Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Assessment Of 3D Printed Polycaprolactone, Hydroxyapatite Nanoparticles and Polyethylene Glycol Diacrylate Scaffolds for Bone Regeneration

Version 1 : Received: 26 October 2022 / Approved: 28 October 2022 / Online: 28 October 2022 (02:15:21 CEST)

A peer-reviewed article of this Preprint also exists.

Sousa, A.C.; Biscaia, S.; Alvites, R.; Branquinho, M.; Lopes, B.; Sousa, P.; Valente, J.; Franco, M.; Santos, J.D.; Mendonça, C.; Atayde, L.; Alves, N.; Maurício, A.C. Assessment of 3D-Printed Polycaprolactone, Hydroxyapatite Nanoparticles and Diacrylate Poly(ethylene glycol) Scaffolds for Bone Regeneration. Pharmaceutics 2022, 14, 2643. Sousa, A.C.; Biscaia, S.; Alvites, R.; Branquinho, M.; Lopes, B.; Sousa, P.; Valente, J.; Franco, M.; Santos, J.D.; Mendonça, C.; Atayde, L.; Alves, N.; Maurício, A.C. Assessment of 3D-Printed Polycaprolactone, Hydroxyapatite Nanoparticles and Diacrylate Poly(ethylene glycol) Scaffolds for Bone Regeneration. Pharmaceutics 2022, 14, 2643.

Abstract

Notwithstanding the advances achieved in the last decades in the field of synthetic bone substitutes, the development of biodegradable 3D scaffolds with ideal mechanical and biological properties remains an unattained challenge. In this work, a novel approach is explored to produce synthetic bone grafts mimicking the complex bone structure using additive manufacturing. For the first time, scaffolds were produced, using an extrusion technique, composed of a thermoplastic polymer, polycaprolactone (PCL), hydroxyapatite nanoparticles (HANp), and polyethylene glycol diacrylate (PEGDA). These scaffolds were further compared with two groups of scaffolds: one composed of PCL and another of PCL and HANp. After production, optimisation and characterisation of these scaffolds, an in vitro evaluation was performed using human dental pulp stem/stromal cells (hDPSCs). Through the findings it was possible to conclude that PEGDA scaffolds were successfully produced presenting networks of interconnected channels, presenting hydrophilic properties (15.15 4.06°), adequate mechanical performance (10.41MPa 0.934), and allowing a cell viability significantly superior to the other groups analysed. To conclude, findings in this study demonstrated that PCL, HANp and PEGDA scaffolds may have promising effects on bone regeneration and might open new insights for 3D tissue substitutes.

Keywords

Additive manufacturing; Biomaterials; Bone; Bone regeneration; Critical Bone Defects; Hydroxy-apatite nanoparticles; Polycaprolactone; Polyethylene glycol diacrylate; Scaffolds

Subject

Biology and Life Sciences, Biology and Biotechnology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.