Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Exploiting Concepts of Instance Segmentation to Boost Detection in Challenging Environments

Version 1 : Received: 13 April 2022 / Approved: 28 April 2022 / Online: 28 April 2022 (09:42:37 CEST)

A peer-reviewed article of this Preprint also exists.

Hashmi, K.A.; Pagani, A.; Liwicki, M.; Stricker, D.; Afzal, M.Z. Exploiting Concepts of Instance Segmentation to Boost Detection in Challenging Environments. Sensors 2022, 22, 3703. Hashmi, K.A.; Pagani, A.; Liwicki, M.; Stricker, D.; Afzal, M.Z. Exploiting Concepts of Instance Segmentation to Boost Detection in Challenging Environments. Sensors 2022, 22, 3703.

Journal reference: Sensors 2022, 22, 3703
DOI: 10.3390/s22103703

Abstract

In recent years, due to the advancement of machine learning, object detection has become a mainstream task in the computer vision domain. The first phase of object detection is to find the regions where objects can exist. With the improvement of deep learning, traditional approaches such as sliding windows and manual feature selection techniques have been replaced with deep learning techniques. However, object detection algorithms face a problem when performing in low light, challenging weather, and crowded scenes like any other task. Such an environment is termed a challenging environment. This paper exploits pixel-level information to improve detection under challenging situations. To this end, we exploit the recently proposed hybrid task cascade network. This network works collaboratively with detection and segmentation heads at different cascade levels. We evaluate the proposed methods on three complex datasets of ExDark, CURE-TSD, and RESIDE and achieve an mAP of 0.71, 0.52, and 0.43, respectively. Our experimental results assert the efficacy of the proposed approach.

Keywords

object detection; challenging environments; low-light; image enhancement; complex environments; deep neural networks; computer vision

Subject

MATHEMATICS & COMPUTER SCIENCE, Artificial Intelligence & Robotics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.