Preprint
Review

This version is not peer-reviewed.

Biomechanical Sensing using Gas Bubbles Oscillations in Liquids and Adjacent Technologies: Theory and Practical Applications

A peer-reviewed article of this preprint also exists.

Submitted:

06 July 2022

Posted:

07 July 2022

You are already at the latest version

Abstract
Gas bubbles present in liquids underpin many natural phenomena and human-developed technologies that improve the quality of life. Since all living organisms are predominantly made of water, they may also contain gas bubbles—introduced both naturally and artificially—that can serve as biomechanical sensors operating in hard-to-reach places inside a living body and emitting signals that can be detected by common equipment used in ultrasound and photoacoustic imaging procedures. This kind of biosensors is the focus of the present article, where we critically review the emergent sensing technologies based on acoustically driven oscillations of gas bubbles in liquids and bodily fluids. This review is intended for a broad biosensing community and transdisciplinary researchers translating novel ideas from theory to experiment and then to practice. To this end, all discussions in this review are written in a language that is accessible to non-experts in specific fields of acoustics, fluid dynamics and acousto-optics.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Subject: 
Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated