Preprint
Article

This version is not peer-reviewed.

LCNS Positioning of a Lunar Surface Rover Using a DEM Based Altitude Constraint

A peer-reviewed article of this preprint also exists.

Submitted:

13 July 2022

Posted:

15 July 2022

You are already at the latest version

Abstract
With the renewed interest for lunar surface exploration, the European Space Agency envisions to stimulate the creation of lunar communications and navigation services (LCNS) to enable, among others, autonomous navigation capabilities for lunar rovers. As the number of satellites foreseen in such a service is much smaller compared to Earth based global navigation satellite systems (GNSS), different complementary technologies are pursued to improve the attainable navigation accuracy for lunar rovers. One way to improve the position accuracy provided by the LCNS satellites is to constrain the vertical position using a high resolution digital elevation model (DEM). This article presents the results of a variance covariance analysis of an extended Kalman filter (EKF) implementation in which the LCNS ranging measurements are used together with DEM from the LRO LOLA instrument. Assuming a realistic orbit determination and time synchronization (ODTS) accuracy of the LCNS satellites, the usage of a navigation grade IMU and an oven controlled crystal oscillator (OCXO), a 3-sigma position accuracy of less than 10 meters can be obtained. Furthermore, the availability is substantially improved as the DEM aided solution enables a position solution in case of only 3 visible satellites.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated