The integration of metal nanoparticles and solid carriers can achieve ideal stability, high load and good conductivity. In this work, copper nanoparticles (Cu NPs) were sequentially deposited on a cobalt metal-organic framework (Co-MOF) by bonding with exposed imino groups, followed by a reduction reaction to prepare a new Cu@Co-MOF composite. Cu@Co-MOF acts as a non-enzymatic electrochemical sensor to detect glucose (Glu) in an alkaline medium. The composite working electrode of Cu@Co-MOF/GCE (GCE = glassy carbon electrode) improves the electrocatalytic activity for Glu oxidation. Cu@Co-MOF/GCE shows excellent electrocatalytic performances in Glu concentration ranging 0.005~1.8 mmol∙L−1 (mM): the sensitivities are 282.89 μA∙mM−1∙cm−2 in 0.005-0.4 mM Glu and 113.15 μA∙mM−1∙cm−2 in 0.4-1.8 mM Glu respectively with low detection limit of 1.6 μM (S/N = 3) and high selectivity and stability.