This paper aims at computing feasible control strategies and the corresponding feasible state trajectories to drive an autonomous rear-axle bicycle robot from a given initial state to a final state such that the total running cost is minimized. Pontryagin’s Minimum Principle is applied and derives the optimality conditions from which the feasible control functions, expressed as functions of state and costate variables, are substituted into the combined state-costate system to obtain a new free-control state-costate nonlinear system of ordinary differential equations. A computer program was written in Scilab to solve the combined state-costate system and obtain the feasible state functions, the feasible costate functions and the feasible control functions. Associated Computational Simulations were provided to show the effectiveness and the reliability of the approach.