Preprint
Article

This version is not peer-reviewed.

Object Segmentation for Autonomous Driving Using IseAuto Data

A peer-reviewed article of this preprint also exists.

Submitted:

01 March 2022

Posted:

04 March 2022

You are already at the latest version

Abstract
Object segmentation is still considered a challenging problem in autonomous driving, particularly in consideration of real world conditions. Following this line of research, this paper approaches the problem of object segmentation using LiDAR-camera fusion and semi-supervised learning implemented in a fully-convolutional neural network. Our method is tested on real-world data acquired using our custom vehicle iseAuto shuttle. The data include all-weather scenarios, featuring night and rainy weather. In this work, it is shown that LiDAR-camera fusion with only a few annotated scenarios and semi-supervised learning, it is possible to achieve robust performance on real-world data in a multi-class object segmentation problem. The performance of our algorithm is measured in terms of intersection over union, precision, recall and area-under-the-curve average precision. Our network achieves 82% IoU in vehicle detection in day fair scenarios and 64% IoU in vehicle segmentation in night rain scenarios.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated