Preprint
Article

Experimental Study into Optimal Configuration and Operation of Two-Four Rotor Coaxial Systems for e-VTOL Vehicles

This version is not peer-reviewed.

Submitted:

22 May 2022

Posted:

25 May 2022

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Coaxial rotors can be found in multirotor vehicles for the added thrust compared to independent rotors while keeping similar area footprints but, performance losses should be considered. This experimental study analyzes the effects of varying motor throttle and propeller pitch values in motor-propeller systems with two to four coaxial rotors. The results show that in a two-rotor coaxial system, to lessen the adverse effects of a front rotor’s backwash and to operate at the maximum performance, only the back motor should be operated initially up to 75% duty cycle before using the front motor up to its 75% duty cycle. Additional thrust requirements should be generated from the back rotor and then from the front rotor up to their maximum duty cycles. In two, three, and four-rotor coaxial setups, total thrust output generated is 1.6, 2.1, and 2.5 times the thrust output at system thrust performance of 86%, 76%, and 66%, respectively of that of an isolated rotor. In a four-rotor coaxial setup, maximum system performance is achieved when the propeller pitch values are gradually increased from the first to the last rotor. The gradual increments in propeller pitch values also result in more uniform thrust sharing among rotors.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

240

Views

228

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated