Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Different Intermolecular Interactions Drive Nonpathogenic Liquid-Liquid Phase Separation and Potentially Pathogenic Fibril Formation by TDP-43

Version 1 : Received: 26 September 2022 / Approved: 28 September 2022 / Online: 28 September 2022 (12:22:40 CEST)

A peer-reviewed article of this Preprint also exists.

Zeng, Y.-T.; Bi, L.-L.; Zhuo, X.-F.; Yang, L.-Y.; Sun, B.; Lu, J.-X. Different Intermolecular Interactions Drive Nonpathogenic Liquid–Liquid Phase Separation and Potentially Pathogenic Fibril Formation by TDP-43. Int. J. Mol. Sci. 2022, 23, 15227. Zeng, Y.-T.; Bi, L.-L.; Zhuo, X.-F.; Yang, L.-Y.; Sun, B.; Lu, J.-X. Different Intermolecular Interactions Drive Nonpathogenic Liquid–Liquid Phase Separation and Potentially Pathogenic Fibril Formation by TDP-43. Int. J. Mol. Sci. 2022, 23, 15227.

Abstract

Liquid-liquid phase separation (LLPS) of proteins has been found ubiquitously in eukaryotic cells, critical in the controlling of many biological processes through forming a temporary condensed phase with different bimolecular components. TDP-43 is recruited to stress granules in cells and is the main component of TDP-43 granules and proteinaceous amyloid inclusions in patients with amyotrophic lateral sclerosis (ALS). TDP-43 low complexity domain (LCD) is able to demix in solution forming the protein condensed droplets. The molecular interactions regulating its LLPS were investigated at the protein fusion equilibrium stage, where the droplets stopped growing. We found the molecules in the droplet were still liquid-like but with enhanced intermolecular helix-helix interaction in the LCD. The protein would start to aggregate after about 200 minutes of lag time and aggregate slower than at the condition when the protein does not phase separate or the molecules have a reduced intermolecular helical interaction. A structural transition intermediate towards protein aggregation was also discovered involving a decrease of the intermolecular helix-helix interaction and a reduction in the helicity. Therefore, LLPS and the intermolecular helical interaction could help maintain the stability of TDP-43 LCD.

Keywords

TDP-43; Liquid-liquid phase separation; Solution-state NMR

Subject

Biology and Life Sciences, Biophysics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.