Maksymov, I.S.; Huy Nguyen, B.Q.; Suslov, S.A. Biomechanical Sensing Using Gas Bubbles Oscillations in Liquids and Adjacent Technologies: Theory and Practical Applications. Biosensors2022, 12, 624.
Maksymov, I.S.; Huy Nguyen, B.Q.; Suslov, S.A. Biomechanical Sensing Using Gas Bubbles Oscillations in Liquids and Adjacent Technologies: Theory and Practical Applications. Biosensors 2022, 12, 624.
Maksymov, I.S.; Huy Nguyen, B.Q.; Suslov, S.A. Biomechanical Sensing Using Gas Bubbles Oscillations in Liquids and Adjacent Technologies: Theory and Practical Applications. Biosensors2022, 12, 624.
Maksymov, I.S.; Huy Nguyen, B.Q.; Suslov, S.A. Biomechanical Sensing Using Gas Bubbles Oscillations in Liquids and Adjacent Technologies: Theory and Practical Applications. Biosensors 2022, 12, 624.
Abstract
Gas bubbles present in liquids underpin many natural phenomena and human-developed technologies that improve the quality of life. Since all living organisms are predominantly made of water, they may also contain gas bubbles—introduced both naturally and artificially—that can serve as biomechanical sensors operating in hard-to-reach places inside a living body and emitting signals that can be detected by common equipment used in ultrasound and photoacoustic imaging procedures. This kind of biosensors is the focus of the present article, where we critically review the emergent sensing technologies based on acoustically driven oscillations of gas bubbles in liquids and bodily fluids. This review is intended for a broad biosensing community and transdisciplinary researchers translating novel ideas from theory to experiment and then to practice. To this end, all discussions in this review are written in a language that is accessible to non-experts in specific fields of acoustics, fluid dynamics and acousto-optics.
Keywords
biosensing; biomechanics; cellular viscoelasticity; vibrations; nonlinear acoustics; acousto-optics; gas bubbles; acoustic frequency combs; artificial intelligence; physics-informed neural networks
Subject
Physical Sciences, Acoustics
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.