Preprint
Article

This version is not peer-reviewed.

Unauthorized Unmanned Aerial Vehicle Detection using YOLOv5 and Transfer Learning

A peer-reviewed article of this preprint also exists.

Submitted:

11 February 2022

Posted:

15 February 2022

You are already at the latest version

Abstract
Recently, the use of drones/unmanned aerial vehicles (UAVs) has notably increased due to their broad commercial spread and low cost. The wide diffusion of drones increases the hazards of their misuse in illegitimate actions such as drug smuggling and terrorism. Thus, the surveillance and automated detection of drones are crucial for safeguarding restricted regions or special zones from illegal drone interventions. One of the most challenging issues in drone detection in surveillance videos is the apparent similarity of drones and birds against complex backgrounds. In this work, an automated image-based drone-detection system utilizing an advanced deep-learning-based object-detection method known as you only look once (YOLOv5) is introduced for protecting restricted regions or special zones from unlawful drone interventions. Due to the lack of sufficient data, transfer learning was utilized to pretrain the object-detection method to increase the performance. The experiments showed outstanding results, and an average precision of 94.7% was accomplished.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated