Preprint
Article

This version is not peer-reviewed.

Study of Variational Inference for Flexible Distributed Probabilistic Robotics

A peer-reviewed article of this preprint also exists.

Submitted:

02 February 2022

Posted:

03 February 2022

You are already at the latest version

Abstract
By combining stochastic variational inference with message passing algorithms we show how to solve the highly complex problem of navigation and avoidance in distributed multi-robot systems in a computationally tractable manner, allowing online implementation. Subsequently, the proposed variational method lends itself to more flexible solutions than prior methodologies. Furthermore, the derived method is verified both through simulations with multiple mobile robots and a real world experiment with two mobile robots. In both cases the robots shares the operating space and needs to cross each other’s paths multiple times without colliding.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated