Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Signal-Based Methods in Dielectrophoresis for Cell Separation

Version 1 : Received: 15 June 2022 / Approved: 20 June 2022 / Online: 20 June 2022 (09:19:42 CEST)

A peer-reviewed article of this Preprint also exists.

Farasat, M.; Aalaei, E.; Kheirati Ronizi, S.; Bakhshi, A.; Mirhosseini, S.; Zhang, J.; Nguyen, N.-T.; Kashaninejad, N. Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation. Biosensors 2022, 12, 510. Farasat, M.; Aalaei, E.; Kheirati Ronizi, S.; Bakhshi, A.; Mirhosseini, S.; Zhang, J.; Nguyen, N.-T.; Kashaninejad, N. Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation. Biosensors 2022, 12, 510.

Abstract

Separation and detection of cells and particles in a suspension are essential for various applications, including biomedical investigations and clinical diagnostics. Microfluidics realizes the miniaturization of analytical devices by controlling the motion of a small volume of fluids in microchannels and microchambers. Accordingly, microfluidic devices have been widely used in particle/ cell manipulation processes. Different microfluidic methods for particle separation include dielectrophoretic, magnetic, optical, acoustic, hydrodynamic, and chemical techniques. Dielectrophoresis (DEP) is a method for manipulating polarizable particles’ trajectories in non-uniform electric fields using unique dielectric characteristics. It provides several advantages for dealing with neutral bioparticles owing to its sensitivity, selectivity, and noninvasive nature. This review provides a detailed study on the signal-based DEP methods that use the applied signal parameters, including frequency, amplitude, phase, and shape for cell/particle separation and manipulation. Rather than employing complex channels or time-consuming fabrication procedures, these methods realize sorting and detecting the cells/particles by modifying the signal parameters while using a simple device. In addition, these methods can significantly impact clinical diagnostics by making low-cost and rapid separation possible.

Keywords

Dielectrophoresis; Microfluidics; Cell separation; Particle sorting; Clausius-Mossotti factor; Crossover frequency

Subject

Engineering, Industrial and Manufacturing Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.