Preprint
Review

This version is not peer-reviewed.

A Survey on Machine Learning and Internet of Medical Things-Based Approaches for Handling COVID-19: Meta-Analysis

Submitted:

18 April 2022

Posted:

19 April 2022

You are already at the latest version

Abstract
Early diagnosis, prioritization, screening, clustering and tracking of COVID-19 patients, and production of drugs and vaccines are some of the applications that have made it necessary to use a new style of technology to involve, to manage and deal with this epidemic. Strategies backed by artificial intelligence (AI) and the Internet of Things (IoT) have been undeniable to understand how the virus works and try to prevent it from spreading. Accordingly, the main aim of this survey article is to highlight the methods of ML, IoT and the integration of IoT and ML-based techniques in the applications related to COVID-19 from the diagnosis of the disease to the prediction of its outbreak. According to the main findings, IoT provided a prompt and efficient approach of following the disease spread. Most of the studies developed by ML-based techniques for handling COVID-19 based dataset provided performance criteria. The most popular performance criteria, is related to accuracy factor. It can be employed for comparing the ML-based methods with different datasets. According to the results, CNN with SVM classifier, Genetic CNN and pre-trained CNN followed by ResNet, provided highest accuracy values. On the other hand, the lowest accuracy was related to single CNN followed by XGboost and KNN methods.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated