Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Defining the Challenges - Identifying the Key Poisoning Elements to be Separated in a Future Integrated Molten Salt Fast Reactor Clean-up System for iMAGINE

Version 1 : Received: 9 February 2022 / Approved: 10 February 2022 / Online: 10 February 2022 (10:47:09 CET)

A peer-reviewed article of this Preprint also exists.

Merk, B.; Detkina, A.; Litskevich, D.; Drury, M.; Noori-kalkhoran, O.; Cartland-Glover, G.; Petit, L.; Rolfo, S.; Elliott, J.P.; Mount, A.R. Defining the Challenges—Identifying the Key Poisoning Elements to Be Separated in a Future Integrated Molten Salt Fast Reactor Clean-Up System for iMAGINE. Appl. Sci. 2022, 12, 4124. Merk, B.; Detkina, A.; Litskevich, D.; Drury, M.; Noori-kalkhoran, O.; Cartland-Glover, G.; Petit, L.; Rolfo, S.; Elliott, J.P.; Mount, A.R. Defining the Challenges—Identifying the Key Poisoning Elements to Be Separated in a Future Integrated Molten Salt Fast Reactor Clean-Up System for iMAGINE. Appl. Sci. 2022, 12, 4124.

Abstract

Nuclear fission technologies have the potential to play a significant role in the energy mix of a net-zero and sustainable society. However, to achieve the sustainability goal two significant challenges remain: efficient and sustainable fuel usage and the minimisation of long term nuclear waste. Civil nuclear molten salt systems and technologies offer the opportunity to address both, delivering future reactors at scale for efficient and effective power production and nuclear waste burnup. Potentially, both objectives could be fulfilled in one reactor system, which could significantly improve sustainability indices. In addition, demand driven development of a significantly reduced fuel cycle with enhanced proliferation resistance offers further potential for improvement. To achieve these goals, a transformative approach for salt clean-up during molten salt reactor operation is proposed in this work, by concentrating on the detection and removal of key neutron poisoning elements which prevent the reactor from long-term operation. This work also demonstrates the importance of the effective integration of physics, reactor design and chemistry when systems modelling in achieving these system development goals.

Keywords

nuclear; nuclaer reactors; nucaler chemistry; molten salt; molten salt reactors; integrated fuel cycle; reporcessing

Subject

Engineering, Energy and Fuel Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.