UBE2F 2032 1165 128 WNT9A - UBE2F 1014 2251 2179
Ranking of UBE2-H w.r.t WNT family Ranking of WNT family w.r.t UBE2-H
laplace linear rbf laplace linear rbf
WNT2B - UBE2H 1841 351 2178 WNT2B - UBE2H 2015 1019 1331
WNT4 - UBE2H 1090 778 1224 WNT4 - UBE2H 218 2248 2155
WNT7B - UBE2H 1505 1215 527 WNT7B - UBE2H 2294 1209 1367
WNT9A - UBE2H 605 332 2479 WNT9A - UBE2H 437 1202 2379
Ranking of UBE2-J1 w.r.t WNT family Ranking of WNT family w.r.t UBE2-J1
laplace linear rbf laplace linear rbf
WNT2B - UBE2J1 1539 1251 1814 WNT2B - UBE2J1 1500 1562 1255
WNT4 - UBE2J1 1583 2478 1604 WNT4 - UBE2J1 292 62 65
WNT7B - UBE2J1 2349 1207 2183 WNT7B - UBE2J1 552 1877 1846
WNT9A - UBE2J1 1835 2053 1652 WNT9A - UBE2J1 2471 2137 2469
Ranking of UBE2-Z w.r.t WNT family Ranking of WNT family w.r.t UBE2-Z
laplace linear rbf laplace linear rbf
WNT2B - UBE2Z 58 1756 1878 WNT2B - UBE2Z 1576 1171 1543
WNT4 - UBE2Z 2195 2468 938 WNT4 - UBE2Z 896 132 186
WNT7B - UBE2Z 2343 1973 723 WNT7B - UBE2Z 1972 1800 1399
WNT9A - UBE2Z 136 1986 4 WNT9A - UBE2Z 1149 865 813
Table 8. 2nd order interaction ranking between WNT w.r.t EXOSC family members.
Table 8. 2nd order interaction ranking between WNT w.r.t EXOSC family members.
Ranking EXOSC family VS WNT10B
Ranking of WNT10B w.r.t EXOSC family Ranking of EXOSC family w.r.t WNT10B
laplace linear rbf laplace linear rbf
EXOSC2 - WNT10B 221 433 699 EXOSC2 - WNT10B 1695 1077 992
EXOSC3 - WNT10B 906 1292 860 EXOSC3 - WNT10B 610 2496 2428
EXOSC5 - WNT10B 919 484 997 EXOSC5 - WNT10B 832 1445 1589
EXOSC6 - WNT10B 407 1195 1747 EXOSC6 - WNT10B 1319 1738 1689
EXOSC7 - WNT10B 2599 2571 2584 EXOSC7 - WNT10B 2710 13 4
EXOSC8 - WNT10B 336 1437 391 EXOSC8 - WNT10B 451 2284 2493
EXOSC9 - WNT10B 222 701 732 EXOSC9 - WNT10B 1378 1501 1651
Table 9. 2nd order combinatorial hypotheses between EXOSC and WNT10B family members.
Table 9. 2nd order combinatorial hypotheses between EXOSC and WNT10B family members.
Unexplored combinatorial hypotheses
EXOSC w.r.t WNT10B
EXOSC-2/5/6/7/9 WNT10B
WNT10B w.r.t EXOSC
EXOSC-2/3/5/6/8/9 WNT10B
Table 12. 2nd order interaction ranking between WNT VS TP53 family members.
Table 12. 2nd order interaction ranking between WNT VS TP53 family members.
Ranking TP53 family VS WNT
Ranking of TP53 family w.r.t WNT2B Ranking of WNT2B w.r.t TP53 family
laplace linear rbf laplace linear rbf
TP53BP2 - WNT2B 2286 234 1550 TP53BP2 - WNT2B 313 908 2457
TP53I3 - WNT2B 2056 1712 1461 TP53I3 - WNT2B 713 1223 1720
TP53INP1 - WNT2B 945 1805 2056 TP53INP1 - WNT2B 1853 2089 762
TP53INP2 - WNT2B 369 1277 453 TP53INP2 - WNT2B 754 1723 2335
Ranking of TP53 family w.r.t WNT4 Ranking of WNT4 w.r.t TP53 family
laplace linear rbf laplace linear rbf
TP53BP2 - WNT4 1034 315 1734 TP53BP2 - WNT4 678 1464 2500
TP53I3 - WNT4 1738 1631 232 TP53I3 - WNT4 297 319 493
TP53INP1 - WNT4 645 498 450 TP53INP1 - WNT4 131 2414 2493
TP53INP2 - WNT4 671 1440 405 TP53INP2 - WNT4 529 467 154
Ranking of TP53 family w.r.t WNT7B Ranking of WNT7B w.r.t TP53 family
laplace linear rbf laplace linear rbf
TP53BP2 - WNT7B 2333 1282 1673 TP53BP2 - WNT7B 1442 2217 1068
TP53I3 - WNT7B 324 712 284 TP53I3 - WNT7B 1712 1988 2393
TP53INP1 - WNT7B 1227 1585 1019 TP53INP1 - WNT7B 1226 1685 1497
TP53INP2 - WNT7B 845 1004 470 TP53INP2 - WNT7B 1017 1746 1925
Ranking of TP53 family w.r.t WNT9A Ranking of WNT9A w.r.t TP53 family
laplace linear rbf laplace linear rbf
TP53BP2 - WNT9A 908 2232 2143 TP53BP2 - WNT9A 1035 371 1218
TP53I3 - WNT9A 1707 2297 1018 TP53I3 - WNT9A 1351 1281 1695
TP53INP1 - WNT9A 447 243 1245 TP53INP1 - WNT9A 295 2045 2437
TP53INP2 - WNT9A 22 2497 1138 TP53INP2 - WNT9A 421 1765 1121
Table 13. 2nd order combinatorial hypotheses between TP53 and WNT family members.
Table 13. 2nd order combinatorial hypotheses between TP53 and WNT family members.
Unexplored combinatorial hypotheses
TP53 family w.r.t WNT
TP53I3 WNT2B
TP53INP1 WNT2B
TP53BP2 WNT9A
WNT family w.r.t TP53
TP53INP1 WNT2B
TP53INP2 WNT2B
TP53INP1 WNT4
TP53I3 WNT7B
TP53INP1 WNT9A
Table 21. 2nd order combinatorial hypotheses between MUC and RIPK.
Table 21. 2nd order combinatorial hypotheses between MUC and RIPK.
Unexplored combinatorial hypotheses
MUC w.r.t RIKP family
MUC1 RIPK1
MUC3A RIPK3
MUC12 RIPK4
MUC20 RIPK3
RIPK w.r.t MUC family
MUC1 RIPK1/RIPK2
MUC4 RIPK4
MUC17 RIPK4
MUC20 RIPK2
Table 22. 2nd order interaction ranking between TNF w.r.t NFkB-2/I family members.
Table 22. 2nd order interaction ranking between TNF w.r.t NFkB-2/I family members.
Ranking TNF family w.r.t NFkB-2/I family
Ranking of TNF family w.r.t NFkB2 Ranking of TNF family w.r.t NFkBI-A
laplace linear rbf laplace linear rbf
NFkB2 - TNF 1620 615 1897 NFkBI-A - TNF 820 1495 1109
NFkB2 - TNF-AIP1 324 649 1387 NFkBI-A - TNF-AIP1 1779 1904 1400
NFkB2 - TNF-AIP2 1437 715 1986 NFkBI-A - TNF-AIP2 1247 217 766
NFkB2 - TNF-AIP3 1272 1574 441 NFkBI-A - TNF-AIP3 776 981 212
NFkB2 - TNF-RSF1A 30 2465 575 NFkBI-A - TNF-RSF1A 1580 1422 43
NFkB2 - TNF-RSF10A 2095 817 2509 NFkBI-A - TNF-RSF10A 2499 1438 2191
NFkB2 - TNF-RSF10B 37 1411 250 NFkBI-A - TNF-RSF10B 2075 1555 1401
NFkB2 - TNF-RSF10D 2473 12 1499 NFkBI-A - TNF-RSF10D 2498 2344 2501
NFkB2 - TNF-RSF12A 1813 824 1893 NFkBI-A - TNF-RSF12A 2337 1101 1491
NFkB2 - TNF-RSF14 1799 834 302 NFkBI-A - TNF-RSF14 1974 2045 1136
NFkB2 - TNF-RSF21 332 1973 1719 NFkBI-A - TNF-RSF21 1119 951 903
NFkB2 - TNF-SF10 1627 1614 1299 NFkBI-A - TNF-SF10 2185 499 2316
NFkB2 - TNF-SF15 564 2437 1064 NFkBI-A - TNF-SF15 564 1684 1473
Ranking of TNF family w.r.t NFkBI-E Ranking of TNF family w.r.t NFkBI-Z
laplace linear rbf laplace linear rbf
NFkBI-E - TNF 2443 925 228 NFkBI-Z - TNF 851 776 850
NFkBI-E - TNF-AIP1 1720 685 971 NFkBI-Z - TNF-AIP1 153 397 621
NFkBI-E - TNF-AIP2 2347 1863 964 NFkBI-Z - TNF-AIP2 2188 432 566
NFkBI-E - TNF-AIP3 559 1663 280 NFkBI-Z - TNF-AIP3 775 10 2362
NFkBI-E - TNF-RSF1A 846 1624 176 NFkBI-Z - TNF-RSF1A 399 2006 93
NFkBI-E - TNF-RSF10A 840 359 952 NFkBI-Z - TNF-RSF10A 1380 2004 1540
NFkBI-E - TNF-RSF10B 835 2257 1294 NFkBI-Z - TNF-RSF10B 2204 1438 1991
NFkBI-E - TNF-RSF10D 2454 1018 1566 NFkBI-Z - TNF-RSF10D 2214 2033 2514
NFkBI-E - TNF-RSF12A 383 166 1464 NFkBI-Z - TNF-RSF12A 1638 2370 1841
NFkBI-E - TNF-RSF14 1877 2282 1426 NFkBI-Z - TNF-RSF14 1120 1505 1899
NFkBI-E - TNF-RSF21 2129 1293 831 NFkBI-Z - TNF-RSF21 207 804 344
NFkBI-E - TNF-SF10 890 1096 1816 NFkBI-Z - TNF-SF10 609 1088 1344
NFkBI-E - TNF-SF15 523 1957 32 NFkBI-Z - TNF-SF15 1237 1375 2196
Table 23. 2nd order interaction ranking between NFkB-2/I family w.r.t TNF family members.
Table 23. 2nd order interaction ranking between NFkB-2/I family w.r.t TNF family members.
Ranking NFkB-2/I family w.r.t TNF family
Ranking of NFkB-2/I family w.r.t TNF Ranking of NFkB-2/I family w.r.t TNF-AIP1
laplace linear rbf laplace linear rbf
NFkB-2 - TNF 1632 989 1453 NFkB-2 - TNF-AIP1 2027 1807 1140
NFkBI-A - TNF 904 561 658 NFkBI-A - TNF-AIP1 2072 349 1218
NFkBI-E - TNF 2116 1247 803 NFkBI-E - TNF-AIP1 56 420 1551
NFkBI-Z - TNF 691 51 265 NFkBI-Z - TNF-AIP1 499 1648 646
Ranking of NFkB-2/I family w.r.t TNF-AIP2 Ranking of NFkB-2/I family w.r.t TNF-AIP3
laplace linear rbf laplace linear rbf
NFkB-2 - TNF-AIP2 2077 1027 2224 NFkB-2 - TNF-AIP3 1042 2336 2130
NFkBI-A - TNF-AIP2 499 22 1192 NFkBI-A - TNF-AIP3 1452 411 637
NFkBI-E - TNF-AIP2 526 1755 338 NFkBI-E - TNF-AIP3 711 1686 2041
NFkBI-Z - TNF-AIP2 452 988 1617 NFkBI-Z - TNF-AIP3 1979 886 278
Ranking of NFkB-2/I family w.r.t TNF-RSF1A Ranking of NFkB-2/I family w.r.t TNF-RSF10A
laplace linear rbf laplace linear rbf
NFkB-2 - TNF-RSF1A 648 164 990 NFkB-2 - TNF-RSF10A 611 1007 454
NFkBI-A - TNF-RSF1A 435 1454 130 NFkBI-A - TNF-RSF10A 458 190 1412
NFkBI-E - TNF-RSF1A 431 980 1417 NFkBI-E - TNF-RSF10A 1719 263 374
NFkBI-Z - TNF-RSF1A 550 2213 1447 NFkBI-Z - TNF-RSF10A 342 742 732
Ranking of NFkB-2/I w.r.t TNF-RSF10B Ranking of NFkB-2/I w.r.t TNF-RSF10D
laplace linear rbf laplace linear rbf
NFkB-2 - TNF-RSF10B 713 1408 2397 NFkB-2 - TNF-RSF10D 123 1939 543
NFkBI-A - TNF-RSF10B 1237 1054 562 NFkBI-A - TNF-RSF10D 371 948 584
NFkBI-E - TNF-RSF10B 1352 931 2142 NFkBI-E - TNF-RSF10D 2136 621 1811
NFkBI-Z - TNF-RSF10B 165 2407 361 NFkBI-Z - TNF-RSF10D 259 400 1341
Ranking of NFkB-2/I family w.r.t TNF-RSF12A Ranking of NFkB-2/I family w.r.t TNF-RSF14
laplace linear rbf laplace linear rbf
NFkB-2 - TNF-RSF12A 250 341 1232 NFkB-2 - TNF-RSF14 299 1253 543
NFkBI-A - TNF-RSF12A 689 2225 17 NFkBI-A - TNF-RSF14 280 1126 277
NFkBI-E - TNF-RSF12A 1188 1133 765 NFkBI-E - TNF-RSF14 278 2025 1557
NFkBI-Z - TNF-RSF12A 973 1590 2298 NFkBI-Z - TNF-RSF14 131 893 1953
Ranking of NFkB-2/I family w.r.t TNF-RSF21 Ranking of NFkB-2/I family w.r.t TNF-SF10
laplace linear rbf laplace linear rbf
NFkB-2 - TNF-RSF21 250 341 1232 NFkB-2 - TNF-SF10 1643 496 743
NFkBI-A - TNF-RSF21 689 2225 17 NFkBI-A - TNF-SF10 262 1238 1352
NFkBI-E - TNF-RSF21 1188 1133 765 NFkBI-E - TNF-SF10 985 1090 158
NFkBI-Z - TNF-RSF21 973 1590 2298 NFkBI-Z - TNF-SF10 537 1557 2104
Ranking of NFkB-2/I family w.r.t TNF-SF15
laplace linear rbf
NFkB-2 - TNF-SF15 1521 786 1211
NFkBI-A - TNF-SF15 2367 325 1079
NFkBI-E - TNF-SF15 97 1868 1195
NFkBI-Z - TNF-SF15 774 407 372
Table 28. 2nd order interaction ranking between STAT family w.r.t IKBKE.
Table 28. 2nd order interaction ranking between STAT family w.r.t IKBKE.
Ranking STAT family vs IKBKE
Ranking of STAT family w.r.t IKBKE family Ranking of IKBKE w.r.t STAT family
laplace linear rbf laplace linear rbf
STAT2 - IKBKE 1267 2033 1892 STAT2 - IKBKE 1604 554 2108
STAT3 - IKBKE 1055 2144 1672 STAT3 - IKBKE 1442 2179 1976
STAT5A - IKBKE 178 1687 1183 STAT5A - IKBKE 2085 2409 2277
Table 29. 2nd order combinatorial hypotheses between NFkB-2/I and TNF
Table 29. 2nd order combinatorial hypotheses between NFkB-2/I and TNF
Unexplored combinatorial hypotheses
STAT w.r.t IKBKE
STAT2 IKBKE
IKBKE w.r.t STAT
STAT3 IKBKE
STAT5A IKBKE
Table 30. 2nd order interaction ranking between STAT family w.r.t IKBKE.
Table 30. 2nd order interaction ranking between STAT family w.r.t IKBKE.
Ranking TRAF family vs IKBKE
Ranking of IKBKE w.r.t TRAF family Ranking of TRAF family w.r.t IKBKE
laplace linear rbf laplace linear rbf
TRAF4 - IKBKE 1235 2158 2416 TRAF4 - IKBKE 1606 461 1330
TRAF6 - IKBKE 1694 389 1554 TRAF6 - IKBKE 2105 1376 1819
TRAFD1 - IKBKE 1687 532 1793 TRAFD1 - IKBKE 866 733 496
TRAF3IP2 - IKBKE 1349 738 1987 TRAF3IP2 - IKBKE 924 1966 334
Table 31. 2nd order combinatorial hypotheses between NFkB-2/I and TNF
Table 31. 2nd order combinatorial hypotheses between NFkB-2/I and TNF
Unexplored combinatorial hypotheses
TRAF w.r.t IKBKE
TRAF6 IKBKE
IKBKE w.r.t TRAF
TRAF4 IKBKE
Table 39. 2nd order combinatorial hypotheses between NFkB-2/I and ABC
Table 39. 2nd order combinatorial hypotheses between NFkB-2/I and ABC
Unexplored combinatorial hypotheses
NFkB-2/I family w.r.t REL-B
NFkB2 RELB
NFKBIZ RELB
REL-A w.r.t NFkB-2/I family
NFkB2 RELA
NFKBIA RELA
Table 41. 2nd order combinatorial hypotheses between TNF and WNT family.
Table 41. 2nd order combinatorial hypotheses between TNF and WNT family.
Unexplored combinatorial hypotheses
TNF w.r.t WNT
TNF-RSF1A/RSF10A/RSF10B/SF15 WNT2B
TNF-RSF10A/RSF10D/RSF12A/SF10 WNT4
TNF-RSF12A/SF10 WNT7B
TNF-RSF21 WNT9A
WNT w.r.t TNF
TNF-RSF10B/RSF10D/RSF14 WNT2B
TNF-AIP3/RSF10B WNT4
TNF, TNF-RSF1A/RSF14 WNT7B
TNF-AIP2/AIP3/RSF10A/RSF12A/SF10 WNT9A
Table 42. 2nd order interaction ranking between TNF w.r.t MUC family members.
Table 42. 2nd order interaction ranking between TNF w.r.t MUC family members.
Ranking TNF family w.r.t MUC family
Ranking of TNF family w.r.t MUC1 Ranking of TNF family w.r.t MUC3A
laplace linear rbf laplace linear rbf
MUC1 - TNF 112 72 88 MUC3A - TNF 1353 1659 1479
MUC1 - TNFAIP1 1193 1603 997 MUC3A - TNFAIP1 2178 1209 1347
MUC1 - TNFAIP2 716 405 2340 MUC3A - TNFAIP2 1075 1614 1158
MUC1 - TNFAIP3 2115 1636 1882 MUC3A - TNFAIP3 962 1020 2491
MUC1 - TNFRSF1A 1380 422 1390 MUC3A - TNFRSF1A 461 1708 189
MUC1 - TNFRSF10A 1009 2180 1095 MUC3A - TNFRSF10A 2237 1910 335
MUC1 - TNFRSF10B 1923 732 88 MUC3A - TNFRSF10B 450 1443 2040
MUC1 - TNFRSF10D 2303 2154 376 MUC3A - TNFRSF10D 1678 2049 102
MUC1 - TNFRSF12A 2019 2009 1700 MUC3A - TNFRSF12A 2349 1315 382
MUC1 - TNFRSF14 1955 1899 1429 MUC3A - TNFRSF14 956 1442 1953
MUC1 - TNFRSF21 337 477 968 MUC3A - TNFRSF21 1297 1492 1959
MUC1 - TNFSF10 1111 1592 1198 MUC3A - TNFSF10 891 257 798
MUC1 - TNFSF15 936 986 2391 MUC3A - TNFSF15 2285 795 1164
Ranking of TNF family w.r.t MUC4 Ranking of TNF family w.r.t MUC12
laplace linear rbf laplace linear rbf
MUC4 - TNF 1896 231 1355 MUC12 - TNF 1862 102 135
MUC4 - TNFAIP1 864 397 987 MUC12 - TNFAIP1 1386 479 942
MUC4 - TNFAIP2 73 1011 1087 MUC12 - TNFAIP2 1056 303 1587
MUC4 - TNFAIP3 1159 1751 179 MUC12 - TNFAIP3 2493 1259 1330
MUC4 - TNFRSF1A 179 71 16 MUC12 - TNFRSF1A 1709 1440 837
MUC4 - TNFRSF10A 1668 1892 1652 MUC12 - TNFRSF10A 598 531 363
MUC4 - TNFRSF10B 2024 1396 331 MUC12 - TNFRSF10B 409 1572 1297
MUC4 - TNFRSF10D 2503 2403 2356 MUC12 - TNFRSF10D 30 102 149
MUC4 - TNFRSF12A 1684 700 745 MUC12 - TNFRSF12A 298 882 153
MUC4 - TNFRSF14 1675 2029 1146 MUC12 - TNFRSF14 1749 2237 135
MUC4 - TNFRSF21 647 326 323 MUC12 - TNFRSF21 1795 607 2438
MUC4 - TNFSF10 936 2134 1957 MUC12 - TNFSF10 801 1795 2435
MUC4 - TNFSF15 1440 1180 1627 MUC12 - TNFSF15 1741 889 1098
Ranking of TNF family w.r.t MUC13 Ranking of TNF family w.r.t MUC17
laplace linear rbf laplace linear rbf
MUC13 - TNF 2282 220 127 MUC17 - TNF 683 362 515
MUC13 - TNFAIP1 378 230 1935 MUC17 - TNFAIP1 117 188 272
MUC13 - TNFAIP2 2464 220 697 MUC17 - TNFAIP2 1311 414 351
MUC13 - TNFAIP3 2274 1233 1446 MUC17 - TNFAIP3 1589 1547 1539
MUC13 - TNFRSF1A 274 2152 514 MUC17 - TNFRSF1A 428 205 329
MUC13 - TNFRSF10A 2500 938 1844 MUC17 - TNFRSF10A 2269 2364 2005
MUC13 - TNFRSF10B 1891 1497 225 MUC17 - TNFRSF10B 1199 1323 2120
MUC13 - TNFRSF10D 1191 2263 2294 MUC17 - TNFRSF10D 1798 1378 2302
MUC13 - TNFRSF12A 460 1753 1704 MUC17 - TNFRSF12A 2041 2303 1049
MUC13 - TNFRSF14 2220 1602 1359 MUC17 - TNFRSF14 2043 825 1700
MUC13 - TNFRSF21 1612 1673 127 MUC17 - TNFRSF21 2013 393 119
MUC13 - TNFSF10 2236 1598 1495 MUC17 - TNFSF10 280 1025 817
MUC13 - TNFSF15 2423 1488 1292 MUC17 - TNFSF15 833 967 950
Ranking of TNF family w.r.t MUC20
laplace linear rbf
MUC20 - TNF 2267 262 145
MUC20 - TNFAIP1 1273 2296 178
MUC20 - TNFAIP2 1062 598 339
MUC20 - TNFAIP3 2205 435 2136
MUC20 - TNFRSF1A 483 2346 145
MUC20 - TNFRSF10A 100 2305 917
MUC20 - TNFRSF10B 775 1578 1556
MUC20 - TNFRSF10D 200 1487 799
MUC20 - TNFRSF12A 318 1607 2258
MUC20 - TNFRSF14 410 1832 745
MUC20 - TNFRSF21 1686 2259 164
MUC20 - TNFSF10 1005 2139 1548
MUC20 - TNFSF15 2493 387 2108
Table 43. 2nd order interaction ranking between MUC w.r.t TNF family members.
Table 43. 2nd order interaction ranking between MUC w.r.t TNF family members.
Ranking MUC family w.r.t TNF family
Ranking of MUC1 w.r.t TNF family Ranking of MUC3A w.r.t TNF family
laplace linear rbf laplace linear rbf
MUC1 - TNF 368 142 21 MUC3A - TNF 1478 985 2373
MUC1 - TNFAIP1 692 91 1591 MUC3A - TNFAIP1 1485 536 1698
MUC1 - TNFAIP2 2290 476 398 MUC3A - TNFAIP2 1254 1265 75
MUC1 - TNFAIP3 810 492 748 MUC3A - TNFAIP3 1844 960 243
MUC1 - TNFRSF1A 1089 2344 2312 MUC3A - TNFRSF1A 496 574 792
MUC1 - TNFRSF10A 1263 351 826 MUC3A - TNFRSF10A 1315 1525 1815
MUC1 - TNFRSF10B 1630 1604 2103 MUC3A - TNFRSF10B 351 1920 1489
MUC1 - TNFRSF10D 975 1026 984 MUC3A - TNFRSF10D 596 950 1016
MUC1 - TNFRSF12A 1597 1811 1078 MUC3A - TNFRSF12A 436 595 2124
MUC1 - TNFRSF14 739 2119 938 MUC3A - TNFRSF14 1612 1383 329
MUC1 - TNFRSF21 766 1495 2322 MUC3A - TNFRSF21 1254 1357 1162
MUC1 - TNFSF10 1360 1969 477 MUC3A - TNFSF10 774 980 2053
MUC1 - TNFSF15 424 1183 542 MUC3A - TNFSF15 75 1261 624
Ranking of MUC4 w.r.t TNF family Ranking of MUC12 w.r.t TNF family
laplace linear rbf laplace linear rbf
MUC4 - TNF 1656 777 565 MUC12 - TNF 266 1223 628
MUC4 - TNFAIP1 2483 895 390 MUC12 - TNFAIP1 2321 668 2457
MUC4 - TNFAIP2 1875 1792 180 MUC12 - TNFAIP2 281 1829 1913
MUC4 - TNFAIP3 54 498 464 MUC12 - TNFAIP3 2353 153 576
MUC4 - TNFRSF1A 1074 753 68 MUC12 - TNFRSF1A 1481 1952 1406
MUC4 - TNFRSF10A 683 311 997 MUC12 - TNFRSF10A 445 337 888
MUC4 - TNFRSF10B 98 1413 704 MUC12 - TNFRSF10B 792 164 133
MUC4 - TNFRSF10D 1916 230 80 MUC12 - TNFRSF10D 167 193 521
MUC4 - TNFRSF12A 1321 2190 150 MUC12 - TNFRSF12A 216 2093 302
MUC4 - TNFRSF14 606 704 1493 MUC12 - TNFRSF14 105 59 69
MUC4 - TNFRSF21 1225 1967 1093 MUC12 - TNFRSF21 1471 1975 1769
MUC4 - TNFSF10 815 1108 1906 MUC12 - TNFSF10 662 2135 2255
MUC4 - TNFSF15 1141 1841 920 MUC12 - TNFSF15 1619 2204 1257
Ranking of MUC13 w.r.t TNF family Ranking of MUC17 w.r.t TNF family
laplace linear rbf laplace linear rbf
MUC13 - TNF 623 292 295 MUC17 - TNF 203 811 57
MUC13 - TNFAIP1 823 755 81 MUC17 - TNFAIP1 381 193 118
MUC13 - TNFAIP2 1118 2464 116 MUC17 - TNFAIP2 1069 822 136
MUC13 - TNFAIP3 1189 546 541 MUC17 - TNFAIP3 2132 47 937
MUC13 - TNFRSF1A 978 1506 490 MUC17 - TNFRSF1A 120 497 864
MUC13 - TNFRSF10A 1180 540 1926 MUC17 - TNFRSF10A 852 218 346
MUC13 - TNFRSF10B 280 1105 190 MUC17 - TNFRSF10B 933 1667 1166
MUC13 - TNFRSF10D 655 725 1668 MUC17 - TNFRSF10D 546 133 304
MUC13 - TNFRSF12A 401 1242 999 MUC17 - TNFRSF12A 18 1675 86
MUC13 - TNFRSF14 1324 374 389 MUC17 - TNFRSF14 819 296 1014
MUC13 - TNFRSF21 690 2337 107 MUC17 - TNFRSF21 1659 814 889
MUC13 - TNFSF10 1146 1208 2159 MUC17 - TNFSF10 387 1542 156
MUC13 - TNFSF15 1633 314 155 MUC17 - TNFSF15 1207 1040 522
Ranking of MUC20 w.r.t TNF family
laplace linear rbf
MUC20 - TNF 57 216 903
MUC20 - TNFAIP1 1265 2266 2057
MUC20 - TNFAIP2 241 2404 2157
MUC20 - TNFAIP3 484 1012 513
MUC20 - TNFRSF1A 748 173 2193
MUC20 - TNFRSF10A 620 427 1054
MUC20 - TNFRSF10B 765 1563 790
MUC20 - TNFRSF10D 509 2185 794
MUC20 - TNFRSF12A 216 2093 302
MUC20 - TNFRSF14 2298 651 1368
MUC20 - TNFRSF21 2374 1611 1140
MUC20 - TNFSF10 1257 1088 1031
MUC20 - TNFSF15 142 2159 7
Table 44. 2nd order combinatorial hypotheses between MUC and TNF.
Table 44. 2nd order combinatorial hypotheses between MUC and TNF.
Unexplored combinatorial hypotheses
TNF w.r.t MUC
MUC1 TNFAIP3/TNFRSF10D/TNFRSF12A/TNFRSF14
MUC3A TNFRSF10A/TNFRSF10D
MUC4 TNFRSF10D/TNFSF10
MUC12 TNFRSF21/TNFSF10
MUC13 TNFRSF10A/TNFRSF10D
MUC17 TNFRSF10A/TNFRSF10D/TNFRSF12A
MUC20 TNFAIP3/TNFSF15
MUC w.r.t TNF
MUC1 TNFRSF1A
MUC4 TNFAIP2
MUC12 TNFAIP1/TNFAIP2/TNFRSF21/TNFSF10
MUC13 TNFAIP1/TNFAIP2
Table 45. 2nd order combinatorial hypotheses between STEAP4 and TNF.
Table 45. 2nd order combinatorial hypotheses between STEAP4 and TNF.
Ranking TNF family vs STEAP4 family
Ranking of TNF family w.r.t STEAP4 Ranking of STEAP4 w.r.t IL family
laplace linear rbf laplace linear rbf
TNF - STEAP4 1579 1914 2130 TNF - STEAP4 1116 1482 999
TNFAIP1 - STEAP4 2189 1293 1910 TNFAIP1 - STEAP4 691 611 1105
TNFAIP2 - STEAP4 1172 2002 1840 TNFAIP2 - STEAP4 228 1747 2463
TNFAIP3 - STEAP4 1458 1882 2197 TNFAIP3 - STEAP4 159 727 219
TNFRSF1A - STEAP4 803 75 1086 TNFRSF1A - STEAP4 1483 408 1966
TNFRSF10A - STEAP4 239 1949 339 TNFRSF10A - STEAP4 1512 1796 2026
TNFRSF10B - STEAP4 2210 1717 1827 TNFRSF10B - STEAP4 565 571 248
TNFRSF10D - STEAP4 510 2192 1797 TNFRSF10D - STEAP4 1018 2339 2405
TNFRSF12A - STEAP4 757 338 1497 TNFRSF12A - STEAP4 1495 1430 581
TNFRSF14 - STEAP4 1323 1512 792 TNFRSF14 - STEAP4 1363 1956 2256
TNFRSF21 - STEAP4 1643 1920 165 TNFRSF21 - STEAP4 1646 802 160
TNFSF10 - STEAP4 2083 544 1773 TNFSF10 - STEAP4 845 675 2468
TNFSF15 - STEAP4 631 1296 1020 TNFSF15 - STEAP4 1558 600 784
Table 50. 2nd order combinatorial hypotheses between BCL and TNF.
Table 50. 2nd order combinatorial hypotheses between BCL and TNF.
Ranking TNF family vs BCL family
Ranking of BCL2L1 w.r.t TNF family Ranking of TNF family w.r.t BCL2L1
laplace linear rbf laplace linear rbf
TNF - BCL2L1 174 14 235 TNF - BCL2L1 56 1101 294
TNFAIP1 - BCL2L1 1527 435 791 TNFAIP1 - BCL2L1 1497 1150 74
TNFAIP2 - BCL2L1 2142 1735 798 TNFAIP2 - BCL2L1 1485 1735 400
TNFAIP3 - BCL2L1 2467 842 867 TNFAIP3 - BCL2L1 1109 1939 1553
TNFRSF1A - BCL2L1 1004 1558 383 TNFRSF1A - BCL2L1 492 376 1016
TNFRSF10A - BCL2L1 1906 1270 1222 TNFRSF10A - BCL2L1 2273 1928 508
TNFRSF10B - BCL2L1 1506 2235 589 TNFRSF10B - BCL2L1 1003 2252 2217
TNFRSF10D - BCL2L1 1920 1555 1787 TNFRSF10D - BCL2L1 1868 2420 2392
TNFRSF12A - BCL2L1 1254 1388 1319 TNFRSF12A - BCL2L1 1923 53 1936
TNFRSF14 - BCL2L1 688 237 2009 TNFRSF14 - BCL2L1 340 2350 2414
TNFRSF21 - BCL2L1 1465 1269 100 TNFRSF21 - BCL2L1 2139 718 289
TNFSF10 - BCL2L1 532 560 2332 TNFSF10 - BCL2L1 2115 2299 1307
TNFSF15 - BCL2L1 1026 1551 1134 TNFSF15 - BCL2L1 453 423 25
Ranking of BCL2L2 w.r.t TNF family Ranking of TNF family w.r.t BCL2L2
laplace linear rbf laplace linear rbf
TNF - BCL2L2 1822 1926 2359 TNF - BCL2L2 2140 109 1062
TNFAIP1 - BCL2L2 2266 2478 1847 TNFAIP1 - BCL2L2 2235 1607 712
TNFAIP2 - BCL2L2 823 535 1117 TNFAIP2 - BCL2L2 109 1002 54
TNFAIP3 - BCL2L2 1201 1103 1511 TNFAIP3 - BCL2L2 1470 1696 1276
TNFRSF1A - BCL2L2 1124 2311 1920 TNFRSF1A - BCL2L2 1912 169 1531
TNFRSF10A - BCL2L2 1063 1532 2458 TNFRSF10A - BCL2L2 1643 1095 953
TNFRSF10B - BCL2L2 2478 739 2239 TNFRSF10B - BCL2L2 2153 1164 1983
TNFRSF10D - BCL2L2 910 2278 2237 TNFRSF10D - BCL2L2 35 1012 1905
TNFRSF12A - BCL2L2 1945 240 2484 TNFRSF12A - BCL2L2 1971 1633 975
TNFRSF14 - BCL2L2 2358 1648 2310 TNFRSF14 - BCL2L2 1027 825 1228
TNFRSF21 - BCL2L2 2292 1850 1014 TNFRSF21 - BCL2L2 1138 486 554
TNFSF10 - BCL2L2 2438 547 2013 TNFSF10 - BCL2L2 2212 902 169
TNFSF15 - BCL2L2 1196 2443 2350 TNFSF15 - BCL2L2 2285 165 1330
Ranking of BCL2L13 w.r.t TNF family Ranking of TNF family w.r.t BCL2L13
laplace linear rbf laplace linear rbf
TNF - BCL2L13 2437 2482 2482 TNF - BCL2L13 1162 103 462
TNFAIP1 - BCL2L13 1863 2386 989 TNFAIP1 - BCL2L13 852 606 787
TNFAIP2 - BCL2L13 793 293 1846 TNFAIP2 - BCL2L13 438 479 742
TNFAIP3 - BCL2L13 1350 1030 2129 TNFAIP3 - BCL2L13 1804 879 626
TNFRSF1A - BCL2L13 1173 1962 2489 TNFRSF1A - BCL2L13 1577 1512 476
TNFRSF10A - BCL2L13 737 2055 2499 TNFRSF10A - BCL2L13 1534 2360 1105
TNFRSF10B - BCL2L13 1992 885 906 TNFRSF10B - BCL2L13 2177 960 1053
TNFRSF10D - BCL2L13 2204 2159 2343 TNFRSF10D - BCL2L13 171 1983 960
TNFRSF12A - BCL2L13 2183 2509 241 TNFRSF12A - BCL2L13 59 1706 2046
TNFRSF14 - BCL2L13 1852 1974 2339 TNFRSF14 - BCL2L13 2459 2381 1187
TNFRSF21 - BCL2L13 2280 2424 2301 TNFRSF21 - BCL2L13 52 1054 394
TNFSF10 - BCL2L13 1088 2429 1803 TNFSF10 - BCL2L13 1764 1186 1227
TNFSF15 - BCL2L13 1286 2438 2252 TNFSF15 - BCL2L13 638 1962 814
Table 51. 2nd order combinatorial hypotheses between BCL and TNF.
Table 51. 2nd order combinatorial hypotheses between BCL and TNF.
Ranking TNF family vs BCL family
Ranking of BCL3 w.r.t TNF family Ranking of TNF family w.r.t BCL3
laplace linear rbf laplace linear rbf
TNF - BCL3 652 370 642 TNF - BCL3 598 311 2473
TNFAIP1 - BCL3 168 723 124 TNFAIP1 - BCL3 596 500 158
TNFAIP2 - BCL3 642 856 1098 TNFAIP2 - BCL3 59 776 323
TNFAIP3 - BCL3 2377 534 567 TNFAIP3 - BCL3 300 940 1527
TNFRSF1A - BCL3 163 206 740 TNFRSF1A - BCL3 83 476 1355
TNFRSF10A - BCL3 799 865 1044 TNFRSF10A - BCL3 2388 2493 88
TNFRSF10B - BCL3 1632 2427 1868 TNFRSF10B - BCL3 757 1508 1062
TNFRSF10D - BCL3 1110 858 714 TNFRSF10D - BCL3 2213 1091 1972
TNFRSF12A - BCL3 273 931 623 TNFRSF12A - BCL3 671 1869 1286
TNFRSF14 - BCL3 232 85 1422 TNFRSF14 - BCL3 2149 1311 1650
TNFRSF21 - BCL3 340 1384 2474 TNFRSF21 - BCL3 411 729 998
TNFSF10 - BCL3 1537 1753 1638 TNFSF10 - BCL3 1926 1523 2107
TNFSF15 - BCL3 129 284 729 TNFSF15 - BCL3 1649 1032 2122
Ranking of BCL6 w.r.t TNF family Ranking of TNF family w.r.t BCL6
laplace linear rbf laplace linear rbf
TNF - BCL6 2271 2071 1810 TNF - BCL6 806 437 1411
TNFAIP1 - BCL6 2135 2158 1330 TNFAIP1 - BCL6 1089 850 372
TNFAIP2 - BCL6 2340 1428 1808 TNFAIP2 - BCL6 152 334 703
TNFAIP3 - BCL6 267 1336 1219 TNFAIP3 - BCL6 1884 1935 855
TNFRSF1A - BCL6 1598 1771 2503 TNFRSF1A - BCL6 788 741 1130
TNFRSF10A - BCL6 1327 1831 2096 TNFRSF10A - BCL6 607 1249 2360
TNFRSF10B - BCL6 1373 1873 1264 TNFRSF10B - BCL6 1746 1282 361
TNFRSF10D - BCL6 2213 2188 788 TNFRSF10D - BCL6 1540 1301 2008
TNFRSF12A - BCL6 1867 99 2261 TNFRSF12A - BCL6 545 2200 1910
TNFRSF14 - BCL6 1409 1337 2028 TNFRSF14 - BCL6 731 1302 1902
TNFRSF21 - BCL6 645 2071 2335 TNFRSF21 - BCL6 40 1850 50
TNFSF10 - BCL6 919 445 99 TNFSF10 - BCL6 2119 1102 1626
TNFSF15 - BCL6 2106 1692 1451 TNFSF15 - BCL6 969 1475 226
Ranking of BCL9L w.r.t TNF family Ranking of TNF family w.r.t BCL9L
laplace linear rbf laplace linear rbf
TNF - BCL9L 1964 1172 1478 TNF - BCL9L 2218 98 425
TNFAIP1 - BCL9L 439 1445 264 TNFAIP1 - BCL9L 766 2470 1802
TNFAIP2 - BCL9L 1250 1473 696 TNFAIP2 - BCL9L 646 567 85
TNFAIP3 - BCL9L 534 630 618 TNFAIP3 - BCL9L 1046 1223 2296
TNFRSF1A - BCL9L 2050 1096 978 TNFRSF1A - BCL9L 863 500 825
TNFRSF10A - BCL9L 212 1682 980 TNFRSF10A - BCL9L 2140 241 1547
TNFRSF10B - BCL9L 952 698 685 TNFRSF10B - BCL9L 286 414 2046
TNFRSF10D - BCL9L 1315 181 1423 TNFRSF10D - BCL9L 1956 112 990
TNFRSF12A - BCL9L 430 1167 1470 TNFRSF12A - BCL9L 1797 1280 1699
TNFRSF14 - BCL9L 1433 635 1497 TNFRSF14 - BCL9L 670 1055 1540
TNFRSF21 - BCL9L 495 2326 468 TNFRSF21 - BCL9L 1291 1378 246
TNFSF10 - BCL9L 1889 974 183 TNFSF10 - BCL9L 1812 1796 2095
TNFSF15 - BCL9L 878 2389 71 TNFSF15 - BCL9L 1939 2114 2405
Ranking of BCL10 w.r.t TNF family Ranking of TNF family w.r.t BCL10
laplace linear rbf laplace linear rbf
TNF - BCL10 708 79 979 TNF - BCL10 1931 114 1573
TNFAIP1 - BCL10 1657 805 1298 TNFAIP1 - BCL10 690 1941 7
TNFAIP2 - BCL10 1101 2197 312 TNFAIP2 - BCL10 523 2099 339
TNFAIP3 - BCL10 985 813 767 TNFAIP3 - BCL10 935 595 1870
TNFRSF1A - BCL10 745 1191 1288 TNFRSF1A - BCL10 362 173 448
TNFRSF10A - BCL10 451 819 954 TNFRSF10A - BCL10 1547 415 2426
TNFRSF10B - BCL10 791 537 1446 TNFRSF10B - BCL10 582 658 1464
TNFRSF10D - BCL10 1831 1694 2040 TNFRSF10D - BCL10 302 19 2497
TNFRSF12A - BCL10 2015 1072 1883 TNFRSF12A - BCL10 1865 1234 1540
TNFRSF14 - BCL10 254 1400 847 TNFRSF14 - BCL10 1175 1894 2227
TNFRSF21 - BCL10 1912 571 958 TNFRSF21 - BCL10 848 1943 418
TNFSF10 - BCL10 1743 931 1657 TNFSF10 - BCL10 2020 1522 1054
TNFSF15 - BCL10 254 1469 577 TNFSF15 - BCL10 1256 188 1074
Table 53. 2nd order interaction ranking between RAD w.r.t XRCC family members.
Table 53. 2nd order interaction ranking between RAD w.r.t XRCC family members.
Ranking RAD family w.r.t XRCC family
Ranking of RAD family w.r.t XRCC1 Ranking of RAD family w.r.t XRCC2
laplace linear rbf laplace linear rbf
RAD1 - XRCC1 1922 1658 1771 XRCC2 - RAD1 1921 893 1774
RAD18 - XRCC1 1027 456 1355 XRCC2 - RAD18 1388 847 765
XRCC1 - RAD50 2459 2254 2082 XRCC2 - RAD50 1877 2185 2546
RAD51 - XRCC1 282 365 1003 XRCC2 - RAD51 1247 1033 629
RAD51AP1 - XRCC1 753 5 275 XRCC2 - RAD51AP1 302 247 42
RAD51C - XRCC1 337 111 968 XRCC2 - RAD51C 1079 674 323
RAD54B - XRCC1 175 224 782 XRCC2 - RAD54B 387 566 506
RAD54L - XRCC1 327 889 709 XRCC2 - RAD54L 976 918 847
Ranking of RAD family w.r.t XRCC6 Ranking of RAD family w.r.t XRCC6BP1
laplace linear rbf laplace linear rbf
XRCC6 - RAD1 1929 2029 2627 RAD1 - XRCC6BP1 1167 2417 308
RAD18 - XRCC6 541 25 1068 RAD18 - XRCC6BP1 656 1612 2271
XRCC6 - RAD50 2434 2043 2603 XRCC6BP1 - RAD50 1302 2263 328
RAD51 - XRCC6 608 425 900 RAD51 - XRCC6BP1 435 495 1275
RAD51AP1 - XRCC6 216 67 83 RAD51AP1 - XRCC6BP1 81 177 73
RAD51C - XRCC6 426 865 503 RAD51C - XRCC6BP1 645 1366 1414
RAD54B - XRCC6 3 610 112 RAD54B - XRCC6BP1 154 693 1398
RAD54L - XRCC6 85 252 432 RAD54L - XRCC6BP1 420 1060 2542
Table 56. 2nd order interaction ranking between RAD family vs XRN2.
Table 56. 2nd order interaction ranking between RAD family vs XRN2.
Ranking XRN2 w.r.t RAD family
Ranking of RAD family w.r.t XRN2 Ranking of XRN2 w.r.t RAD family
laplace linear rbf laplace linear rbf
XRN2 - RAD51AP1 340 545 290 XRN2 - RAD51AP1 1905 1256 852
XRN2 - RAD51 387 560 605 XRN2 - RAD51 786 2647 1995
XRN2 - RAD54L 594 827 879 XRN2 - RAD54L 1541 1246 1819
XRN2 - RAD51C 639 1236 745 XRN2 - RAD51C 1037 1777 2228
XRN2 - RAD18 794 688 804 XRN2 - RAD18 904 2403 1801
XRN2 - RAD1 898 1955 2506 XRN2 - RAD1 255 122 2557
XRN2 - RAD54B 951 165 343 XRN2 - RAD54B 1818 2381 2603
XRN2 - RAD50 1330 2312 2295 XRN2 - RAD50 504 2100 1842
Table 59. 2nd order combinatorial hypotheses between RAD and XRN2.
Table 59. 2nd order combinatorial hypotheses between RAD and XRN2.
Unexplored combinatorial hypotheses
RAD w.r.t NKRF
RAD51AP1 NKRF
RAD51 NKRF
RAD54L NKRF
RAD51C NKRF
RAD18 NKRF
RAD1 NKRF
RAD54B NKRF
NKRF w.r.t RAD
RAD51AP1 NKRF
RAD51 NKRF
RAD54L NKRF
RAD51C NKRF
RAD18 NKRF
NKRF RAD1
NKRF RAD50
Table 61. 2nd order combinatorial hypotheses between RAD and BCL members.
Table 61. 2nd order combinatorial hypotheses between RAD and BCL members.
Unexplored combinatorial hypotheses
RAD w.r.t BCL
RAD-18/50/51/51AP1/51C/54B/54L BCL-2L12
RAD-18/51/51AP1/51C/54B/54L BCL-6B
RAD-18/51/51AP1/51C/54B/54L BCL-7A
RAD-18/50/51/51AP1/51C/54B/54L BCL-9
RAD-1/18/50/51/51AP1/51C/54B/54L BCL-11A
RAD-1/50/51/51AP1/51C/54B/54L BCL-11B
BCL w.r.t RAD
RAD-1/18/50/51/51C/54B/54L BCL-2L12
RAD-1/18/50/51/51AP1/51C/54B/54L BCL-6B
RAD-1/18/50/51/54L BCL-7A
RAD-18/51/51C/54L BCL-9
RAD-1/18/50/51/51AP1/51C/54B BCL-11A
RAD-50/51/51AP1/54B/54L BCL-11B
Table 62. 2nd order interaction ranking between RAD and EXOSC family members.
Table 62. 2nd order interaction ranking between RAD and EXOSC family members.
Ranking RAD family VS EXOSC family
Ranking of EXOSC2 w.r.t RAD family Ranking of RAD family w.r.t EXOSC2
laplace linear rbf laplace linear rbf
EXOSC2 - RAD1 1033 1311 1207 EXOSC2 - RAD1 2456 1368 2292
EXOSC2 - RAD18 1210 995 1906 EXOSC2 - RAD18 1115 979 654
EXOSC2 - RAD50 1124 698 629 EXOSC2 - RAD50 1647 2495 2375
EXOSC2 - RAD51 1754 191 633 EXOSC2 - RAD51 795 1332 441
EXOSC2 - RAD51AP1 198 1462 2718 EXOSC2 - RAD51AP1 2320 1316 2127
EXOSC2 - RAD51C 87 463 1130 EXOSC2 - RAD51C 636 564 152
EXOSC2 - RAD54B 351 135 142 EXOSC2 - RAD54B 278 132 282
EXOSC2 - RAD54L 1131 1652 320 EXOSC2 - RAD54L 125 888 545
Ranking of EXOSC3 w.r.t RAD family Ranking of RAD family w.r.t EXOSC3
laplace linear rbf laplace linear rbf
EXOSC3 - RAD1 2492 1677 549 EXOSC3 - RAD1 2200 1243 2711
EXOSC3 - RAD18 1676 2516 184 EXOSC3 - RAD18 2024 1468 767
EXOSC3 - RAD50 2368 1892 2204 EXOSC3 - RAD50 1062 596 2346
EXOSC3 - RAD51 894 1066 2463 EXOSC3 - RAD51 727 583 963
EXOSC3 - RAD51AP1 1884 1037 804 EXOSC3 - RAD51AP1 100 49 219
EXOSC3 - RAD51C 2499 2356 1248 EXOSC3 - RAD51C 663 869 887
EXOSC3 - RAD54B 2183 2518 2360 EXOSC3 - RAD54B 384 277 310
EXOSC3 - RAD54L 1735 469 736 EXOSC3 - RAD54L 546 1117 808
Ranking of EXOSC5 w.r.t RAD family Ranking of RAD family w.r.t EXOSC5
laplace linear rbf laplace linear rbf
EXOSC5 - RAD1 568 1169 1699 EXOSC5 - RAD1 2405 1716 1718
EXOSC5 - RAD18 2481 219 1652 EXOSC5 - RAD18 1026 550 253
EXOSC5 - RAD50 447 195 475 EXOSC5 - RAD50 1596 1952 2271
EXOSC5 - RAD51 2548 431 1121 EXOSC5 - RAD51 260 1095 137
EXOSC5 - RAD51AP1 1290 487 430 EXOSC5 - RAD51AP1 1555 1860 976
EXOSC5 - RAD51C 1284 1264 1790 EXOSC5 - RAD51C 233 1003 359
EXOSC5 - RAD54B 940 812 1036 EXOSC5 - RAD54B 834 1825 335
EXOSC5 - RAD54L 408 2539 1407 EXOSC5 - RAD54L 248 197 39
Ranking of EXOSC6 w.r.t RAD family Ranking of RAD family w.r.t EXOSC6
laplace linear rbf laplace linear rbf
EXOSC6 - RAD1 2283 2490 1228 EXOSC6 - RAD1 2405 142 639
EXOSC6 - RAD18 1637 1599 2254 EXOSC6 - RAD18 1118 1313 1549
EXOSC6 - RAD50 2289 1969 1797 EXOSC6 - RAD50 2309 1722 575
EXOSC6 - RAD51 1056 1482 1007 EXOSC6 - RAD51 998 2297 2219
EXOSC6 - RAD51AP1 1854 2480 1827 EXOSC6 - RAD51AP1 149 1060 2731
EXOSC6 - RAD51C 1996 940 1842 EXOSC6 - RAD51C 500 1628 2409
EXOSC6 - RAD54B 2289 2312 2005 EXOSC6 - RAD54B 262 2703 2465
EXOSC6 - RAD54L 987 2240 1642 EXOSC6 - RAD54L 885 271 1224
Ranking of EXOSC7 w.r.t RAD family Ranking of RAD family w.r.t EXOSC7
laplace linear rbf laplace linear rbf
EXOSC7 - RAD1 2559 1735 1210 EXOSC7 - RAD1 2079 2308 1604
EXOSC7 - RAD18 490 1688 1331 EXOSC7 - RAD18 441 385 1542
EXOSC7 - RAD50 2661 1939 2021 EXOSC7 - RAD50 1840 406 2100
EXOSC7 - RAD51 842 1900 1876 EXOSC7 - RAD51 376 1180 550
EXOSC7 - RAD51AP1 2446 349 2374 EXOSC7 - RAD51AP1 35 97 786
EXOSC7 - RAD51C 1113 1623 530 EXOSC7 - RAD51C 854 671 1459
EXOSC7 - RAD54B 2431 1612 1191 EXOSC7 - RAD54B 458 260 646
EXOSC7 - RAD54L 1550 1754 1728 EXOSC7 - RAD54L 464 528 790
Ranking of EXOSC8 w.r.t RAD family Ranking of RAD family w.r.t EXOSC8
laplace linear rbf laplace linear rbf
EXOSC8 - RAD1 2380 2442 2630 EXOSC8 - RAD1 1928 151 1563
EXOSC8 - RAD18 805 2287 1564 EXOSC8 - RAD18 764 523 29
EXOSC8 - RAD50 1798 1830 1893 EXOSC8 - RAD50 2103 2649 1822
EXOSC8 - RAD51 404 1630 2092 EXOSC8 - RAD51 98 1161 902
EXOSC8 - RAD51AP1 1932 1567 1701 EXOSC8 - RAD51AP1 408 1824 541
EXOSC8 - RAD51C 2439 1576 2554 EXOSC8 - RAD51C 906 738 1052
EXOSC8 - RAD54B 1562 2542 1736 EXOSC8 - RAD54B 23 1578 130
EXOSC8 - RAD54L 1248 622 239 EXOSC8 - RAD54L 651 1384 1047
Ranking of EXOSC9 w.r.t RAD family Ranking of RAD family w.r.t EXOSC9
laplace linear rbf laplace linear rbf
EXOSC9 - RAD1 2240 175 1648 EXOSC9 - RAD1 1335 1799 978
EXOSC9 - RAD18 1533 774 1180 EXOSC9 - RAD18 2529 54 540
EXOSC9 - RAD50 545 183 467 EXOSC9 - RAD50 211 2217 1377
EXOSC9 - RAD51 866 106 99 EXOSC9 - RAD51 807 74 429
EXOSC9 - RAD51AP1 1570 1819 1807 EXOSC9 - RAD51AP1 2480 103 1210
EXOSC9 - RAD51C 110 742 200 EXOSC9 - RAD51C 399 844 69
EXOSC9 - RAD54B 179 178 84 EXOSC9 - RAD54B 2385 466 1286
EXOSC9 - RAD54L 1113 2436 22 EXOSC9 - RAD54L 536 724 414
Table 63. 2nd order combinatorial hypotheses between RAD and EXOSC members.
Table 63. 2nd order combinatorial hypotheses between RAD and EXOSC members.
Unexplored combinatorial hypotheses
RAD w.r.t EXOSC
EXOSC-2 RAD-18/51/51C/54B/54L
EXOSC-3 RAD-18/50/51/51AP1/51C/54B/54L
EXOSC-5 RAD-1/18/51/51AP1/51C/54B/54L
EXOSC-6 RAD-1/18/50/51AP1/51C/54L
EXOSC-7 RAD-18/51/51AP1/51C/54B/54L
EXOSC-8 RAD-1/18/51/51AP1/51C/54B/54L
EXOSC-9 RAD-1/18/50/51/51AP1/51C/54B/54L
EXOSC w.r.t RAD
EXOSC-2 RAD-1/18/50/51/51AP1/51C/54B/54L
EXOSC-3 RAD-1/18/51/51AP1/54L
EXOSC-5 RAD-1/18/50/51/51AP1/51C/54B/54L
EXOSC-6 RAD-18/51/54L
EXOSC-7 RAD-1/18/51C/54B/54L
EXOSC-8 RAD-18/51/51AP1/54B/54L
EXOSC-9 RAD-1/18/50/51/51C/54B/54L
Table 67. 2nd order combinatorial hypotheses between RAD and FANC family.
Table 67. 2nd order combinatorial hypotheses between RAD and FANC family.
Unexplored combinatorial hypotheses
RAD w.r.t FANC
RAD-18/51/51AP1/51C/54B/54L FANCB
RAD-18/51/51AP1/54B/54L FANCD2
RAD-1/18/50/51/51C/54B/54L FANCD2OS
RAD-1/18/50/51/51AP1/51C/54B/54L FANCF
RAD-1/18/50/51/51AP1/51C/54B/54L FANCG
RAD-18/50/51/51C/54B/54L FANCI
FANC w.r.t RAD
FANCB RAD-1/50/51/51AP1/51C/54B/54L
FANCD2 RAD-1/50/51/51AP1/51C/54B/54L
FANCD2OS RAD-1/18/5051C/54B
FANCF RAD-1/18/50/51C/54B
FANCG RAD-1/50/51/51AP1/51C/54B
FANCI RAD-1/18/50/51/51AP1/51C/54B/54L
Table 68. 2nd order interaction ranking between TRET vs ABC.
Table 68. 2nd order interaction ranking between TRET vs ABC.
Ranking TRET vs ABC family
Ranking of ABC family w.r.t TRET Ranking of TRET w.r.t ABC family
laplace linear rbf laplace linear rbf
ABCF2 - TERT 381 1047 316 ABCF2 - TERT 2069 238 2712
ABCA2 - TERT 1201 49 317 ABCA2 - TERT 1693 2739 1997
ABCE1 - TERT 1613 499 1217 ABCE1 - TERT 120 2736 294
Table 69. 2nd order combinatorial hypotheses between TRET and ABC family.
Table 69. 2nd order combinatorial hypotheses between TRET and ABC family.
Unexplored combinatorial hypotheses
ABC family w.r.t TRET
TERT ABCF2
TERT ABCA2
TERT ABCE1
TRET w.r.t ABC family
ABCE1 TERT
Table 70. 2nd order interaction ranking between ABC w.r.t UBE2 family members.
Table 70. 2nd order interaction ranking between ABC w.r.t UBE2 family members.
Ranking ABC family w.r.t UBE2 family
Ranking of ABC family w.r.t UBE2-A Ranking of ABC family w.r.t UBE2-B
laplace linear rbf laplace linear rbf
ABC-A5 - UBE2-A 2101 185 382 ABC-A5 - UBE2-B 1223 1193 194
ABC-B11 - UBE2-A 129 2487 304 ABC-B11 - UBE2-B 125 103 571
ABC-C3 - UBE2-A 2137 2491 1023 ABC-C3 - UBE2-B 606 791 1411
ABC-C5 - UBE2-A 1630 490 2408 ABC-C5 - UBE2-B 1515 2317 2266
ABC-C13 - UBE2-A 742 1604 475 ABC-C13 - UBE2-B 2199 2254 2362
ABC-D1 - UBE2-A 316 620 596 ABC-D1 - UBE2-B 1082 374 1057
ABC-G1 - UBE2-A 46 819 533 ABC-G1 - UBE2-B 48 843 551
ABC-G2 - UBE2-A 398 259 261 ABC-G2 - UBE2-B 189 189 41
Ranking of ABC family w.r.t UBE2-F Ranking of ABC family w.r.t UBE2-H
laplace linear rbf laplace linear rbf
ABC-A5 - UBE2-F 997 2408 1784 ABC-A5 - UBE2-H 1247 2068 2438
ABC-B11 - UBE2-F 141 1122 578 ABC-B11 - UBE2-H 932 429 409
ABC-C3 - UBE2-F 931 2420 681 ABC-C3 - UBE2-H 540 1962 563
ABC-C5 - UBE2-F 628 1373 217 ABC-C5 - UBE2-H 1551 865 1450
ABC-C13 - UBE2-F 403 2464 1307 ABC-C13 - UBE2-H 1192 2492 2051
ABC-D1 - UBE2-F 2069 1959 1235 ABC-D1 - UBE2-H 1094 1016 1474
ABC-G1 - UBE2-F 209 1216 1450 ABC-G1 - UBE2-H 683 173 18
ABC-G2 - UBE2-F 690 1995 2120 ABC-G2 - UBE2-H 1328 1374 78
Ranking of ABC family w.r.t UBE2-J1 Ranking of ABC family w.r.t UBE2-Z
laplace linear rbf laplace linear rbf
ABC-A5 - UBE2-J1 634 222 711 ABC-A5 - UBE2-Z 454 1059 1287
ABC-B11 - UBE2-J1 1182 1075 403 ABC-B11 - UBE2-Z 134 503 436
ABC-C3 - UBE2-J1 1232 719 1285 ABC-C3 - UBE2-Z 975 1722 2095
ABC-C5 - UBE2-J1 964 1342 2373 ABC-C5 - UBE2-Z 2348 845 1859
ABC-C13 - UBE2-J1 2095 2412 2360 ABC-C13 - UBE2-Z 1157 651 1335
ABC-D1 - UBE2-J1 542 1198 704 ABC-D1 - UBE2-Z 392 1660 943
ABC-G1 - UBE2-J1 306 97 122 ABC-G1 - UBE2-Z 545 142 354
ABC-G2 - UBE2-J1 335 668 591 ABC-G2 - UBE2-Z 747 285 530
Table 71. 2nd order interaction ranking between UBE2 w.r.t ABC family members.
Table 71. 2nd order interaction ranking between UBE2 w.r.t ABC family members.
Ranking UBE2 family w.r.t ABC family
Ranking of UBE2-A w.r.t ABC Ranking of UBE2-B w.r.t ABC family
laplace linear rbf laplace linear rbf
ABC-A5 - UBE2-A 1037 253 2091 ABC-A5 - UBE2-B 1846 2038 936
ABC-B11 - UBE2-A 1491 1269 2179 ABC-B11 - UBE2-B 1623 1304 1995
ABC-C3 - UBE2-A 1726 1906 1390 ABC-C3 - UBE2-B 1999 832 2050
ABC-C5 - UBE2-A 880 2122 2297 ABC-C5 - UBE2-B 612 2276 1681
ABC-C13 - UBE2-A 412 234 670 ABC-C13 - UBE2-B 467 1863 2496
ABC-D1 - UBE2-A 2507 237 1319 ABC-D1 - UBE2-B 2322 1917 2426
ABC-G1 - UBE2-A 907 2291 1573 ABC-G1 - UBE2-B 1194 1592 1239
ABC-G2 - UBE2-A 2048 1829 1376 ABC-G2 - UBE2-B 1833 2445 2506
Ranking of UNE2-F w.r.t ABC family Ranking of UBE2-H w.r.t ABC family
laplace linear rbf laplace linear rbf
ABC-A5 - UBE2-F 2485 406 66 ABC-A5 - UBE2-H 508 2339 1110
ABC-B11 - UBE2-F 2003 1203 2422 ABC-B11 - UBE2-H 1950 1770 2461
ABC-C3 - UBE2-F 2132 2163 861 ABC-C3 - UBE2-H 2439 1972 2305
ABC-C5 - UBE2-F 406 1651 1838 ABC-C5 - UBE2-H 398 2473 2355
ABC-C13 - UBE2-F 821 959 1196 ABC-C13 - UBE2-H 2004 2317 1847
ABC-D1 - UBE2-F 2421 686 2176 ABC-D1 - UBE2-H 164 1641 648
ABC-G1 - UBE2-F 115 2202 1953 ABC-G1 - UBE2-H 201 1921 2288
ABC-G2 - UBE2-F 983 883 1012 ABC-G2 - UBE2-H 2063 1631 1354
Ranking of UBE2-J1 w.r.t ABC family Ranking of UBE2-Z w.r.t ABC family
laplace linear rbf laplace linear rbf
ABC-A5 - UBE2-J1 1740 1467 1244 ABC-A5 - UBE2-Z 2336 1710 35
ABC-B11 - UBE2-J1 1806 991 1935 ABC-B11 - UBE2-Z 521 645 2168
ABC-C3 - UBE2-J1 2073 2291 631 ABC-C3 - UBE2-Z 1978 1823 1859
ABC-C5 - UBE2-J1 126 525 1409 ABC-C5 - UBE2-Z 1237 148 1928
ABC-C13 - UBE2-J1 2329 2153 1951 ABC-C13 - UBE2-Z 1185 137 2475
ABC-D1 - UBE2-J1 2263 1886 2249 ABC-D1 - UBE2-Z 2292 21 2381
ABC-G1 - UBE2-J1 1262 2418 2277 ABC-G1 - UBE2-Z 426 2515 1858
ABC-G2 - UBE2-J1 1558 2408 1304 ABC-G2 - UBE2-Z 2270 2080 2448
Table 72. 2nd order combinatorial hypotheses between ABC and UBE2.
Table 72. 2nd order combinatorial hypotheses between ABC and UBE2.
Unexplored combinatorial hypotheses
ABC w.r.t UBE2
ABC-C3 UBE2-A
ABC-C5 UBE2-B
ABC-A5/D1/G2 UBE2-F
ABC-A5/C13 UBE2-H
ABC-C13 UBE2-J1
ABC-C5 UBE2-Z
UBE2 w.r.t ABC
UBEA-2 ABC-C5/G2
UBE2-B ABC-A5/C3/C13/D1/G2
UBE2-F ABC-B11/C3/D1/G1
UBE2-H ABC-B11/C3/C5/C13/G1
UBE2-J1 ABC-B11/C3/C13/D1/G1/G2
UBE2-Z ABC-C3/D1/G1/G2
Table 73. 2nd order interaction ranking between ABC family members.
Table 73. 2nd order interaction ranking between ABC family members.
Ranking ABC family w.r.t ABC family
Ranking of ABC family w.r.t ABC-A5 Ranking of ABC family w.r.t ABC-B11
laplace linear rbf laplace linear rbf
ABC-B11 - ABC-A5 733 471 26 ABC-A5 - ABC-B11 1148 1443 1782
ABC-C3 - ABC-A5 111 493 2264 ABC-C3 - ABC-B11 845 527 1257
ABC-C5 - ABC-A5 1717 519 1921 ABC-C5 - ABC-B11 2226 1644 2241
ABC-C13 - ABC-A5 1243 1943 2151 ABC-C13 - ABC-B11 1971 609 2150
ABC-D1 - ABC-A5 1262 2387 1573 ABC-D1 - ABC-B11 891 217 854
ABC-G1 - ABC-A5 657 991 533 ABC-G1 - ABC-B11 1957 1920 669
ABC-G2 - ABC-A5 587 397 104 ABC-G2 - ABC-B11 685 1978 226
Ranking of ABC family w.r.t ABC-C3 Ranking of ABC family w.r.t ABC-C5
laplace linear rbf laplace linear rbf
ABC-A5 - ABC-C3 163 861 1672 ABC-A5 - ABC-C5 2086 411 1243
ABC-B11 - ABC-C3 410 613 1501 ABC-B11 - ABC-C5 2398 272 464
ABC-C5 - ABC-C3 1591 2435 927 ABC-C3 - ABC-C5 2084 2274 1758
ABC-C13 - ABC-C3 405 880 1282 ABC-C13 - ABC-C5 226 2476 2446
ABC-D1 - ABC-C3 18 1145 2187 ABC-D1 - ABC-C5 2010 891 1257
ABC-G1 - ABC-C3 1858 173 842 ABC-G1 - ABC-C5 2402 894 741
ABC-G2 - ABC-C3 1462 275 1373 ABC-G2 - ABC-C5 2463 736 661
Ranking of ABC family w.r.t ABC-C13 Ranking of ABC family w.r.t ABC-D1
laplace linear rbf laplace linear rbf
ABC-A5 - ABC-C13 2251 1219 1614 ABC-A5 - ABC-D1 163 1068 291
ABC-B11 - ABC-C13 1106 56 1171 ABC-B11 - ABC-D1 1273 130 1655
ABC-C3 - ABC-C13 2279 1431 365 ABC-C3 - ABC-D1 568 251 149
ABC-C5 - ABC-C13 1537 2178 690 ABC-C5 - ABC-D1 2423 538 2388
ABC-D1 - ABC-C13 2370 171 362 ABC-C13 - ABC-D1 2383 2029 425
ABC-G1 - ABC-C13 833 1544 1343 ABC-G1 - ABC-D1 1462 1175 827
ABC-G2 - ABC-C13 329 1323 1755 ABC-G2 - ABC-D1 467 670 2491
Ranking of ABC family w.r.t ABC-G1 Ranking of ABC family w.r.t ABC-G2
laplace linear rbf laplace linear rbf
ABC-A5 - ABC-G1 2488 1776 1078 ABC-A5 - ABC-G2 1011 1640 1705
ABC-B11 - ABC-G1 2312 253 52 ABC-B11 - ABC-G2 988 481 1849
ABC-C3 - ABC-G1 273 1415 1139 ABC-C3 - ABC-G2 1102 1082 1563
ABC-C5 - ABC-G1 220 1988 437 ABC-C5 - ABC-G2 2284 1904 1829
ABC-C13 - ABC-G1 2389 427 1125 ABC-C13 - ABC-G2 929 1238 222
ABC-D1 - ABC-G1 1836 485 597 ABC-D1 - ABC-G2 814 995 1152
ABC-G2 - ABC-G1 2506 692 1143 ABC-G1 - ABC-G2 596 460 848
Table 74. 2nd order combinatorial hypotheses between ABC family members.
Table 74. 2nd order combinatorial hypotheses between ABC family members.
Unexplored combinatorial hypotheses
ABC intra family
ABC-C13 ABC-A5
ABC-C5/C13/G1 ABC-B11
ABC-C3/C13 ABC-C5
ABC-C5/C13 ABC-D1
ABC-A5 ABC-G1
ABC-C5 ABC-G2
Table 77. 2nd order combinatorial hypotheses between ABC and IL family members.
Table 77. 2nd order combinatorial hypotheses between ABC and IL family members.
Unexplored combinatorial hypotheses
ABC w.r.t IL
IL-1B/1RAP/10RB ABCA5
IL-10RB ABCB11
IL-1A/17REL ABCC3
IL-1A/1RAP/15/17C ABCC5
IL-1RAP/15RA ABCC13
IL-8/10RB ABCD1
IL-10RB ABCG2
IL w.r.t ABC
IL-17REL ABCA5
IL-2RG/6ST/15/15RA ABCB11
IL-8/15RA ABCC3
IL-15RA/17REL ABCC5
IL-15RA/17REL ABCC13
IL-1A/1RAP/8/15RA ABCD1
IL-1RAP ABCG1
IL-1RAP/15RA ABCG2
Table 78. 2nd order interaction ranking between BCL and ABC family members.
Table 78. 2nd order interaction ranking between BCL and ABC family members.
Ranking BCL family VS ABC family
Ranking of BCL2L1 w.r.t ABC family Ranking of ABC family w.r.t BCL2L1
laplace linear rbf laplace linear rbf
ABCA5 - BCL2L1 18 560 1715 ABCA5 - BCL2L1 1522 220 1818
ABCB11 - BCL2L1 1124 2418 552 ABCB11 - BCL2L1 2002 234 10
ABCC3 - BCL2L1 564 394 64 ABCC3 - BCL2L1 2085 2309 929
ABCC5 - BCL2L1 2239 1845 823 ABCC5 - BCL2L1 599 847 1282
ABCC13 - BCL2L1 805 1590 2407 ABCC13 - BCL2L1 744 616 614
ABCD1 - BCL2L1 356 202 930 ABCD1 - BCL2L1 839 352 195
ABCG1 - BCL2L1 793 2005 885 ABCG1 - BCL2L1 1249 265 1165
ABCG2 - BCL2L1 199 99 906 ABCG2 - BCL2L1 401 620 277
Ranking of BCL2L2 w.r.t ABC family Ranking of ABC family w.r.t BCL2L2
laplace linear rbf laplace linear rbf
ABCA5 - BCL2L2 1476 324 1792 ABCA5 - BCL2L2 174 482 501
ABCB11 - BCL2L2 2097 1311 2311 ABCB11 - BCL2L2 148 380 1204
ABCC3 - BCL2L2 1091 1569 259 ABCC3 - BCL2L2 890 949 1398
ABCC5 - BCL2L2 2195 2359 2322 ABCC5 - BCL2L2 765 1875 736
ABCC13 - BCL2L2 2438 2494 898 ABCC13 - BCL2L2 2271 1436 1665
ABCD1 - BCL2L2 2477 831 2156 ABCD1 - BCL2L2 1432 1291 64
ABCG1 - BCL2L2 352 1653 2234 ABCG1 - BCL2L2 406 1206 966
ABCG2 - BCL2L2 1515 2409 1496 ABCG2 - BCL2L2 404 314 55
Ranking of BCL2L13 w.r.t ABC family Ranking of ABC family w.r.t BCL2L13
laplace linear rbf laplace linear rbf
ABCA5 - BCL2L13 1398 202 2292 ABCA5 - BCL2L13 655 951 1380
ABCB11 - BCL2L13 2505 261 1855 ABCB11 - BCL2L13 1579 53 224
ABCC3 - BCL2L13 1642 1769 1334 ABCC3 - BCL2L13 265 588 459
ABCC5 - BCL2L13 1427 1835 2178 ABCC5 - BCL2L13 1975 2421 927
ABCC13 - BCL2L13 2484 2184 2410 ABCC13 - BCL2L13 1894 2335 2475
ABCD1 - BCL2L13 2472 1579 2201 ABCD1 - BCL2L13 912 511 1041
ABCG1 - BCL2L13 3 2276 2095 ABCG1 - BCL2L13 957 649 488
ABCG2 - BCL2L13 2172 1723 1502 ABCG2 - BCL2L13 2142 392 1206
Ranking of BCL3 w.r.t ABC family Ranking of ABC family w.r.t BCL3
laplace linear rbf laplace linear rbf
ABCA5 - BCL3 940 45 777 ABCA5 - BCL3 960 1354 2477
ABCB11 - BCL3 260 1002 483 ABCB11 - BCL3 731 1483 2028
ABCC3 - BCL3 2101 214 304 ABCC3 - BCL3 1782 2186 1251
ABCC5 - BCL3 1155 775 1176 ABCC5 - BCL3 2192 957 280
ABCC13 - BCL3 270 1116 1619 ABCC13 - BCL3 1725 1407 1747
ABCD1 - BCL3 759 2194 2106 ABCD1 - BCL3 836 811 1359
ABCG1 - BCL3 2014 1559 2253 ABCG1 - BCL3 550 247 247
ABCG2 - BCL3 480 465 1949 ABCG2 - BCL3 792 798 1418
Table 80. 2nd order combinatorial hypotheses between BCL and ABC family members.
Table 80. 2nd order combinatorial hypotheses between BCL and ABC family members.
Unexplored combinatorial hypotheses
BCL w.r.t ABC
ABC-C5 BCL2L1
ABC-B11/C5/C13/D1 BCL2L2
ABC-B11/C5/C13/D1/G1 BCL2L13
ABC-D1/G1 BCL3
ABC-B11 BCL6
ABC-B11 BCL10
ABC w.r.t BCL
ABC-C3 BCL2L1
ABC-C5/C13 BCL2L13
ABC-C3 BCL3
ABC-C5/C13 BCL6
ABC-C5/C13/D1 BCL9L
ABC-A5/C5/C13/D1 BCL10
Table 85. 2nd order combinatorial hypotheses between IL and NFkB-2/I family.
Table 85. 2nd order combinatorial hypotheses between IL and NFkB-2/I family.
Unexplored combinatorial hypotheses
IL w.r.t NFkB-2/I
IL15RA NFkB2
IL17C NFkB2
IL1RN NFkBIA
IL6ST NFkBIA
IL15RA NFkBIA
IL1RAP NFkBIE
IL6ST NFkBIE
IL8 NFkBIE
IL17REL NFkBIE
IL1A NFkBIZ
IL6ST NFkBIZ
IL15 NFkBIZ
NFkB-2/I w.r.t IL
IL10RB NFkB2
IL10RB NFKBIZ
IL17REL NFkBIZ
Table 86. 2nd order combinatorial hypotheses between KCN and IL
Table 86. 2nd order combinatorial hypotheses between KCN and IL
Ranking Interleukin family vs KCN family
Ranking of IL family w.r.t KCND3 Ranking of KCND3 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - KCND3 1995 2255 718 IL1A - KCND3 707 118 11
IL1B - KCND3 2083 1897 691 IL1B - KCND3 1064 411 133
IL1RAP - KCND3 212 1086 1690 IL1RAP - KCND3 2495 2390 114
IL1RN - KCND3 1091 1875 1551 IL1RN - KCND3 459 743 300
IL2RG - KCND3 2027 1557 403 IL2RG - KCND3 588 248 58
IL6ST - KCND3 28 24 2501 IL6ST - KCND3 1 1127 2482
IL8 - KCND3 46 1098 1426 IL8 - KCND3 1134 1639 890
IL10RB - KCND3 1573 2172 1302 IL10RB - KCND3 2048 2306 2197
IL15 - KCND3 1905 1606 716 IL15 - KCND3 296 68 240
IL15RA - KCND3 2074 483 2495 IL15RA - KCND3 2511 2517 1606
IL17C - KCND3 1881 2139 368 IL17C - KCND3 588 1383 277
IL17REL - KCND3 1715 2242 359 IL17REL - KCND3 1361 748 1905
Ranking of IL family w.r.t KCNH2 Ranking of KCNH2 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - KCNH2 2103 1832 356 IL1A - KCNH2 1897 2152 2179
IL1B - KCNH2 2447 2068 930 IL1B - KCNH2 1599 2025 653
IL1RAP - KCNH2 423 1275 2487 IL1RAP - KCNH2 2451 1805 2002
IL1RN - KCNH2 1600 828 779 IL1RN - KCNH2 233 2304 305
IL2RG - KCNH2 1501 903 929 IL2RG - KCNH2 823 701 1820
IL6ST - KCNH2 1016 1565 1929 IL6ST - KCNH2 435 1665 2142
IL8 - KCNH2 863 258 1395 IL8 - KCNH2 1103 1062 2255
IL10RB - KCNH2 1238 1335 1441 IL10RB - KCNH2 648 1445 1684
IL15 - KCNH2 2295 1419 1038 IL15 - KCNH2 389 1247 1033
IL15RA - KCNH2 1738 2263 296 IL15RA - KCNH2 515 1572 2265
IL17C - KCNH2 2084 1399 49 IL17C - KCNH2 1388 1021 1079
IL17REL - KCNH2 90 1956 1491 IL17REL - KCNH2 727 2338 524
Ranking of IL family w.r.t KCNH8 Ranking of KCNH8 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - KCNH8 2268 2507 1877 IL1A - KCNH8 29 1939 1438
IL1B - KCNH8 2223 2013 2204 IL1B - KCNH8 2060 472 2177
IL1RAP - KCNH8 1238 479 1717 IL1RAP - KCNH8 1950 651 150
IL1RN - KCNH8 1653 819 2040 IL1RN - KCNH8 1094 329 988
IL2RG - KCNH8 57 1530 651 IL2RG - KCNH8 1853 1224 390
IL6ST - KCNH8 2067 979 1640 IL6ST - KCNH8 607 368 800
IL8 - KCNH8 1558 439 1250 IL8 - KCNH8 2484 269 1048
IL10RB - KCNH8 937 448 416 IL10RB - KCNH8 2381 2008 726
IL15 - KCNH8 1575 1789 580 IL15 - KCNH8 1365 1649 2187
IL15RA - KCNH8 2082 1524 1550 IL15RA - KCNH8 1667 638 1648
IL17C - KCNH8 1847 1700 2354 IL17C - KCNH8 1232 1825 1519
IL17REL - KCNH8 1542 2 1803 IL17REL - KCNH8 1120 681 2060
Table 87. 2nd order combinatorial hypotheses between KCN and IL.
Table 87. 2nd order combinatorial hypotheses between KCN and IL.
Ranking Interleukin family vs KCN family
Ranking of IL family w.r.t KCNK1 Ranking of KCNK1 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - KCNK1 2290 2066 1071 IL1A - KCNK1 1644 1818 2362
IL1B - KCNK1 1941 2452 1905 IL1B - KCNK1 813 966 1554
IL1RAP - KCNK1 171 595 2490 IL1RAP - KCNK1 1103 1318 1803
IL1RN - KCNK1 2468 1897 391 IL1RN - KCNK1 2130 73 1326
IL2RG - KCNK1 2384 1028 755 IL2RG - KCNK1 650 2324 1413
IL6ST - KCNK1 862 131 807 IL6ST - KCNK1 2226 688 2283
IL8 - KCNK1 722 22 2147 IL8 - KCNK1 1872 1978 1201
IL10RB - KCNK1 1965 125 1204 IL10RB - KCNK1 1087 1633 1021
IL15 - KCNK1 2280 2009 502 IL15 - KCNK1 1639 506 2369
IL15RA - KCNK1 1567 1546 895 IL15RA - KCNK1 1126 1499 784
IL17C - KCNK1 2451 122 931 IL17C - KCNK1 1331 2472 611
IL17REL - KCNK1 1515 659 2391 IL17REL - KCNK1 979 2329 329
Ranking of IL family w.r.t KCNK5 Ranking of KCNK5 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - KCNK5 609 608 796 IL1A - KCNK5 1840 1512 576
IL1B - KCNK5 1297 110 543 IL1B - KCNK5 510 1379 347
IL1RAP - KCNK5 1137 2237 1314 IL1RAP - KCNK5 730 911 1003
IL1RN - KCNK5 1583 1930 2136 IL1RN - KCNK5 815 405 1431
IL2RG - KCNK5 223 601 14 IL2RG - KCNK5 1841 782 806
IL6ST - KCNK5 1038 867 295 IL6ST - KCNK5 455 848 1275
IL8 - KCNK5 819 1737 105 IL8 - KCNK5 272 479 1215
IL10RB - KCNK5 1879 2298 1903 IL10RB - KCNK5 457 1769 2206
IL15 - KCNK5 981 1630 1669 IL15 - KCNK5 1060 244 580
IL15RA - KCNK5 791 124 555 IL15RA - KCNK5 361 332 1662
IL17C - KCNK5 2345 449 919 IL17C - KCNK5 388 713 509
IL17REL - KCNK5 18 2118 1873 IL17REL - KCNK5 1377 2108 1634
Ranking of IL family w.r.t KCNK6 Ranking of KCNK6 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - KCNK6 140 180 615 IL1A - KCNK6 1683 944 860
IL1B - KCNK6 525 57 369 IL1B - KCNK6 620 1047 903
IL1RAP - KCNK6 1878 830 902 IL1RAP - KCNK6 2386 1248 2053
IL1RN - KCNK6 1834 1564 90 IL1RN - KCNK6 2047 970 1311
IL2RG - KCNK6 2181 974 7 IL2RG - KCNK6 691 2454 1443
IL6ST - KCNK6 728 1895 1270 IL6ST - KCNK6 440 125 1682
IL8 - KCNK6 2168 2442 869 IL8 - KCNK6 774 98 654
IL10RB - KCNK6 1821 560 85 IL10RB - KCNK6 802 1903 2156
IL15 - KCNK6 1589 304 2447 IL15 - KCNK6 1944 130 2047
IL15RA - KCNK6 87 436 2447 IL15RA - KCNK6 1835 1531 1529
IL17C - KCNK6 103 200 538 IL17C - KCNK6 1056 1350 1408
IL17REL - KCNK6 2066 2159 1735 IL17REL - KCNK6 1044 1263 947
Table 88. 2nd order combinatorial hypotheses between IL family w.r.t KCN family.
Table 88. 2nd order combinatorial hypotheses between IL family w.r.t KCN family.
Unexplored combinatorial hypotheses
IL w.r.t KCN
IL-1A/1B/15RA/17C KCND3
IL-1A/1B KCNH2
IL-1A/1B/17C KCNH8
IL-1A/1B/1RN/15 KCNK1
IL-1RN/10RB/17REL KCNK5
IL-8/17REL KCNK6
KCN w.r.t IL family
IL-1A/1B/15RA/17C KCND3
IL-1A/1RAP KCNH2
IL-1B/10RB KCNH8
IL-1A/6ST/8 KCNK1
IL-10RB KCNK5
IL-1RAP/10RB/15 KCNK6
Table 96. 2nd order combinatorial hypotheses between TRAF and IL
Table 96. 2nd order combinatorial hypotheses between TRAF and IL
Ranking Interleukin family vs TRAF family
Ranking of IL family w.r.t TRAF3IP2 Ranking of TRAF3IP2 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TRAF3IP2 2142 100 666 IL1A - TRAF3IP2 1518 2265 1107
IL1B - TRAF3IP2 1155 110 1193 IL1B - TRAF3IP2 1953 1294 2359
IL1RAP - TRAF3IP2 704 2482 2385 IL1RAP - TRAF3IP2 913 2034 38
IL1RN - TRAF3IP2 272 497 133 IL1RN - TRAF3IP2 1044 538 1173
IL2RG - TRAF3IP2 1948 1043 942 IL2RG - TRAF3IP2 1767 2385 2059
IL6ST - TRAF3IP2 49 1244 1098 IL6ST - TRAF3IP2 257 1991 1871
IL8 - TRAF3IP2 1165 598 344 IL8 - TRAF3IP2 796 2192 2289
IL10RB - TRAF3IP2 1252 1426 552 IL10RB - TRAF3IP2 840 237 2096
IL15 - TRAF3IP2 1550 433 163 IL15 - TRAF3IP2 1428 1183 2219
IL15RA - TRAF3IP2 2024 2162 1800 IL15RA - TRAF3IP2 906 1995 1717
IL17C - TRAF3IP2 2253 61 98 IL17C - TRAF3IP2 1290 1587 1839
IL17REL - TRAF3IP2 18 2515 2057 IL17REL - TRAF3IP2 1836 2042 1568
Ranking of IL family w.r.t TRAF4 Ranking of TRAF4 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TRAF4 26 2316 707 IL1A - TRAF4 1806 439 1465
IL1B - TRAF4 582 2136 175 IL1B - TRAF4 1026 746 378
IL1RAP - TRAF4 1180 1714 961 IL1RAP - TRAF4 909 2225 1546
IL1RN - TRAF4 494 2347 590 IL1RN - TRAF4 625 1031 1939
IL2RG - TRAF4 1092 1860 275 IL2RG - TRAF4 1130 339 826
IL6ST - TRAF4 2333 344 1914 IL6ST - TRAF4 676 1966 1556
IL8 - TRAF4 749 604 950 IL8 - TRAF4 406 450 1531
IL10RB - TRAF4 580 2512 424 IL10RB - TRAF4 2407 1781 1136
IL15 - TRAF4 1131 2078 227 IL15 - TRAF4 905 2408 1759
IL15RA - TRAF4 551 1628 2237 IL15RA - TRAF4 1197 2125 2073
IL17C - TRAF4 236 2464 19 IL17C - TRAF4 1538 914 1515
IL17REL - TRAF4 2422 381 2487 IL17REL - TRAF4 575 1394 320
Ranking of IL family w.r.t TRAF6 Ranking of TRAF6 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TRAF6 1 343 2237 IL1A - TRAF6 1637 455 2334
IL1B - TRAF6 224 143 2107 IL1B - TRAF6 861 1386 1342
IL1RAP - TRAF6 1875 1483 1433 IL1RAP - TRAF6 2219 1984 1766
IL1RN - TRAF6 107 706 988 IL1RN - TRAF6 1334 1067 1301
IL2RG - TRAF6 790 1706 1028 IL2RG - TRAF6 695 1717 1986
IL6ST - TRAF6 1508 928 930 IL6ST - TRAF6 54 762 1130
IL8 - TRAF6 2088 1883 2089 IL8 - TRAF6 2457 2139 1218
IL10RB - TRAF6 17 786 1211 IL10RB - TRAF6 303 1825 1709
IL15 - TRAF6 320 1692 2045 IL15 - TRAF6 2071 2475 1500
IL15RA - TRAF6 1560 303 2392 IL15RA - TRAF6 1688 1189 1344
IL17C - TRAF6 42 227 1457 IL17C - TRAF6 2469 2309 1503
IL17REL - TRAF6 2454 2517 412 IL17REL - TRAF6 124 2067 823
Ranking of IL family w.r.t TRAFD1 Ranking of TRAFD1 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - TRAFD1 2408 1040 1579 IL1A - TRAFD1 2121 699 1587
IL1B - TRAFD1 1478 2046 1321 IL1B - TRAFD1 756 2435 571
IL1RAP - TRAFD1 491 1639 447 IL1RAP - TRAFD1 528 857 2043
IL1RN - TRAFD1 895 1149 266 IL1RN - TRAFD1 1033 848 1374
IL2RG - TRAFD1 1025 1948 43 IL2RG - TRAFD1 1243 492 1579
IL6ST - TRAFD1 1835 1824 809 IL6ST - TRAFD1 1064 868 699
IL8 - TRAFD1 1318 896 663 IL8 - TRAFD1 650 671 1088
IL10RB - TRAFD1 329 2371 355 IL10RB - TRAFD1 2403 556 800
IL15 - TRAFD1 1165 1934 769 IL15 - TRAFD1 339 623 634
IL15RA - TRAFD1 351 260 2385 IL15RA - TRAFD1 265 1369 386
IL17C - TRAFD1 1191 1389 1486 IL17C - TRAFD1 756 1068 1390
IL17REL - TRAFD1 704 2222 788 IL17REL - TRAFD1 370 640 137
Table 97. 2nd order combinatorial hypotheses between IL and TRAF family.
Table 97. 2nd order combinatorial hypotheses between IL and TRAF family.
Unexplored combinatorial hypotheses
IL w.r.t TRAF
IL-1RAP/15RA/17REL TRAF3IP2
IL-6ST/17REL TRAF4
IL-8/17REL TRAF6
IL-6ST TRAFD1
TRAF w.r.t IL
IL-1B/2RG/6ST/8/17REL TRAF3IP2
IL-10RB/15/15RA TRAF4
IL-1RAP/8/15/17C TRAF6
Table 108. 2nd order combinatorial hypotheses between IL and TNF family.
Table 108. 2nd order combinatorial hypotheses between IL and TNF family.
Unexplored combinatorial hypotheses
IL w.r.t TNF
IL-1RAP/6ST/15RA TNF
IL-1B/2RG/15RA/17C TNFAIP1
IL-1RN/10RB TNFAIP2
IL-6ST/8/17REL TNFAIP3
IL-1RAP TNFRSF1A
IL-1RAP/15RA/17REL TNFRSF10A
IL-15RA TNFRSF10B
IL-15RA TNFRSF10D
IL-8/15RA/17REL TNFRSF12A
IL-15RA TNFRSF14
IL-1B/1RAP/2RG TNFRSF21
IL-1B/15RA/17C TNFSF10
IL-17C TNFSF15
TNF w.r.t IL
IL-6ST/10RB TNF
IL-8/15RA TNFAIP1
IL-1B TNFRSF1A
IL-1A/1B/1RN/2RG/6ST/15/15RA/17C TNFRSF10A
IL-1RN TNFRSF10B
IL-1A/1B/2RG/6ST/10RB/15/17C/17REL TNFRSF10D
IL-6ST/17C TNFRSF12A
IL-1A/1RN/2RG/6ST/8/15RA/17C/17REL TNFRSF14
IL-17REL TNFRSF14
IL10RB TNFSF10
IL15 TNFSF15
Table 109. 2nd order combinatorial hypotheses between BCL and IL.
Table 109. 2nd order combinatorial hypotheses between BCL and IL.
Ranking IL family vs BCL family
Ranking of IL family w.r.t BCL2L1 Ranking of BCL2L1 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - BCL2L1 2482 859 1834 IL1A - BCL2L1 780 1156 1712
IL1B - BCL2L1 2252 1920 1482 IL1B - BCL2L1 1838 954 2132
IL1RAP - BCL2L1 1128 815 1935 IL1RAP - BCL2L1 870 1777 1262
IL1RN - BCL2L1 648 2504 650 IL1RN - BCL2L1 973 385 1297
IL2RG - BCL2L1 1542 1439 700 IL2RG - BCL2L1 2048 486 1949
IL6ST - BCL2L1 663 553 1432 IL6ST - BCL2L1 284 674 468
IL8 - BCL2L1 260 202 2070 IL8 - BCL2L1 1430 1343 1417
IL10RB - BCL2L1 1867 347 17 IL10RB - BCL2L1 1659 1965 2024
IL15 - BCL2L1 1558 775 381 IL15 - BCL2L1 690 542 1277
IL15RA - BCL2L1 2136 1177 1533 IL15RA - BCL2L1 581 1107 972
IL17C - BCL2L1 2481 2410 2512 IL17C - BCL2L1 695 1739 1775
IL17REL - BCL2L1 815 657 374 IL17REL - BCL2L1 981 1225 509
Ranking of IL family w.r.t BCL2L2 Ranking of BCL2L2 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - BCL2L2 138 361 86 IL1A - BCL2L2 2407 2362 2464
IL1B - BCL2L2 165 389 108 IL1B - BCL2L2 1807 2462 2344
IL1RAP - BCL2L2 623 1523 861 IL1RAP - BCL2L2 77 1897 1711
IL1RN - BCL2L2 2324 530 984 IL1RN - BCL2L2 2298 1620 2092
IL2RG - BCL2L2 2137 285 347 IL2RG - BCL2L2 2429 850 1744
IL6ST - BCL2L2 2239 1927 2085 IL6ST - BCL2L2 477 2046 1859
IL8 - BCL2L2 894 1418 1346 IL8 - BCL2L2 1803 1072 2024
IL10RB - BCL2L2 2243 738 1020 IL10RB - BCL2L2 1041 145 843
IL15 - BCL2L2 110 650 1347 IL15 - BCL2L2 2474 2142 2416
IL15RA - BCL2L2 258 1715 361 IL15RA - BCL2L2 1377 1211 2298
IL17C - BCL2L2 554 12 147 IL17C - BCL2L2 1168 2512 2447
IL17REL - BCL2L2 2454 2510 2482 IL17REL - BCL2L2 539 1875 1442
Ranking of IL family w.r.t BCL2L13 Ranking of BCL2L13 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - BCL2L13 1572 458 174 IL1A - BCL2L13 1456 811 2403
IL1B - BCL2L13 927 227 424 IL1B - BCL2L13 1286 1446 2348
IL1RAP - BCL2L13 278 718 1941 IL1RAP - BCL2L13 823 2450 2510
IL1RN - BCL2L13 608 1277 881 IL1RN - BCL2L13 2503 623 2378
IL2RG - BCL2L13 507 1182 5 IL2RG - BCL2L13 2483 1648 2248
IL6ST - BCL2L13 1778 1403 246 IL6ST - BCL2L13 1899 2473 2046
IL8 - BCL2L13 178 468 1606 IL8 - BCL2L13 2099 910 2294
IL10RB - BCL2L13 991 1211 804 IL10RB - BCL2L13 2120 1895 194
IL15 - BCL2L13 1868 432 15 IL15 - BCL2L13 2515 2160 2420
IL15RA - BCL2L13 1629 2134 685 IL15RA - BCL2L13 933 1844 2318
IL17C - BCL2L13 995 84 20 IL17C - BCL2L13 2004 2434 2500
IL17REL - BCL2L13 2420 2419 2464 IL17REL - BCL2L13 1490 760 442
Ranking of IL family w.r.t BCL3 Ranking of BCL3 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - BCL3 880 2462 396 IL1A - BCL3 474 436 1045
IL1B - BCL3 975 1507 40 IL1B - BCL3 799 303 926
IL1RAP - BCL3 1425 821 1129 IL1RAP - BCL3 44 164 1115
IL1RN - BCL3 149 471 311 IL1RN - BCL3 37 1784 477
IL2RG - BCL3 454 365 505 IL2RG - BCL3 524 2060 335
IL6ST - BCL3 1928 755 2344 IL6ST - BCL3 316 1457 607
IL8 - BCL3 1052 743 2044 IL8 - BCL3 2266 1236 1983
IL10RB - BCL3 95 800 1625 IL10RB - BCL3 2187 1600 2170
IL15 - BCL3 1041 820 214 IL15 - BCL3 17 966 182
IL15RA - BCL3 2478 1820 2500 IL15RA - BCL3 462 1476 1100
IL17C - BCL3 737 1682 8 IL17C - BCL3 1069 923 1926
IL17REL - BCL3 218 424 2019 IL17REL - BCL3 692 1897 1274
Table 110. 2nd order combinatorial hypotheses between BCL and IL.
Table 110. 2nd order combinatorial hypotheses between BCL and IL.
Ranking IL family vs BCL family
Ranking of IL family w.r.t BCL6 Ranking of BCL6 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - BCL6 157 5 1029 IL1A - BCL6 1034 2503 1669
IL1B - BCL6 274 767 1904 IL1B - BCL6 2298 2423 2294
IL1RAP - BCL6 1021 2360 1813 IL1RAP - BCL6 2403 1289 777
IL1RN - BCL6 2015 366 506 IL1RN - BCL6 1919 2301 1680
IL2RG - BCL6 425 553 480 IL2RG - BCL6 1389 2106 2478
IL6ST - BCL6 2419 1589 1962 IL6ST - BCL6 92 184 1752
IL8 - BCL6 2363 2233 1343 IL8 - BCL6 2123 2068 181
IL10RB - BCL6 853 383 1983 IL10RB - BCL6 847 1980 1186
IL15 - BCL6 500 397 1767 IL15 - BCL6 1297 1925 1014
IL15RA - BCL6 1686 1432 2269 IL15RA - BCL6 2084 1791 2203
IL17C - BCL6 227 255 2412 IL17C - BCL6 1349 1499 1321
IL17REL - BCL6 2253 2396 63 IL17REL - BCL6 38 1949 1930
Ranking of IL family w.r.t BCL9L Ranking of BCL9L w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - BCL9L 1932 1942 210 IL1A - BCL9L 1620 1559 986
IL1B - BCL9L 1966 88 79 IL1B - BCL9L 361 1449 2484
IL1RAP - BCL9L 218 957 881 IL1RAP - BCL9L 984 623 1689
IL1RN - BCL9L 1629 937 132 IL1RN - BCL9L 689 55 1593
IL2RG - BCL9L 415 104 92 IL2RG - BCL9L 2113 892 567
IL6ST - BCL9L 2249 1960 1142 IL6ST - BCL9L 1718 1210 737
IL8 - BCL9L 814 2197 2162 IL8 - BCL9L 1679 1920 933
IL10RB - BCL9L 743 632 660 IL10RB - BCL9L 1631 717 1236
IL15 - BCL9L 1343 279 280 IL15 - BCL9L 568 1068 1794
IL15RA - BCL9L 1714 111 1279 IL15RA - BCL9L 206 951 251
IL17C - BCL9L 2029 196 94 IL17C - BCL9L 1031 573 1870
IL17REL - BCL9L 128 2308 1926 IL17REL - BCL9L 1214 1341 839
Ranking of IL family w.r.t BCL10 Ranking of BCL10 w.r.t IL family
laplace linear rbf laplace linear rbf
IL1A - BCL10 5 1720 506 IL1A - BCL10 513 2405 1889
IL1B - BCL10 201 2404 803 IL1B - BCL10 2100 432 1251
IL1RAP - BCL10 1597 598 1869 IL1RAP - BCL10 1929 499 2112
IL1RN - BCL10 107 724 126 IL1RN - BCL10 1846 1823 209
IL2RG - BCL10 232 665 650 IL2RG - BCL10 1885 1803 1577
IL6ST - BCL10 2008 1698 1816 IL6ST - BCL10 451 71 337
IL8 - BCL10 1614 719 1555 IL8 - BCL10 204 1653 544
IL10RB - BCL10 2009 466 1053 IL10RB - BCL10 2244 2150 1578
IL15 - BCL10 35 2072 580 IL15 - BCL10 2174 1618 1375
IL15RA - BCL10 1477 2064 1789 IL15RA - BCL10 1810 1656 1835
IL17C - BCL10 8 2009 1232 IL17C - BCL10 705 1777 207
IL17REL - BCL10 2397 89 550 IL17REL - BCL10 839 1214 377
Table 111. 2nd order combinatorial hypotheses between IL and BCL family.
Table 111. 2nd order combinatorial hypotheses between IL and BCL family.
Unexplored combinatorial hypotheses
IL w.r.t BCL
IL-1A/1B/17C BCL2L1
IL-6ST/17REL BCL2L2
IL-17REL BCL2L13
IL-6ST/15RA BCL3
IL-1RAP/6ST/8/17REL BCL6
IL-1A/6ST/8/17REL BCL9L
IL-6ST/15RA BCL10
BCL w.r.t IL
IL-1B/2RG/10RB BCL2L1
IL-1A/1B/1RN/6ST/8/15/17C BCL2L2
IL-1RAP/1RN/2RG/6ST/8/10RB/15/15RA/17C BCL2L13
IL-8/10RB BCL3
IL-1B/1RN/2RG/8/15RA/17REL BCL6
IL-1A/1RAP/1RN/2RG/10RB/15RA BCL10
Table 120. 2nd order combinatorial hypotheses between BCL and EXOSC.
Table 120. 2nd order combinatorial hypotheses between BCL and EXOSC.
Ranking EXOSC family vs BCL family
Ranking of EXOSC2 w.r.t BCL family Ranking of BCL family w.r.t EXOSC2
laplace linear rbf laplace linear rbf
EXOSC2 - BCL2L12 723 355 1211 EXOSC2 - BCL2L12 1498 1889 1856
EXOSC2 - BCL6B 1092 1033 638 EXOSC2 - BCL6B 202 81 194
EXOSC2 - BCL7A 1633 1047 317 EXOSC2 - BCL7A 2403 2531 2405
EXOSC2 - BCL9 699 559 425 EXOSC2 - BCL9 2552 2230 1755
EXOSC2 - BCL11A 338 319 1598 EXOSC2 - BCL11A 574 834 1055
EXOSC2 - BCL11B 1285 1440 812 EXOSC2 - BCL11B 1067 1574 730
Ranking of EXOSC3 w.r.t BCL family Ranking of BCL family w.r.t EXOSC3
laplace linear rbf laplace linear rbf
EXOSC3 - BCL2L12 2280 1640 1955 EXOSC3 - BCL2L12 1976 1482 2399
EXOSC3 - BCL6B 2429 2273 2407 EXOSC3 - BCL6B 571 335 307
EXOSC3 - BCL7A 2100 1374 2674 EXOSC3 - BCL7A 1739 1882 1700
EXOSC3 - BCL9 2437 2223 2245 EXOSC3 - BCL9 2380 1912 2321
EXOSC3 - BCL11A 2212 2090 116 EXOSC3 - BCL11A 1018 1345 483
EXOSC3 - BCL11B 1677 199 267 EXOSC3 - BCL11B 2572 1876 2395
Ranking of EXOSC5 w.r.t BCL family Ranking of BCL family w.r.t EXOSC5
laplace linear rbf laplace linear rbf
EXOSC5 - BCL2L12 498 1342 436 EXOSC5 - BCL2L12 2174 1635 1824
EXOSC5 - BCL6B 786 1272 1194 EXOSC5 - BCL6B 330 193 107
EXOSC5 - BCL7A 374 1338 874 EXOSC5 - BCL7A 2582 2701 2415
EXOSC5 - BCL9 613 946 772 EXOSC5 - BCL9 1777 1511 2011
EXOSC5 - BCL11A 459 90 1034 EXOSC5 - BCL11A 756 389 1183
EXOSC5 - BCL11B 1404 2520 1558 EXOSC5 - BCL11B 1368 1353 1455
Ranking of EXOSC6 w.r.t BCL family Ranking of BCL family w.r.t EXOSC6
laplace linear rbf laplace linear rbf
EXOSC6 - BCL2L12 1327 1857 2063 EXOSC6 - BCL2L12 2268 1527 478
EXOSC6 - BCL6B 1965 2525 1825 EXOSC6 - BCL6B 18 2334 2512
EXOSC6 - BCL7A 1676 787 944 EXOSC6 - BCL7A 593 2653 2037
EXOSC6 - BCL9 1838 1059 1091 EXOSC6 - BCL9 1846 851 1564
EXOSC6 - BCL11A 1677 1573 2217 EXOSC6 - BCL11A 596 2307 2547
EXOSC6 - BCL11B 1897 1736 1126 EXOSC6 - BCL11B 2094 2223 81
Ranking of EXOSC7 w.r.t BCL family Ranking of BCL family w.r.t EXOSC7
laplace linear rbf laplace linear rbf
EXOSC7 - BCL2L12 1899 1755 974 EXOSC7 - BCL2L12 1721 1551 1099
EXOSC7 - BCL6B 666 98 743 EXOSC7 - BCL6B 2730 2690 2689
EXOSC7 - BCL7A 2290 1501 1513 EXOSC7 - BCL7A 1282 831 1218
EXOSC7 - BCL9 2363 1134 2219 EXOSC7 - BCL9 1845 1234 328
EXOSC7 - BCL11A 1477 2239 1217 EXOSC7 - BCL11A 520 117 686
EXOSC7 - BCL11B 2396 1524 2037 EXOSC7 - BCL11B 1529 2720 1418
Ranking of EXOSC8 w.r.t BCL family Ranking of BCL family w.r.t EXOSC8
laplace linear rbf laplace linear rbf
EXOSC8 - BCL2L12 2042 2152 506 EXOSC8 - BCL2L12 1967 1525 2275
EXOSC8 - BCL6B 2469 2134 2224 EXOSC8 - BCL6B 190 1630 472
EXOSC8 - BCL7A 1175 1504 1743 EXOSC8 - BCL7A 2065 2351 1069
EXOSC8 - BCL9 1733 2452 1164 EXOSC8 - BCL9 2640 1895 1747
EXOSC8 - BCL11A 1864 906 1130 EXOSC8 - BCL11A 944 2303 532
EXOSC8 - BCL11B 1547 605 374 EXOSC8 - BCL11B 2581 2728 2359
Ranking of EXOSC9 w.r.t BCL family Ranking of BCL family w.r.t EXOSC9
laplace linear rbf laplace linear rbf
EXOSC9 - BCL2L12 1179 1018 687 EXOSC9 - BCL2L12 2105 1762 1453
EXOSC9 - BCL6B 437 852 1358 EXOSC9 - BCL6B 634 304 146
EXOSC9 - BCL7A 821 346 727 EXOSC9 - BCL7A 985 2017 2207
EXOSC9 - BCL9 1305 1849 299 EXOSC9 - BCL9 1197 1279 2154
EXOSC9 - BCL11A 892 2426 2011 EXOSC9 - BCL11A 481 441 1372
EXOSC9 - BCL11B 1569 549 1456 EXOSC9 - BCL11B 2606 1454 133
Table 121. 2nd order combinatorial hypotheses between EXOSC and BCL family.
Table 121. 2nd order combinatorial hypotheses between EXOSC and BCL family.
Unexplored combinatorial hypotheses
EXOSC w.r.t BCL
EXOSC2 BCL-2L12/6B/7A/9/11A/11B
EXOSC3 BCL-11B
EXOSC5 BCL-2L12/6B/7A/9/11A/11B
EXOSC6 BCL-7A/9/11A
EXOSC7 BCL-6B/7A/11A
EXOSC8 BCL-7A/11A/11B
EXOSC9 BCL-2L12/6B/7A/9/11B
BCL w.r.t EXOSC
EXOSC2 BCL-6B/11A/11B
EXOSC3 BCL-6B/7A/11A
EXOSC5 BCL-6B/11A/11B
EXOSC6 BCL-2L12/9
EXOSC7 BCL-2L12/7A/9/11A/11B
EXOSC8 BCL-6B/11A
EXOSC9 BCL-6B/9/11A/11B
Table 138. 2nd order combinatorial hypotheses between ANTRX2 and COL family.
Table 138. 2nd order combinatorial hypotheses between ANTRX2 and COL family.
Ranking ANTRX2 vs COL family
Ranking of ANTRX2 w.r.t COL family Ranking of COL family w.r.t ANTXR2
laplace linear rbf laplace linear rbf
COL5A3-ANTXR2 2006 1473 2217 COL5A3-ANTXR2 984 1782 933
COL6A1-ANTXR2 1935 1061 1366 COL6A1-ANTXR2 324 2211 398
COL7A1-ANTXR2 1002 2119 1690 COL7A1-ANTXR2 1722 956 2121
COL9A2-ANTXR2 1498 552 1361 COL9A2-ANTXR2 2391 80 135
COL17A1-ANTXR2 1906 1086 780 COL17A1-ANTXR2 576 2504 229
COL28A1-ANTXR2 1409 2259 2296 COL28A1-ANTXR2 478 1731 2362
Table 139. 2nd order combinatorial hypotheses between ANTRX2 and COL family.
Table 139. 2nd order combinatorial hypotheses between ANTRX2 and COL family.
Unexplored combinatorial hypotheses
ANTXR2 w.r.t COL
COL5A3 ANTXR2
COL28A1 ANTXR2
COL w.r.t ANTXR2
COL7A1 ANTXR2
COL28A1 ANTXR2
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated