Submitted:
31 December 2022
Posted:
03 January 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Molten Globule as an (un)Folding Intermediate
3. Potential Functionality of Folding Intermediates
4. How One Can Find Molten Globules, and Where They Can Be Found?
5. Baroenzymology, Cryoenzymology and Molten Globules
6. Molten Globules and Intrinsic Disorder in Proteins
7. Engineered Molten Globules
8. Macromolecular Crowding and Molten Globules
9. Interactions of Nanomaterials with Molten Globules
10. Dry and Wet Molten Globules
11. Pre-Molten Globule States
12. Conclusion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lesk, A. Introduction to protein science: architecture, function, and genomics; Oxford university press, 2010. [Google Scholar]
- Anfinsen, C.B. Principles that govern the folding of protein chains. Science 1973, 181, 223–230. [Google Scholar] [CrossRef]
- Anfinsen, C.B.; Haber, E.; Sela, M.; White, F.H., Jr. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci U S A 1961, 47, 1309–1314. [Google Scholar] [CrossRef]
- White, F.H., Jr. Regeneration of native secondary and tertiary structures by air oxidation of reduced ribonuclease. J Biol Chem 1961, 236, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Anfinsen, C.B.; Haber, E. Studies on the reduction and re-formation of protein disulfide bonds. J Biol Chem 1961, 236, 1361–1363. [Google Scholar] [CrossRef]
- Seckler, R.; Jaenicke, R. Protein folding and protein refolding. FASEB J 1992, 6, 2545–2552. [Google Scholar] [CrossRef]
- Tsytlonok, M.; Itzhaki, L.S. The how’s and why’s of protein folding intermediates. Arch Biochem Biophys 2013, 531, 14–23. [Google Scholar] [CrossRef]
- Privalov, P.L. Stability of proteins: small globular proteins. Adv Protein Chem 1979, 33, 167–241. [Google Scholar] [CrossRef]
- Tanford, C. Protein denaturation. Adv Protein Chem 1968, 23, 121–282. [Google Scholar] [CrossRef] [PubMed]
- Gil’manshin, R.I.; Dolgikh, D.A.; Ptitsyn, O.B.; Finkel’shtein, A.V.; Shakhnovich, E.I. [Protein globule without the unique three-dimensional structure: experimental data for alpha-lactalbumins and general model]. Biofizika 1982, 27, 1005–1016. [Google Scholar] [PubMed]
- Dolgikh, D.A.; Gilmanshin, R.I.; Brazhnikov, E.V.; Bychkova, V.E.; Semisotnov, G.V.; Venyaminov, S.; Ptitsyn, O.B. Alpha-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett 1981, 136, 311–315. [Google Scholar] [CrossRef]
- Ohgushi, M.; Wada, A. ‘Molten-globule state’: a compact form of globular proteins with mobile side-chains. FEBS Lett 1983, 164, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Ptitsyn, O.B.; Dolgikh, D.A.; Gil’manshin, R.I.; Shakhnovich, E.I.; Finkel’shtein, A.V. [Fluctuating state of the protein globule]. Mol Biol (Mosk) 1983, 17, 569–576. [Google Scholar]
- Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 1989, 6, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Ptitsyn, O.B. Structures of folding intermediates. Curr Opin Struct Biol 1995, 5, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Ptitsyn, O.B. Molten globule and protein folding. Adv Protein Chem 1995, 47, 83–229. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.; Kuwajima, K. Role of the molten globule state in protein folding. Adv Protein Chem 2000, 53, 209–282. [Google Scholar] [CrossRef]
- Bychkova, V.E.; Semisotnov, G.V.; Balobanov, V.A.; Finkelstein, A.V. The Molten Globule Concept: 45 Years Later. Biochemistry (Mosc) 2018, 83, S33–S47. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, R.L.; Rose, G.D. Molten globules, entropy-driven conformational change and protein folding. Curr Opin Struct Biol 2013, 23, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Balobanov, V.A.; Katina, N.S.; Finkelstein, A.V.; Bychkova, V.E. Intermediate States of Apomyoglobin: Are They Parts of the Same Area of Conformations Diagram? Biochemistry (Mosc) 2017, 82, 625–631. [Google Scholar] [CrossRef]
- Kharakoz, D.P.; Bychkova, V.E. Molten globule of human alpha-lactalbumin: hydration, density, and compressibility of the interior. Biochemistry 1997, 36, 1882–1890. [Google Scholar] [CrossRef]
- Georlette, D.; Blaise, V.; Bouillenne, F.; Damien, B.; Thorbjarnardottir, S.H.; Depiereux, E.; Gerday, C.; Uversky, V.N.; Feller, G. Adenylation-dependent conformation and unfolding pathways of the NAD+-dependent DNA ligase from the thermophile Thermus scotoductus. Biophys J 2004, 86, 1089–1104. [Google Scholar] [CrossRef] [PubMed]
- Georlette, D.; Blaise, V.; Dohmen, C.; Bouillenne, F.; Damien, B.; Depiereux, E.; Gerday, C.; Uversky, V.N.; Feller, G. Cofactor binding modulates the conformational stabilities and unfolding patterns of NAD(+)-dependent DNA ligases from Escherichia coli and Thermus scotoductus. J Biol Chem 2003, 278, 49945–49953. [Google Scholar] [CrossRef]
- Uversky, V.N.; Ptitsyn, O.B. Further evidence on the equilibrium "pre-molten globule state": four-state guanidinium chloride-induced unfolding of carbonic anhydrase B at low temperature. J Mol Biol 1996, 255, 215–228. [Google Scholar] [CrossRef]
- Ptitsyn, O.B.; Bychkova, V.E.; Uversky, V.N. Kinetic and equilibrium folding intermediates. Philos Trans R Soc Lond B Biol Sci 1995, 348, 35–41. [Google Scholar] [CrossRef]
- Uversky, V.N.; Ptitsyn, O.B. "Partly folded" state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of beta-lactamase at low temperature. Biochemistry 1994, 33, 2782–2791. [Google Scholar] [CrossRef]
- Ptitsyn, O.B. [Stages in the mechanism of self-organization of protein molecules]. Dokl Akad Nauk SSSR 1973, 210, 1213–1215. [Google Scholar]
- Sarkar, S.S.; Udgaonkar, J.B.; Krishnamoorthy, G. Unfolding of a small protein proceeds via dry and wet globules and a solvated transition state. Biophys J 2013, 105, 2392–2402. [Google Scholar] [CrossRef]
- Acharya, N.; Jha, S.K. Dry Molten Globule-Like Intermediates in Protein Folding, Function, and Disease. J Phys Chem B 2022, 126, 8614–8622. [Google Scholar] [CrossRef]
- Acharya, N.; Mishra, P.; Jha, S.K. A dry molten globule-like intermediate during the base-induced unfolding of a multidomain protein. Phys Chem Chem Phys 2017, 19, 30207–30216. [Google Scholar] [CrossRef]
- de Oliveira, G.A.P.; Silva, J.L. The push-and-pull hypothesis in protein unfolding, misfolding and aggregation. Biophys Chem 2017, 231, 20–26. [Google Scholar] [CrossRef]
- Neumaier, S.; Kiefhaber, T. Redefining the dry molten globule state of proteins. J Mol Biol 2014, 426, 2520–2528. [Google Scholar] [CrossRef]
- Jha, S.K.; Marqusee, S. Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride. Proc Natl Acad Sci U S A 2014, 111, 4856–4861. [Google Scholar] [CrossRef]
- Baldwin, R.L.; Frieden, C.; Rose, G.D. Dry molten globule intermediates and the mechanism of protein unfolding. Proteins 2010, 78, 2725–2737. [Google Scholar] [CrossRef]
- Reiner, A.; Henklein, P.; Kiefhaber, T. An unlocking/relocking barrier in conformational fluctuations of villin headpiece subdomain. Proc Natl Acad Sci U S A 2010, 107, 4955–4960. [Google Scholar] [CrossRef]
- Jha, S.K.; Udgaonkar, J.B. Direct evidence for a dry molten globule intermediate during the unfolding of a small protein. Proc Natl Acad Sci U S A 2009, 106, 12289–12294. [Google Scholar] [CrossRef]
- Rami, B.R.; Udgaonkar, J.B. Mechanism of formation of a productive molten globule form of barstar. Biochemistry 2002, 41, 1710–1716. [Google Scholar] [CrossRef]
- Kiefhaber, T.; Labhardt, A.M.; Baldwin, R.L. Direct NMR evidence for an intermediate preceding the rate-limiting step in the unfolding of ribonuclease A. Nature 1995, 375, 513–515. [Google Scholar] [CrossRef]
- Finkelstein, A.V.; Shakhnovich, E.I. Theory of cooperative transitions in protein molecules. II. Phase diagram for a protein molecule in solution. Biopolymers 1989, 28, 1681–1694. [Google Scholar] [CrossRef]
- Gupta, M.N.; Uversky, V.N. Macromolecular crowding: how it affects protein structure, disorder, and catalysis. In Structure and Intrinsic Disorder in Enzymology; Elsevier, 2023; pp. 353–376. [Google Scholar]
- Gupta, M.N.; Uversky, V.N. Structure and disorder: protein functions depend on this new binary transforming lock-and-key into structure-function continuum. In Structure and Intrinsic Disorder in Enzymology; Elsevier, 2023; pp. 127–148. [Google Scholar]
- Edsall, J.T. Hsien Wu and the First Theory of Protein Denaturation (1931). Adv Protein Chem 1995, 46, 1–5. [Google Scholar] [CrossRef]
- Wu, H. Studies of Denaturation of Proteins XIII. A Theory of Denaturation. Chinese J Physiol 1931, 5, 321–344. [Google Scholar]
- Anson, M.L.; Mirsky, A.E. On Some General Properties of Proteins. J Gen Physiol 1925, 9, 169–179. [Google Scholar] [CrossRef]
- Mirsky, A.E.; Pauling, L. On the Structure of Native, Denatured, and Coagulated Proteins. Proc Natl Acad Sci U S A 1936, 22, 439–447. [Google Scholar] [CrossRef]
- Neurath, H.; Greenstein, J.P.; Putnam, F.W.; Erickson, J.A. The chemistry of protein denaturation. Chemical Reviews 1944, 34, 157–265. [Google Scholar] [CrossRef]
- Greenstein, J.P. Sulfhydryl groups in proteins: I. Egg albumin in solutions of urea, guanidine, and their derivatives. Journal of Biological Chemistry 1938, 125, 501–513. [Google Scholar] [CrossRef]
- Greenstein, J.P. Sulfhydryl groups in proteins: II. Edestin, Excelsin, and Globin in solutions of guanidine hydrochloride, urea, and their derivatives. Journal of Biological Chemistry 1939, 128, 233–240. [Google Scholar] [CrossRef]
- Greenstein, J.P. Sulfhydryl groups in proteins: III. The effect on egg albumin of various salts of guanidine. Journal of Biological Chemistry 1939, 130, 519–526. [Google Scholar] [CrossRef]
- Neurath, H.; Cooper, G.R.; Erickson, J.O. THE DENATURATION OF PROTEINS AND ITS APPARENT REVERSAL: I. HORSE SERUM ALBUMIN. Journal of Biological Chemistry 1942, 142, 249–263. [Google Scholar] [CrossRef]
- Neurath, H.; Cooper, G.R.; Erickson, J.O. THE DENATURATION OF PROTEINS AND ITS APPARENT REVERSAL: II. HORSE SERUM PSEUDOGLOBULIN. Journal of Biological Chemistry 1942, 142, 265–276. [Google Scholar] [CrossRef]
- Aune, K.C.; Salahuddin, A.; Zarlengo, M.H.; Tanford, C. Evidence for residual structure in acid- and heat-denatured proteins. J Biol Chem 1967, 242, 4486–4489. [Google Scholar] [CrossRef]
- Wong, K.P.; Tanford, C. Denaturation of bovine carbonic anhydrase B by guanidine hydrochloride. A process involving separable sequential conformational transitions. J Biol Chem 1973, 248, 8518–8523. [Google Scholar] [CrossRef]
- Wong, K.P.; Hamlin, L.M. Acid denaturation of bovine carbonic anhydrase B. Biochemistry 1974, 13, 2678–2683. [Google Scholar] [CrossRef] [PubMed]
- Dobson, C.M. Protein folding. Solid evidence for molten globules. Curr Biol 1994, 4, 636–640. [Google Scholar] [CrossRef]
- Uversky, V.N. Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 2003, 60, 1852–1871. [Google Scholar] [CrossRef]
- Tcherkasskaya, O.; Uversky, V.N. Polymeric aspects of protein folding: a brief overview. Protein Pept Lett 2003, 10, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Uverskii, V.N. [How many molten globules states exist?]. Biofizika 1998, 43, 416–421. [Google Scholar] [PubMed]
- Ikeguchi, M.; Fujino, M.; Kato, M.; Kuwajima, K.; Sugai, S. Transition state in the folding of alpha-lactalbumin probed by the 6-120 disulfide bond. Protein Sci 1998, 7, 1564–1574. [Google Scholar] [CrossRef] [PubMed]
- Ptitsyn, O. How molten is the molten globule? Nat Struct Biol 1996, 3, 488–490. [Google Scholar] [CrossRef]
- Fink, A.L. Compact intermediates states in protein folding. Subcell Biochem 1995, 24, 27–53. [Google Scholar] [CrossRef] [PubMed]
- Ewbank, J.J.; Creighton, T.E.; Hayer-Hartl, M.K.; Ulrich Hartl, F. What is the molten globule? Nat Struct Biol 1995, 2, 10–11. [Google Scholar] [CrossRef]
- Fink, A.L. Compact intermediate states in protein folding. Annu Rev Biophys Biomol Struct 1995, 24, 495–522. [Google Scholar] [CrossRef]
- Fink, A.L. Molten globules. Methods Mol Biol 1995, 40, 343–360. [Google Scholar] [CrossRef] [PubMed]
- Vassilenko, K.S.; Uversky, V.N. Native-like secondary structure of molten globules. Biochim Biophys Acta 2002, 1594, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Redfield, C. Using nuclear magnetic resonance spectroscopy to study molten globule states of proteins. Methods 2004, 34, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Krishna, M.M.; Hoang, L.; Lin, Y.; Englander, S.W. Hydrogen exchange methods to study protein folding. Methods 2004, 34, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Bracken, C. NMR spin relaxation methods for characterization of disorder and folding in proteins. J Mol Graph Model 2001, 19, 3–12. [Google Scholar] [CrossRef]
- Bose, H.S.; Whittal, R.M.; Baldwin, M.A.; Miller, W.L. The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc Natl Acad Sci U S A 1999, 96, 7250–7255. [Google Scholar] [CrossRef] [PubMed]
- Eliezer, D.; Yao, J.; Dyson, H.J.; Wright, P.E. Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat Struct Biol 1998, 5, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.C.; Laub, P.B.; Elove, G.A.; Carey, J.; Roder, H. A noncovalent peptide complex as a model for an early folding intermediate of cytochrome c. Biochemistry 1993, 32, 10271–10276. [Google Scholar] [CrossRef]
- Chyan, C.L.; Wormald, C.; Dobson, C.M.; Evans, P.A.; Baum, J. Structure and stability of the molten globule state of guinea-pig alpha-lactalbumin: a hydrogen exchange study. Biochemistry 1993, 32, 5681–5691. [Google Scholar] [CrossRef]
- Jeng, M.F.; Englander, S.W.; Elove, G.A.; Wand, A.J.; Roder, H. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry 1990, 29, 10433–10437. [Google Scholar] [CrossRef]
- Bushnell, G.W.; Louie, G.V.; Brayer, G.D. High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol 1990, 214, 585–595. [Google Scholar] [CrossRef]
- Baum, J.; Dobson, C.M.; Evans, P.A.; Hanley, C. Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig alpha-lactalbumin. Biochemistry 1989, 28, 7–13. [Google Scholar] [CrossRef]
- Hsu, D.J.; Leshchev, D.; Kosheleva, I.; Kohlstedt, K.L.; Chen, L.X. Unfolding bovine alpha-lactalbumin with T-jump: Characterizing disordered intermediates via time-resolved x-ray solution scattering and molecular dynamics simulations. J Chem Phys 2021, 154, 105101. [Google Scholar] [CrossRef]
- Uversky, V.N.; Karnoup, A.S.; Segel, D.J.; Seshadri, S.; Doniach, S.; Fink, A.L. Anion-induced folding of Staphylococcal nuclease: characterization of multiple equilibrium partially folded intermediates. J Mol Biol 1998, 278, 879–894. [Google Scholar] [CrossRef]
- Semisotnov, G.V.; Kihara, H.; Kotova, N.V.; Kimura, K.; Amemiya, Y.; Wakabayashi, K.; Serdyuk, I.N.; Timchenko, A.A.; Chiba, K.; Nikaido, K.; et al. Protein globularization during folding. A study by synchrotron small-angle X-ray scattering. J Mol Biol 1996, 262, 559–574. [Google Scholar] [CrossRef]
- Eliezer, D.; Chiba, K.; Tsuruta, H.; Doniach, S.; Hodgson, K.O.; Kihara, H. Evidence of an associative intermediate on the myoglobin refolding pathway. Biophys J 1993, 65, 912–917. [Google Scholar] [CrossRef]
- Kataoka, M.; Hagihara, Y.; Mihara, K.; Goto, Y. Molten globule of cytochrome c studied by small angle X-ray scattering. J Mol Biol 1993, 229, 591–596. [Google Scholar] [CrossRef]
- Kataoka, M.; Kuwajima, K.; Tokunaga, F.; Goto, Y. Structural characterization of the molten globule of alpha-lactalbumin by solution X-ray scattering. Protein Sci 1997, 6, 422–430. [Google Scholar] [CrossRef]
- Uversky, V.N. Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry 1993, 32, 13288–13298. [Google Scholar] [CrossRef]
- Uversky, V.N. Molten globular enzymes. In Structure and Intrinsic Disorder in Enzymology; Elsevier, 2023; pp. 303–325. [Google Scholar]
- Fontana, A.; de Laureto, P.P.; Spolaore, B.; Frare, E.; Picotti, P.; Zambonin, M. Probing protein structure by limited proteolysis. Acta Biochim Pol 2004, 51, 299–321. [Google Scholar] [CrossRef]
- Fontana, A.; Polverino de Laureto, P.; De Filippis, V.; Scaramella, E.; Zambonin, M. Probing the partly folded states of proteins by limited proteolysis. Fold Des 1997, 2, R17–26. [Google Scholar] [CrossRef]
- Merrill, A.R.; Cohen, F.S.; Cramer, W.A. On the nature of the structural change of the colicin E1 channel peptide necessary for its translocation-competent state. Biochemistry 1990, 29, 5829–5836. [Google Scholar] [CrossRef]
- Polverino de Laureto, P.; De Filippis, V.; Di Bello, M.; Zambonin, M.; Fontana, A. Probing the molten globule state of alpha-lactalbumin by limited proteolysis. Biochemistry 1995, 34, 12596–12604. [Google Scholar] [CrossRef]
- Polverino de Laureto, P.; Frare, E.; Gottardo, R.; Fontana, A. Molten globule of bovine alpha-lactalbumin at neutral pH induced by heat, trifluoroethanol, and oleic acid: a comparative analysis by circular dichroism spectroscopy and limited proteolysis. Proteins 2002, 49, 385–397. [Google Scholar] [CrossRef]
- Polverino de Laureto, P.; Frare, E.; Gottardo, R.; Van Dael, H.; Fontana, A. Partly folded states of members of the lysozyme/lactalbumin superfamily: a comparative study by circular dichroism spectroscopy and limited proteolysis. Protein Sci 2002, 11, 2932–2946. [Google Scholar] [CrossRef]
- Uversky, V.N.; Winter, S.; Lober, G. Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys Chem 1996, 60, 79–88. [Google Scholar] [CrossRef]
- Shi, L.; Palleros, D.R.; Fink, A.L. Protein conformational changes induced by 1,1’-bis(4-anilino-5-naphthalenesulfonic acid): preferential binding to the molten globule of DnaK. Biochemistry 1994, 33, 7536–7546. [Google Scholar] [CrossRef]
- Semisotnov, G.V.; Rodionova, N.A.; Razgulyaev, O.I.; Uversky, V.N.; Gripas, A.F.; Gilmanshin, R.I. Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 1991, 31, 119–128. [Google Scholar] [CrossRef]
- Regan, L. Molten globules move into action. Proc Natl Acad Sci U S A 2003, 100, 3553–3554. [Google Scholar] [CrossRef]
- Uversky, V.N. Protein intrinsic disorder and structure-function continuum. Prog Mol Biol Transl Sci 2019, 166, 1–17. [Google Scholar] [CrossRef]
- Uversky, V.N. Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins. J Biol Chem 2016, 291, 6681–6688. [Google Scholar] [CrossRef]
- Uversky, V.N. Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta 2013, 1834, 932–951. [Google Scholar] [CrossRef]
- Uversky, V.N.; Semisotnov, G.V.; Pain, R.H.; Ptitsyn, O.B. ’All-or-none’ mechanism of the molten globule unfolding. FEBS Lett 1992, 314, 89–92. [Google Scholar] [CrossRef]
- Uversky, V.N.; Ptitsyn, O.B. All-or-none solvent-induced transitions between native, molten globule and unfolded states in globular proteins. Fold Des 1996, 1, 117–122. [Google Scholar] [CrossRef]
- Ptitsyn, O.B.; Uversky, V.N. The molten globule is a third thermodynamical state of protein molecules. FEBS Lett 1994, 341, 15–18. [Google Scholar] [CrossRef]
- Pande, V.S.; Rokhsar, D.S. Is the molten globule a third phase of proteins? Proc Natl Acad Sci U S A 1998, 95, 1490–1494. [Google Scholar] [CrossRef]
- Bychkova, V.E.; Pain, R.H.; Ptitsyn, O.B. The ’molten globule’ state is involved in the translocation of proteins across membranes? FEBS Lett 1988, 238, 231–234. [Google Scholar] [CrossRef]
- Song, M.; Shao, H.; Mujeeb, A.; James, T.L.; Miller, W.L. Molten-globule structure and membrane binding of the N-terminal protease-resistant domain (63-193) of the steroidogenic acute regulatory protein (StAR). Biochem J 2001, 356, 151–158. [Google Scholar] [CrossRef]
- Bose, H.S.; Baldwin, M.A.; Miller, W.L. Evidence that StAR and MLN64 act on the outer mitochondrial membrane as molten globules. Endocr Res 2000, 26, 629–637. [Google Scholar] [CrossRef]
- Ren, J.; Kachel, K.; Kim, H.; Malenbaum, S.E.; Collier, R.J.; London, E. Interaction of diphtheria toxin T domain with molten globule-like proteins and its implications for translocation. Science 1999, 284, 955–957. [Google Scholar] [CrossRef]
- van der Goot, F.G.; Lakey, J.H.; Pattus, F. The molten globule intermediate for protein insertion or translocation through membranes. Trends Cell Biol 1992, 2, 343–348. [Google Scholar] [CrossRef]
- van der Goot, F.G.; Gonzalez-Manas, J.M.; Lakey, J.H.; Pattus, F. A ’molten-globule’ membrane-insertion intermediate of the pore-forming domain of colicin A. Nature 1991, 354, 408–410. [Google Scholar] [CrossRef]
- Banuelos, S.; Muga, A. Binding of molten globule-like conformations to lipid bilayers. Structure of native and partially folded alpha-lactalbumin bound to model membranes. J Biol Chem 1995, 270, 29910–29915. [Google Scholar] [CrossRef]
- Watts, A. Biophysics of the membrane interface. Biochem Soc Trans 1995, 23, 959–965. [Google Scholar] [CrossRef]
- Bychkova, V.E.; Basova, L.V.; Balobanov, V.A. How membrane surface affects protein structure. Biochemistry (Mosc) 2014, 79, 1483–1514. [Google Scholar] [CrossRef]
- Narizhneva, N.V.; Uversky, V.N. Decrease of dielectric constant transforms the protein molecule into the molten globule state. Biochemistry (Mosc) 1998, 63, 448–455. [Google Scholar]
- Uversky, V.N.; Narizhneva, N.V.; Kirschstein, S.O.; Winter, S.; Lober, G. Conformational transitions provoked by organic solvents in beta-lactoglobulin: can a molten globule like intermediate be induced by the decrease in dielectric constant? Fold Des 1997, 2, 163–172. [Google Scholar] [CrossRef]
- Bychkova, V.E.; Dujsekina, A.E.; Klenin, S.I.; Tiktopulo, E.I.; Uversky, V.N.; Ptitsyn, O.B. Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry 1996, 35, 6058–6063. [Google Scholar] [CrossRef]
- Bychkova, V.E.; Dujsekina, A.E.; Fantuzzi, A.; Ptitsyn, O.B.; Rossi, G.L. Release of retinol and denaturation of its plasma carrier, retinol-binding protein. Fold Des 1998, 3, 285–291. [Google Scholar] [CrossRef]
- Uversky, V.N.; Narizhneva, N.V. Effect of natural ligands on the structural properties and conformational stability of proteins. Biochemistry (Mosc) 1998, 63, 420–433. [Google Scholar]
- Uversky, V.N.; Narizhneva, N.V.; Ivanova, T.V.; Tomashevski, A.Y. Rigidity of human alpha-fetoprotein tertiary structure is under ligand control. Biochemistry 1997, 36, 13638–13645. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N.; Narizhneva, N.V.; Ivanova, T.V.; Kirkitadze, M.D.; Tomashevski, A. Ligand-free form of human alpha-fetoprotein: evidence for the molten globule state. FEBS Lett 1997, 410, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, R.S.; Indu, S.; Varadarajan, R. Identification and thermodynamic characterization of molten globule states of periplasmic binding proteins. Biochemistry 2007, 46, 10339–10352. [Google Scholar] [CrossRef] [PubMed]
- Rajaraman, K.; Raman, B.; Rao, C.M. Molten-globule state of carbonic anhydrase binds to the chaperone-like alpha-crystallin. J Biol Chem 1996, 271, 27595–27600. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Langer, T.; Boteva, R.; Schramel, A.; Horwich, A.L.; Hartl, F.U. Chaperonin-mediated protein folding at the surface of groEL through a ’molten globule’-like intermediate. Nature 1991, 352, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Bai, J.H.; Park, Y.D.; Zhou, H.M. Aggregation of creatine kinase during refolding and chaperonin-mediated folding of creatine kinase. Int J Biochem Cell Biol 2001, 33, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Hayer-Hartl, M.K.; Ewbank, J.J.; Creighton, T.E.; Hartl, F.U. Conformational specificity of the chaperonin GroEL for the compact folding intermediates of alpha-lactalbumin. EMBO J 1994, 13, 3192–3202. [Google Scholar] [CrossRef]
- Braig, K.; Simon, M.; Furuya, F.; Hainfeld, J.F.; Horwich, A.L. A polypeptide bound by the chaperonin groEL is localized within a central cavity. Proc Natl Acad Sci U S A 1993, 90, 3978–3982. [Google Scholar] [CrossRef]
- Melki, R.; Cowan, N.J. Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates. Mol Cell Biol 1994, 14, 2895–2904. [Google Scholar] [CrossRef]
- Zhou, B.; Tian, K.; Jing, G. An in vitro peptide folding model suggests the presence of the molten globule state during nascent peptide folding. Protein Eng 2000, 13, 35–39. [Google Scholar] [CrossRef]
- Bychkova, V.E.; Ptitsyn, O.B. The molten globule in vitro and in vivo. Chemtracts Biochem. Molec. Biol. 1993, 4, 133–163. [Google Scholar]
- Bychkova, V.E.; Ptitsyn, O.B. Folding intermediates are involved in genetic diseases? FEBS Lett 1995, 359, 6–8. [Google Scholar] [CrossRef]
- Bychkova, V.E.; Dolgikh, D.A.; Balobanov, V.A.; Finkelstein, A.V. The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception. Molecules 2022, 27. [Google Scholar] [CrossRef]
- Griko, Y.V.; Freire, E.; Privalov, P.L. Energetics of the alpha-lactalbumin states: a calorimetric and statistical thermodynamic study. Biochemistry 1994, 33, 1889–1899. [Google Scholar] [CrossRef]
- Goto, Y.; Fink, A.L. Acid-induced folding of heme proteins. Methods Enzymol 1994, 232, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, Y.; Kidokoro, S.; Wada, A. Thermodynamic characterization of cytochrome c at low pH. Observation of the molten globule state and of the cold denaturation process. J Mol Biol 1992, 223, 1139–1153. [Google Scholar] [CrossRef] [PubMed]
- Hughson, F.M.; Wright, P.E.; Baldwin, R.L. Structural characterization of a partly folded apomyoglobin intermediate. Science 1990, 249, 1544–1548. [Google Scholar] [CrossRef]
- Goto, Y.; Takahashi, N.; Fink, A.L. Mechanism of acid-induced folding of proteins. Biochemistry 1990, 29, 3480–3488. [Google Scholar] [CrossRef]
- Goto, Y.; Calciano, L.J.; Fink, A.L. Acid-induced folding of proteins. Proc Natl Acad Sci U S A 1990, 87, 573–577. [Google Scholar] [CrossRef]
- Maheshwari, D.; Yadav, R.; Rastogi, R.; Jain, A.; Tripathi, S.; Mukhopadhyay, A.; Arora, A. Structural and Biophysical Characterization of Rab5a from Leishmania Donovani. Biophys J 2018, 115, 1217–1230. [Google Scholar] [CrossRef]
- Wahiduzzaman; Dar, M.A.; Haque, M.A.; Idrees, D.; Hassan, M.I.; Islam, A.; Ahmad, F. Characterization of folding intermediates during urea-induced denaturation of human carbonic anhydrase II. Int J Biol Macromol 2017, 95, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Khan, P.; Prakash, A.; Haque, M.A.; Islam, A.; Hassan, M.I.; Ahmad, F. Structural basis of urea-induced unfolding: Unraveling the folding pathway of hemochromatosis factor E. Int J Biol Macromol 2016, 91, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, G.; Mandal, D.K. Differing structural characteristics of molten globule intermediate of peanut lectin in urea and guanidine-HCl. Int J Biol Macromol 2012, 51, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.K.; Samaddar, S.; Banerjee, R.; Lahiri, S.; Bhattacharyya, A.; Roy, S. Glutamate counteracts the denaturing effect of urea through its effect on the denatured state. J Biol Chem 2003, 278, 36077–36084. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.; Serrano, L.; Rico, M.; Bruix, M. An NMR view of the folding process of a CheY mutant at the residue level. Structure 2002, 10, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Cymes, G.D.; Grosman, C.; Delfino, J.M.; Wolfenstein-Todel, C. Detection and characterization of an ovine placental lactogen stable intermediate in the urea-induced unfolding process. Protein Sci 1996, 5, 2074–2079. [Google Scholar] [CrossRef]
- Das, B.K.; Bhattacharyya, T.; Roy, S. Characterization of a urea induced molten globule intermediate state of glutaminyl-tRNA synthetase from Escherichia coli. Biochemistry 1995, 34, 5242–5247. [Google Scholar] [CrossRef]
- Rodionova, N.A.; Semisotnov, G.V.; Kutyshenko, V.P.; Uverskii, V.N.; Bolotina, I.A. [Staged equilibrium of carbonic anhydrase unfolding in strong denaturants]. Mol Biol (Mosk) 1989, 23, 683–692. [Google Scholar]
- Kuznetsova, I.M.; Stepanenko, O.V.; Turoverov, K.K.; Zhu, L.; Zhou, J.M.; Fink, A.L.; Uversky, V.N. Unraveling multistate unfolding of rabbit muscle creatine kinase. Biochim Biophys Acta 2002, 1596, 138–155. [Google Scholar] [CrossRef]
- Zerovnik, E.; Jerala, R.; Kroon-Zitko, L.; Turk, V.; Pain, R.H. Denaturation of stefin B by GuHCl, pH and heat; evidence for molten globule intermediates. Biol Chem Hoppe Seyler 1992, 373, 453–458. [Google Scholar] [CrossRef]
- Powell, L.M.; Pain, R.H. Effects of glycosylation on the folding and stability of human, recombinant and cleaved alpha 1-antitrypsin. J Mol Biol 1992, 224, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.; Pain, R.H. Molten globule intermediates and protein folding. Eur Biophys J 1991, 19, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Ptitsyn, O.B.; Pain, R.H.; Semisotnov, G.V.; Zerovnik, E.; Razgulyaev, O.I. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett 1990, 262, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Magsumov, T.; Ziying, L.; Sedov, I. Comparative study of the protein denaturing ability of different organic cosolvents. Int J Biol Macromol 2020, 160, 880–888. [Google Scholar] [CrossRef]
- Prasanna Kumari, N.K.; Jagannadham, M.V. Deciphering the molecular structure of cryptolepain in organic solvents. Biochimie 2012, 94, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Santucci, R.; Polizio, F.; Desideri, A. Formation of a molten-globule-like state of cytochrome c induced by high concentrations of glycerol. Biochimie 1999, 81, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Wicar, S.; Mulkerrin, M.G.; Bathory, G.; Khundkar, L.H.; Karger, B.L. Conformational changes in the reversed phase liquid chromatography of recombinant human growth hormone as a function of organic solvent: the molten globule state. Anal Chem 1994, 66, 3908–3915. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, G.; Kumar, T.K.; Arunkumar, A.I.; Yu, C. 2,2,2-Trifluoroethanol induces helical conformation in an all beta-sheet protein. Biochem Biophys Res Commun 1996, 222, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Dubey, V.K.; Shah, A.; Jagannadham, M.V.; Kayastha, A.M. Effect of organic solvents on the molten globule state of procerain: beta-sheet to alpha-helix switchover in presence of trifluoroethanol. Protein Pept Lett 2006, 13, 545–547. [Google Scholar] [CrossRef]
- Hirota-Nakaoka, N.; Goto, Y. Alcohol-induced denaturation of beta-lactoglobulin: a close correlation to the alcohol-induced alpha-helix formation of melittin. Bioorg Med Chem 1999, 7, 67–73. [Google Scholar] [CrossRef]
- Kuwata, K.; Hoshino, M.; Era, S.; Batt, C.A.; Goto, Y. alpha-->beta transition of beta-lactoglobulin as evidenced by heteronuclear NMR. J Mol Biol 1998, 283, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Shiraki, K.; Nishikawa, K.; Goto, Y. Trifluoroethanol-induced stabilization of the alpha-helical structure of beta-lactoglobulin: implication for non-hierarchical protein folding. J Mol Biol 1995, 245, 180–194. [Google Scholar] [CrossRef]
- Hirota, N.; Mizuno, K.; Goto, Y. Cooperative alpha-helix formation of beta-lactoglobulin and melittin induced by hexafluoroisopropanol. Protein Sci 1997, 6, 416–421. [Google Scholar] [CrossRef]
- Konuma, T.; Sakurai, K.; Yagi, M.; Goto, Y.; Fujisawa, T.; Takahashi, S. Highly Collapsed Conformation of the Initial Folding Intermediates of beta-Lactoglobulin with Non-Native alpha-Helix. J Mol Biol 2015, 427, 3158–3165. [Google Scholar] [CrossRef]
- Uversky, V.N. A multiparametric approach to studies of self-organization of globular proteins. Biochemistry (Mosc) 1999, 64, 250–266. [Google Scholar] [PubMed]
- Jacobs, M.D.; Fox, R.O. Staphylococcal nuclease folding intermediate characterized by hydrogen exchange and NMR spectroscopy. Proc Natl Acad Sci U S A 1994, 91, 449–453. [Google Scholar] [CrossRef]
- Alam Khan, M.K.; Das, U.; Rahaman, M.H.; Hassan, M.I.; Srinivasan, A.; Singh, T.P.; Ahmad, F. A single mutation induces molten globule formation and a drastic destabilization of wild-type cytochrome c at pH 6.0. J Biol Inorg Chem 2009, 14, 751–760. [Google Scholar] [CrossRef]
- Jennings, P.A.; Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 1993, 262, 892–896. [Google Scholar] [CrossRef]
- Radford, S.E.; Dobson, C.M.; Evans, P.A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 1992, 358, 302–307. [Google Scholar] [CrossRef]
- Shokri, M.M.; Khajeh, K.; Alikhajeh, J.; Asoodeh, A.; Ranjbar, B.; Hosseinkhani, S.; Sadeghi, M. Comparison of the molten globule states of thermophilic and mesophilic alpha-amylases. Biophys Chem 2006, 122, 58–65. [Google Scholar] [CrossRef]
- Gloss, L.M.; Topping, T.B.; Binder, A.K.; Lohman, J.R. Kinetic folding of Haloferax volcanii and Escherichia coli dihydrofolate reductases: haloadaptation by unfolded state destabilization at high ionic strength. J Mol Biol 2008, 376, 1451–1462. [Google Scholar] [CrossRef]
- Qvist, J.; Ortega, G.; Tadeo, X.; Millet, O.; Halle, B. Hydration dynamics of a halophilic protein in folded and unfolded states. J Phys Chem B 2012, 116, 3436–3444. [Google Scholar] [CrossRef]
- Franzetti, B.; Schoehn, G.; Garcia, D.; Ruigrok, R.W.; Zaccai, G. Characterization of the proteasome from the extremely halophilic archaeon Haloarcula marismortui. Archaea 2002, 1, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. Hypothesis: The unfolding power of protein dielectricity. Intrinsically Disord Proteins 2013, 1, e25725. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.N.; Batra, R.; Tyagi, R.; Sharma, A. Polarity index: the guiding solvent parameter for enzyme stability in aqueous-organic cosolvent mixtures. Biotechnology progress 1997, 13, 284–288. [Google Scholar] [CrossRef]
- Bocedi, A.; Gambardella, G.; Cattani, G.; Bartolucci, S.; Limauro, D.; Pedone, E.; Iavarone, F.; Castagnola, M.; Ricci, G. Ultra-rapid glutathionylation of chymotrypsinogen in its molten globule-like conformation: A comparison to archaeal proteins. Sci Rep 2020, 10, 8943. [Google Scholar] [CrossRef]
- van der Lee, R.; Buljan, M.; Lang, B.; Weatheritt, R.J.; Daughdrill, G.W.; Dunker, A.K.; Fuxreiter, M.; Gough, J.; Gsponer, J.; Jones, D.T.; et al. Classification of intrinsically disordered regions and proteins. Chem Rev 2014, 114, 6589–6631. [Google Scholar] [CrossRef]
- Uversky, V.N. A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 2013, 22, 693–724. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N.; Dunker, A.K. Understanding protein non-folding. Biochim Biophys Acta 2010, 1804, 1231–1264. [Google Scholar] [CrossRef]
- Dunker, A.K.; Silman, I.; Uversky, V.N.; Sussman, J.L. Function and structure of inherently disordered proteins. Curr Opin Struct Biol 2008, 18, 756–764. [Google Scholar] [CrossRef]
- Rantalainen, K.I.; Uversky, V.N.; Permi, P.; Kalkkinen, N.; Dunker, A.K.; Makinen, K. Potato virus A genome-linked protein VPg is an intrinsically disordered molten globule-like protein with a hydrophobic core. Virology 2008, 377, 280–288. [Google Scholar] [CrossRef]
- Oldfield, C.J.; Meng, J.; Yang, J.Y.; Yang, M.Q.; Uversky, V.N.; Dunker, A.K. Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 2008, 9 Suppl 1, S1. [Google Scholar] [CrossRef]
- Kokai, E.; Tantos, A.; Vissi, E.; Szoor, B.; Tompa, P.; Gausz, J.; Alphey, L.; Friedrich, P.; Dombradi, V. CG15031/PPYR1 is an intrinsically unstructured protein that interacts with protein phosphatase Y. Arch Biochem Biophys 2006, 451, 59–67. [Google Scholar] [CrossRef]
- Dunker, A.K.; Cortese, M.S.; Romero, P.; Iakoucheva, L.M.; Uversky, V.N. Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 2005, 272, 5129–5148. [Google Scholar] [CrossRef]
- Fink, A.L. Natively unfolded proteins. Curr Opin Struct Biol 2005, 15, 35–41. [Google Scholar] [CrossRef]
- Tompa, P. Intrinsically unstructured proteins. Trends Biochem Sci 2002, 27, 527–533. [Google Scholar] [CrossRef]
- Uversky, V.N. Natively unfolded proteins: a point where biology waits for physics. Protein Sci 2002, 11, 739–756. [Google Scholar] [CrossRef]
- Dyson, H.J.; Wright, P.E. Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 2002, 12, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. What does it mean to be natively unfolded? Eur J Biochem 2002, 269, 2–12. [Google Scholar] [CrossRef]
- Dunker, A.K.; Obradovic, Z. The protein trinity--linking function and disorder. Nat Biotechnol 2001, 19, 805–806. [Google Scholar] [CrossRef]
- Dunker, A.K.; Lawson, J.D.; Brown, C.J.; Williams, R.M.; Romero, P.; Oh, J.S.; Oldfield, C.J.; Campen, A.M.; Ratliff, C.M.; Hipps, K.W.; et al. Intrinsically disordered protein. J Mol Graph Model 2001, 19, 26–59. [Google Scholar] [CrossRef]
- Nakayama, K.I.; Hatakeyama, S.; Nakayama, K. Regulation of the cell cycle at the G1-S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys Res Commun 2001, 282, 853–860. [Google Scholar] [CrossRef]
- Alny, C.B.; Heiber-Langer, I.; Inserm, R.L. New trends in baro-enzymology. International Journal of High Pressure Research 1994, 12, 187–191. [Google Scholar] [CrossRef]
- Roy, I.; Gupta, M.N. Applications of three phase partitioning and macro-(affinity ligand) facilitated three phase partitioning in protein refolding In Three Phase Partitioning, Roy, I., Gupta, M.N., Eds. Elsevier: Amsterdam, 2021; pp. 197-222.
- Watanabe, M.; Aizawa, T.; Demura, M.; Nitta, K. Effect of hydrostatic pressure on conformational changes of canine milk lysozyme between the native, molten globule, and unfolded states. Biochim Biophys Acta 2004, 1702, 129–136. [Google Scholar] [CrossRef]
- Yang, J.; Dunker, A.K.; Powers, J.R.; Clark, S.; Swanson, B.G. Beta-lactoglobulin molten globule induced by high pressure. J Agric Food Chem 2001, 49, 3236–3243. [Google Scholar] [CrossRef]
- Silva, J.L.; Silveira, C.F.; Correia Junior, A.; Pontes, L. Dissociation of a native dimer to a molten globule monomer. Effects of pressure and dilution on the association equilibrium of arc repressor. J Mol Biol 1992, 223, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Kato, M.; Inoko, Y. Structural characterization of lactate dehydrogenase dissociation under high pressure studied by synchrotron high-pressure small-angle X-ray scattering. Biochemistry 1999, 38, 6411–6418. [Google Scholar] [CrossRef]
- Da Poian, A.T.; Johnson, J.E.; Silva, J.L. Differences in pressure stability of the three components of cowpea mosaic virus: implications for virus assembly and disassembly. Biochemistry 1994, 33, 8339–8346. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, L.P.; Johnson, J.E.; Silva, J.L.; Da Poian, A.T. Partially folded states of the capsid protein of cowpea severe mosaic virus in the disassembly pathway. J Mol Biol 1997, 273, 456–466. [Google Scholar] [CrossRef]
- Ruan, K.; Lange, R.; Bec, N.; Balny, C. A stable partly denatured state of trypsin induced by high hydrostatic pressure. Biochem Biophys Res Commun 1997, 239, 150–154. [Google Scholar] [CrossRef]
- Dumoulin, M.; Ueno, H.; Hayashi, R.; Balny, C. Contribution of the carbohydrate moiety to conformational stability of the carboxypeptidase Y high pressure study. Eur J Biochem 1999, 262, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.; Fortier, P.L.; Albaret, C.; Clery, C.; Guerra, P.; Lockridge, O. Structural and hydration changes in the active site gorge of phosporhylated butyrylcholinesterase accompanying the aging process. Chem Biol Interact 1999, 119-120, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Seemann, H.; Winter, R.; Royer, C.A. Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of Staphylococcal nuclease. J Mol Biol 2001, 307, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Trovaslet, M.; Dallet-Choisy, S.; Meersman, F.; Heremans, K.; Balny, C.; Legoy, M.D. Fluorescence and FTIR study of pressure-induced structural modifications of horse liver alcohol dehydrogenase (HLADH). Eur J Biochem 2003, 270, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Marchal, S.; Shehi, E.; Harricane, M.C.; Fusi, P.; Heitz, F.; Tortora, P.; Lange, R. Structural instability and fibrillar aggregation of non-expanded human ataxin-3 revealed under high pressure and temperature. J Biol Chem 2003, 278, 31554–31563. [Google Scholar] [CrossRef] [PubMed]
- Smeller, L.; Meersman, F.; Heremans, K. Stable misfolded states of human serum albumin revealed by high-pressure infrared spectroscopic studies. Eur Biophys J 2008, 37, 1127–1132. [Google Scholar] [CrossRef]
- Marion, J.; Trovaslet, M.; Martinez, N.; Masson, P.; Schweins, R.; Nachon, F.; Trapp, M.; Peters, J. Pressure-induced molten globule state of human acetylcholinesterase: structural and dynamical changes monitored by neutron scattering. Phys Chem Chem Phys 2015, 17, 3157–3163. [Google Scholar] [CrossRef] [PubMed]
- Giannoglou, M.; Alexandrakis, Z.; Stavros, P.; Katsaros, G.; Katapodis, P.; Nounesis, G.; Taoukis, P. Effect of high pressure on structural modifications and enzymatic activity of a purified X-prolyl dipeptidyl aminopeptidase from Streptococcus thermophilus. Food Chem 2018, 248, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.L.; Oliveira, A.C.; Gomes, A.M.; Lima, L.M.; Mohana-Borges, R.; Pacheco, A.B.; Foguel, D. Pressure induces folding intermediates that are crucial for protein-DNA recognition and virus assembly. Biochim Biophys Acta 2002, 1595, 250–265. [Google Scholar] [CrossRef]
- Tsai, C.J.; Maizel, J.V., Jr.; Nussinov, R. The hydrophobic effect: a new insight from cold denaturation and a two-state water structure. Crit Rev Biochem Mol Biol 2002, 37, 55–69. [Google Scholar] [CrossRef]
- Privalov, P.L.; Griko Yu, V.; Venyaminov, S.; Kutyshenko, V.P. Cold denaturation of myoglobin. J Mol Biol 1986, 190, 487–498. [Google Scholar] [CrossRef]
- Privalov, P.L. Cold denaturation of proteins. Crit Rev Biochem Mol Biol 1990, 25, 281–305. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.P.; Freire, E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem 1992, 43, 313–361. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.L.; Schellman, J.A. Low-temperature unfolding of a mutant of phage T4 lysozyme. 1. Equilibrium studies. Biochemistry 1989, 28, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Mizuguchi, M.; Hashimoto, D.; Sakurai, M.; Nitta, K. Cold denaturation of alpha-lactalbumin. Proteins 2000, 38, 407–413. [Google Scholar] [CrossRef]
- Dzwolak, W.; Kato, M.; Shimizu, A.; Taniguchi, Y. FTIR study on heat-induced and pressure-assisted cold-induced changes in structure of bovine alpha-lactalbumin: stabilizing role of calcium ion. Biopolymers 2001, 62, 29–39. [Google Scholar] [CrossRef]
- Yamada, Y.; Yajima, T.; Fujiwara, K.; Arai, M.; Ito, K.; Shimizu, A.; Kihara, H.; Kuwajima, K.; Amemiya, Y.; Ikeguchi, M. Helical and expanded conformation of equine beta-lactoglobulin in the cold-denatured state. J Mol Biol 2005, 350, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Babu, C.R.; Hilser, V.J.; Wand, A.J. Direct access to the cooperative substructure of proteins and the protein ensemble via cold denaturation. Nat Struct Mol Biol 2004, 11, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.J.; LaConte, M.J.; Bowler, B.E. Direct detection of heat and cold denaturation for partial unfolding of a protein. J Am Chem Soc 2001, 123, 7453–7454. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Prabhu, N.P.; Rao, D.K.; Bhuyan, A.K. The alkali molten globule state of horse ferricytochrome c: observation of cold denaturation. J Mol Biol 2006, 364, 483–495. [Google Scholar] [CrossRef]
- Jakob, U.; Kriwacki, R.; Uversky, V.N. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 2014, 114, 6779–6805. [Google Scholar] [CrossRef]
- Bardwell, J.C.; Jakob, U. Conditional disorder in chaperone action. Trends Biochem Sci 2012, 37, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Follis, A.V.; Chipuk, J.E.; Fisher, J.C.; Yun, M.K.; Grace, C.R.; Nourse, A.; Baran, K.; Ou, L.; Min, L.; White, S.W.; et al. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nat Chem Biol 2013, 9, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N.; Oldfield, C.J.; Dunker, A.K. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 2005, 18, 343–384. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Matouschek, A. Protein unfolding in the cell. Trends Biochem Sci 2004, 29, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Kukreja, R.; Singh, B. Biologically active novel conformational state of botulinum, the most poisonous poison. J Biol Chem 2005, 280, 39346–39352. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Singh, B.R. Role of the disulfide cleavage induced molten globule state of type a botulinum neurotoxin in its endopeptidase activity. Biochemistry 2001, 40, 15327–15333. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Chang, T.-W.; Singh, B.R. Evolutionary Traits of Toxins. In Biological Toxins and Bioterrorism. Toxinology, Gopalakrishnakone, P., Balali-Mood, M., Llewellyn, L., Singh, B.R., Eds. Springer: Dordrecht, 2015; 10.1007/978-94-007-5869-8_29pp. 527-557.
- Leontiev, V.V.; Uversky, V.N.; Gudkov, A.T. Comparative stability of dihydrofolate reductase mutants in vitro and in vivo. Protein Eng 1993, 6, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Protasova, N.; Kireeva, M.L.; Murzina, N.V.; Murzin, A.G.; Uversky, V.N.; Gryaznova, O.I.; Gudkov, A.T. Circularly permuted dihydrofolate reductase of E. coli has functional activity and a destabilized tertiary structure. Protein Eng 1994, 7, 1373–1377. [Google Scholar] [CrossRef]
- Uversky, V.N.; Kutyshenko, V.P.; Protasova, N.; Rogov, V.V.; Vassilenko, K.S.; Gudkov, A.T. Circularly permuted dihydrofolate reductase possesses all the properties of the molten globule state, but can resume functional tertiary structure by interaction with its ligands. Protein Sci 1996, 5, 1844–1851. [Google Scholar] [CrossRef]
- MacBeath, G.; Kast, P.; Hilvert, D. Redesigning enzyme topology by directed evolution. Science 1998, 279, 1958–1961. [Google Scholar] [CrossRef] [PubMed]
- Vamvaca, K.; Vogeli, B.; Kast, P.; Pervushin, K.; Hilvert, D. An enzymatic molten globule: efficient coupling of folding and catalysis. Proc Natl Acad Sci U S A 2004, 101, 12860–12864. [Google Scholar] [CrossRef]
- Pervushin, K.; Vamvaca, K.; Vogeli, B.; Hilvert, D. Structure and dynamics of a molten globular enzyme. Nat Struct Mol Biol 2007, 14, 1202–1206. [Google Scholar] [CrossRef] [PubMed]
- Vamvaca, K.; Jelesarov, I.; Hilvert, D. Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart. J Mol Biol 2008, 382, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Woycechowsky, K.J.; Choutko, A.; Vamvaca, K.; Hilvert, D. Relative tolerance of an enzymatic molten globule and its thermostable counterpart to point mutation. Biochemistry 2008, 47, 13489–13496. [Google Scholar] [CrossRef] [PubMed]
- Walter, K.U.; Vamvaca, K.; Hilvert, D. An active enzyme constructed from a 9-amino acid alphabet. J Biol Chem 2005, 280, 37742–37746. [Google Scholar] [CrossRef]
- Mannervik, B.; Danielson, U.H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem 1988, 23, 283–337. [Google Scholar] [CrossRef]
- Armstrong, R.N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 1997, 10, 2–18. [Google Scholar] [CrossRef]
- Honaker, M.T.; Acchione, M.; Zhang, W.; Mannervik, B.; Atkins, W.M. Enzymatic detoxication, conformational selection, and the role of molten globule active sites. J Biol Chem 2013, 288, 18599–18611. [Google Scholar] [CrossRef]
- Hou, L.; Honaker, M.T.; Shireman, L.M.; Balogh, L.M.; Roberts, A.G.; Ng, K.C.; Nath, A.; Atkins, W.M. Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases. J Biol Chem 2007, 282, 23264–23274. [Google Scholar] [CrossRef]
- Blikstad, C.; Shokeer, A.; Kurtovic, S.; Mannervik, B. Emergence of a novel highly specific and catalytically efficient enzyme from a naturally promiscuous glutathione transferase. Biochim Biophys Acta 2008, 1780, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Atkins, W.M. A quantitative index of substrate promiscuity. Biochemistry 2008, 47, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Stojanovski, B.M.; Breydo, L.; Hunter, G.A.; Uversky, V.N.; Ferreira, G.C. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase. Biochim Biophys Acta 2014, 1844, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- Bemporad, F.; Gsponer, J.; Hopearuoho, H.I.; Plakoutsi, G.; Stati, G.; Stefani, M.; Taddei, N.; Vendruscolo, M.; Chiti, F. Biological function in a non-native partially folded state of a protein. EMBO J 2008, 27, 1525–1535. [Google Scholar] [CrossRef] [PubMed]
- Bemporad, F.; Capanni, C.; Calamai, M.; Tutino, M.L.; Stefani, M.; Chiti, F. Studying the folding process of the acylphosphatase from Sulfolobus solfataricus. A comparative analysis with other proteins from the same superfamily. Biochemistry 2004, 43, 9116–9126. [Google Scholar] [CrossRef] [PubMed]
- Alexandrescu, A.T.; Shortle, D. Backbone dynamics of a highly disordered 131 residue fragment of staphylococcal nuclease. J Mol Biol 1994, 242, 527–546. [Google Scholar] [CrossRef] [PubMed]
- Alexandrescu, A.T.; Abeygunawardana, C.; Shortle, D. Structure and dynamics of a denatured 131-residue fragment of staphylococcal nuclease: a heteronuclear NMR study. Biochemistry 1994, 33, 1063–1072. [Google Scholar] [CrossRef]
- Gillespie, J.R.; Shortle, D. Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J Mol Biol 1997, 268, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, J.R.; Shortle, D. Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels. J Mol Biol 1997, 268, 158–169. [Google Scholar] [CrossRef]
- Li, Y.; Jing, G. Double point mutant F34W/W140F of staphylococcal nuclease is in a molten globule state but highly competent to fold into a functional conformation. J Biochem 2000, 128, 739–744. [Google Scholar] [CrossRef]
- Makarov, M.; Meng, J.; Tretyachenko, V.; Srb, P.; Brezinova, A.; Giacobelli, V.G.; Bednarova, L.; Vondrasek, J.; Dunker, A.K.; Hlouchova, K. Enzyme catalysis prior to aromatic residues: Reverse engineering of a dephospho-CoA kinase. Protein Sci 2021, 30, 1022–1034. [Google Scholar] [CrossRef]
- Johnsson, K.; Allemann, R.K.; Widmer, H.; Benner, S.A. Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides. Nature 1993, 365, 530–532. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, I.M.; Zaslavsky, B.Y.; Breydo, L.; Turoverov, K.K.; Uversky, V.N. Beyond the excluded volume effects: mechanistic complexity of the crowded milieu. Molecules 2015, 20, 1377–1409. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, I.M.; Turoverov, K.K.; Uversky, V.N. What macromolecular crowding can do to a protein. Int J Mol Sci 2014, 15, 23090–23140. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, S.B.; Trach, S.O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 1991, 222, 599–620. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, B.; Ellis, R.J.; Dobson, C.M. Effects of macromolecular crowding on protein folding and aggregation. EMBO J 1999, 18, 6927–6933. [Google Scholar] [CrossRef] [PubMed]
- Rivas, G.; Ferrone, F.; Herzfeld, J. Life in a crowded world. EMBO reports 2004, 5, 23–27. [Google Scholar] [CrossRef]
- Ellis, R.J.; Minton, A.P. Cell biology: join the crowd. Nature 2003, 425, 27–28. [Google Scholar] [CrossRef]
- Balcells, C.; Pastor, I.; Vilaseca, E.; Madurga, S.; Cascante, M.; Mas, F. Macromolecular crowding effect upon in vitro enzyme kinetics: mixed activation-diffusion control of the oxidation of NADH by pyruvate catalyzed by lactate dehydrogenase. J Phys Chem B 2014, 118, 4062–4068. [Google Scholar] [CrossRef]
- Zhou, H.X.; Rivas, G.; Minton, A.P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 2008, 37, 375–397. [Google Scholar] [CrossRef]
- McPhie, P.; Ni, Y.S.; Minton, A.P. Macromolecular crowding stabilizes the molten globule form of apomyoglobin with respect to both cold and heat unfolding. J Mol Biol 2006, 361, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Sasahara, K.; McPhie, P.; Minton, A.P. Effect of dextran on protein stability and conformation attributed to macromolecular crowding. J Mol Biol 2003, 326, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Parray, Z.A.; Ahmad, F.; Alajmi, M.F.; Hussain, A.; Hassan, M.I.; Islam, A. Formation of molten globule state in horse heart cytochrome c under physiological conditions: Importance of soft interactions and spectroscopic approach in crowded milieu. Int J Biol Macromol 2020, 148, 192–200. [Google Scholar] [CrossRef]
- Nasreen, K.; Ahamad, S.; Ahmad, F.; Hassan, M.I.; Islam, A. Macromolecular crowding induces molten globule state in the native myoglobin at physiological pH. Int J Biol Macromol 2018, 106, 130–139. [Google Scholar] [CrossRef]
- Roque, A.; Ponte, I.; Suau, P. Macromolecular crowding induces a molten globule state in the C-terminal domain of histone H1. Biophys J 2007, 93, 2170–2177. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, R.; Sharma, D.; Garg, M.; Kumar, V.; Agarwal, M.C. Macromolecular crowding-induced molten globule states of the alkali pH-denatured proteins. Biochim Biophys Acta Proteins Proteom 2018, 1866, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Permyakov, E.A.; Berliner, L.J. alpha-Lactalbumin: structure and function. FEBS Lett 2000, 473, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Svensson, M.; Hakansson, A.; Mossberg, A.K.; Linse, S.; Svanborg, C. Conversion of alpha-lactalbumin to a protein inducing apoptosis. Proc Natl Acad Sci U S A 2000, 97, 4221–4226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.L.; Wu, L.J.; Chen, J.; Liang, Y. Effects of macromolecular crowding on the structural stability of human alpha-lactalbumin. Acta Biochim Biophys Sin (Shanghai) 2012, 44, 703–711. [Google Scholar] [CrossRef]
- Candotti, M.; Orozco, M. The Differential Response of Proteins to Macromolecular Crowding. PLoS Comput Biol 2016, 12, e1005040. [Google Scholar] [CrossRef]
- Norde, W. Adsorption of proteins from solution at the solid-liquid interface. Adv Colloid Interface Sci 1986, 25, 267–340. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.N.; Khare, S.K.; Sinha, R. An Overview of Interactions between Microorganisms and Nanomaterials. Interfaces Between Nanomaterials and Microbes 2021, 17–37. [Google Scholar]
- Saptarshi, S.R.; Duschl, A.; Lopata, A.L. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology 2013, 11, 26. [Google Scholar] [CrossRef]
- Gupta, M.N.; Roy, I. How Corona Formation Impacts Nanomaterials as Drug Carriers. Mol Pharm 2020, 17, 725–737. [Google Scholar] [CrossRef]
- Billsten, P.; Freskgard, P.O.; Carlsson, U.; Jonsson, B.H.; Elwing, H. Adsorption to silica nanoparticles of human carbonic anhydrase II and truncated forms induce a molten-globule-like structure. FEBS Lett 1997, 402, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Colvin, V.L.; Kulinowski, K.M. Nanoparticles as catalysts for protein fibrillation. Proc Natl Acad Sci U S A 2007, 104, 8679–8680. [Google Scholar] [CrossRef]
- Bhattacharya, J.; Choudhuri, U.; Siwach, O.; Sen, P.; Dasgupta, A.K. Interaction of hemoglobin and copper nanoparticles: implications in hemoglobinopathy. Nanomedicine 2006, 2, 191–199. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Basu, S.; Singha, S.; Patra, H.K. Inner-View of Nanomaterial Incited Protein Conformational Changes: Insights into Designable Interaction. Research (Wash D C) 2018, 2018, 9712832. [Google Scholar] [CrossRef] [PubMed]
- Denisov, V.P.; Jonsson, B.H.; Halle, B. Hydration of denatured and molten globule proteins. Nat Struct Biol 1999, 6, 253–260. [Google Scholar] [CrossRef]
- Hoeltzli, S.D.; Frieden, C. Stopped-flow NMR spectroscopy: real-time unfolding studies of 6-19F-tryptophan-labeled Escherichia coli dihydrofolate reductase. Proc Natl Acad Sci U S A 1995, 92, 9318–9322. [Google Scholar] [CrossRef]
- Hua, L.; Zhou, R.; Thirumalai, D.; Berne, B.J. Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc Natl Acad Sci U S A 2008, 105, 16928–16933. [Google Scholar] [CrossRef]
- Acharya, N.; Mishra, P.; Jha, S.K. Evidence for Dry Molten Globule-Like Domains in the pH-Induced Equilibrium Folding Intermediate of a Multidomain Protein. J Phys Chem Lett 2016, 7, 173–179. [Google Scholar] [CrossRef]
- Jeng, M.F.; Englander, S.W. Stable submolecular folding units in a non-compact form of cytochrome c. J Mol Biol 1991, 221, 1045–1061. [Google Scholar] [CrossRef]
- Chaffotte, A.; Guillou, Y.; Delepierre, M.; Hinz, H.J.; Goldberg, M.E. The isolated C-terminal (F2) fragment of the Escherichia coli tryptophan synthase beta 2-subunit folds into a stable, organized nonnative conformation. Biochemistry 1991, 30, 8067–8074. [Google Scholar] [CrossRef]
- Chaffotte, A.F.; Guijarro, J.I.; Guillou, Y.; Delepierre, M.; Goldberg, M.E. The "pre-molten globule," a new intermediate in protein folding. J Protein Chem 1997, 16, 433–439. [Google Scholar] [CrossRef]
- Samaddar, S.; Mandal, A.K.; Mondal, S.K.; Sahu, K.; Bhattacharyya, K.; Roy, S. Solvation dynamics of a protein in the pre molten globule state. J Phys Chem B 2006, 110, 21210–21215. [Google Scholar] [CrossRef]
- Alam Khan, M.K.; Rahaman, M.H.; Hassan, M.I.; Singh, T.P.; Moosavi-Movahedi, A.A.; Ahmad, F. Conformational and thermodynamic characterization of the premolten globule state occurring during unfolding of the molten globule state of cytochrome c. J Biol Inorg Chem 2010, 15, 1319–1329. [Google Scholar] [CrossRef]
- Khan, M.K.; Rahaman, H.; Ahmad, F. Conformation and thermodynamic stability of pre-molten and molten globule states of mammalian cytochromes-c. Metallomics 2011, 3, 327–338. [Google Scholar] [CrossRef]
- Parray, Z.A.; Ahamad, S.; Ahmad, F.; Hassan, M.I.; Islam, A. First evidence of formation of pre-molten globule state in myoglobin: A macromolecular crowding approach towards protein folding in vivo. Int J Biol Macromol 2019, 126, 1288–1294. [Google Scholar] [CrossRef]
- Yameen, D.; Siraj, S.; Parray, Z.A.; Masood, M.; Islam, A.; Haque, M.M. Soft interactions versus hard core repulsions: A journey of cytochrome c from acid-induced denaturation to native protein via pre-molten globule and molten globule conformations exploiting dextran and its monomer glucose. Journal of Molecular Liquids 2022, 366, 120257. [Google Scholar] [CrossRef]
- Thermostability of Enzymes; Gupta, M.N., Ed.; Springer Verlag: Berlin and Heidelberg, 1993. [Google Scholar]
- Purich, D.L. Enzyme kinetics: catalysis and control: a reference of theory and best-practice methods; Elsevier, 2010. [Google Scholar]
- Avadhani, V.S.; Mondal, S.; Banerjee, S. Mapping Protein Structural Evolution upon Unfolding. Biochemistry 2022, 61, 303–309. [Google Scholar] [CrossRef]
- Bhowmick, J.; Chandra, S.; Varadarajan, R. Deep mutational scanning to probe specificity determinants in proteins. In Structure and Intrinsic Disorder in Enzymology; Elsevier, 2023; pp. 31–71. [Google Scholar]
- Gupta, M.N.; Alam, A.; Hasnain, S.E. Protein promiscuity in drug discovery, drug-repurposing and antibiotic resistance. Biochimie 2020, 175, 50–57. [Google Scholar] [CrossRef]
- Gupta, M.; Pandey, S.; Ehtesham, N.Z.; Hasnain, S.E. Medical implications of protein moonlighting. The Indian Journal of Medical Research 2019, 149, 322. [Google Scholar]
- Xue, B.; Uversky, V.N. Intrinsic disorder in proteins involved in the innate antiviral immunity: another flexible side of a molecular arms race. J Mol Biol 2014, 426, 1322–1350. [Google Scholar] [CrossRef]
- Gupta, M.N.; Roy, I. Drugs, host proteins and viral proteins: how their promiscuities shape antiviral design. Biol Rev Camb Philos Soc 2021, 96, 205–222. [Google Scholar] [CrossRef]
- Ahmad, J.; Farhana, A.; Pancsa, R.; Arora, S.K.; Srinivasan, A.; Tyagi, A.K.; Babu, M.M.; Ehtesham, N.Z.; Hasnain, S.E. Contrasting Function of Structured N-Terminal and Unstructured C-Terminal Segments of Mycobacterium tuberculosis PPE37 Protein. mBio 2018, 9. [Google Scholar] [CrossRef]
- Mukherjee, J.; Gupta, M.N. Increasing importance of protein flexibility in designing biocatalytic processes. Biotechnol Rep (Amst) 2015, 6, 119–123. [Google Scholar] [CrossRef]
- Hu, G.; Wu, Z.; Wang, K.; Uversky, V.N.; Kurgan, L. Untapped Potential of Disordered Proteins in Current Druggable Human Proteome. Curr Drug Targets 2016, 17, 1198–1205. [Google Scholar] [CrossRef]
- Uversky, V.N. Proteins without unique 3D structures: biotechnological applications of intrinsically unstable/disordered proteins. Biotechnol J 2015, 10, 356–366. [Google Scholar] [CrossRef]
- Uversky, V.N. Intrinsically disordered proteins and novel strategies for drug discovery. Expert Opin Drug Discov 2012, 7, 475–488. [Google Scholar] [CrossRef]
- Dunker, A.K.; Uversky, V.N. Drugs for ’protein clouds’: targeting intrinsically disordered transcription factors. Curr Opin Pharmacol 2010, 10, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.; Bhattacharya, S.; Achuthan, S.; Behal, A.; Jolly, M.K.; Kotnala, S.; Mohanty, A.; Rangarajan, G.; Salgia, R.; Uversky, V. Intrinsically Disordered Proteins: Critical Components of the Wetware. Chem Rev 2022, 122, 6614–6633. [Google Scholar] [CrossRef]
- Coskuner, O.; Uversky, V.N. Intrinsically disordered proteins in various hypotheses on the pathogenesis of Alzheimer’s and Parkinson’s diseases. Prog Mol Biol Transl Sci 2019, 166, 145–223. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. Intrinsic Disorder, Protein-Protein Interactions, and Disease. Adv Protein Chem Struct Biol 2018, 110, 85–121. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N.; Dave, V.; Iakoucheva, L.M.; Malaney, P.; Metallo, S.J.; Pathak, R.R.; Joerger, A.C. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014, 114, 6844–6879. [Google Scholar] [CrossRef]
- Uversky, V.N. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 2014, 1, 6. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. Flexible nets of malleable guardians: intrinsically disordered chaperones in neurodegenerative diseases. Chem Rev 2011, 111, 1134–1166. [Google Scholar] [CrossRef]
- Uversky, V.N. Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D(2) concept. Expert Rev Proteomics 2010, 7, 543–564. [Google Scholar] [CrossRef]
- Uversky, V.N. Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci (Landmark Ed) 2009, 14, 5188–5238. [Google Scholar] [CrossRef]
- Uversky, V.N.; Oldfield, C.J.; Dunker, A.K. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 2008, 37, 215–246. [Google Scholar] [CrossRef]
- Uversky, V.N. A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 2003, 21, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Blundell, T.L.; Gupta, M.N.; Hasnain, S.E. Intrinsic disorder in proteins: Relevance to protein assemblies, drug design and host-pathogen interactions. Prog Biophys Mol Biol 2020, 156, 34–42. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
