You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Metabolomic Aspects of Conservative and Resistance-related Elements of Response to Fusarium culmorum in the Grass Family

Altmetrics

Downloads

176

Views

182

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 July 2022

Posted:

26 July 2022

You are already at the latest version

Alerts
Abstract
Background: Fusarium head blight (FHB) is a serious fungal disease of crop plants due to substantial yield reduction and production of mycotoxins in the infected grains. The breeding progress in increasing resistance with maintaining a high yield is not possible without a thorough examination of the molecular basis of plant immunity responses; Methods: LC-MS based metabolomics approaches powered by three-way ANOVA and differentially accumulated metabolites (DAMs) selection, correlation network and functional enrichment were conducted on grains of resistant and susceptible to FHB genotypes of barley and wheat as well as model grass Brachypodium distachyon (Bd) still poorly known at metabolomic level; Results: We selected common and genotype-specific DAMs in response to F. culmorum inoculation. Immunological reaction at metabolomic level was strongly diversified between resistant and susceptible genotypes. DAMs common for all tested species from porphyrins, flavonoids and phenylpropanoids metabolic pathways were highly correlated and reflects conservativeness in FHB response in Poaceae family. Resistant related DAMs belonged to different structural classes including tryptophan derived metabolites, pirimidines, amino acids proline and serine as well as phenylpropanoids and flavonoids. Physiological response to F. culmorum of Bd was close to barley and wheat genotypes however, metabolomic changes were strongly diversified. Conclusions: Combined targeted and untargeted metabolomics provides comprehensive knowledge about significant elements of plant immunity with potential of being molecular biomarkers of enhance resistance to FHB in grass family. Thorough examination of Bd21 metabolome in juxtaposition with barley and wheat diversified genotypes facilitate their setting as model grass for plant-microbe interaction.
Keywords: 
Subject: Biology and Life Sciences  -   Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated