Attitude control of a novel regional truss-braced wing aircraft with low stability characteristics is addressed in this paper using Reinforcement Learning (RL). In recent years, RL has been increasingly employed in challenging applications, particularly, autonomous flight control. However, a significant predicament confronting discrete RL algorithms is the dimension limitation of the state-action table and difficulties in defining the elements of the RL environment. To address these issues, in this paper, a detailed mathematical model of the mentioned aircraft is first developed to shape an RL environment. Subsequently, Q-learning, the most prevalent discrete RL algorithm will be implemented in both the Markov Decision Process (MDP), and Partially Observable Markov Decision Process (POMDP) frameworks to control the longitudinal mode of the air vehicle. In order to eliminate residual fluctuations that are a consequence of discrete action selection, and simultaneously track variable pitch angles, a Fuzzy Action Assignment (FAA) method is proposed to generate continuous control commands using the trained Q-table. Accordingly, it will be proved that by defining an accurate reward function, along with observing all crucial states (which is equivalent to satisfying the Markov Property), the performance of the introduced control system surpasses a well-tuned Proportional–Integral–Derivative (PID) controller.
Keywords:
Subject: Engineering - Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.