Preprint
Article

This version is not peer-reviewed.

Adaptive Batch Size Selection in Active Learning for Regression

Submitted:

25 January 2022

Posted:

28 January 2022

You are already at the latest version

Abstract
Training supervised machine learning models requires labeled examples. A judicious choice of examples is helpful when there is a significant cost associated with assigning labels. This article improves upon a promising extant method – Batch-mode Expected Model Change Maximization (B-EMCM) method – for selecting examples to be labeled for regression problems. Specifically, it develops and evaluates alternate strategies for adaptively selecting batch size in B-EMCM. By determining the cumulative error that occurs from the estimation of the stochastic gradient descent, a stop criteria for each iteration of the batch can be specified to ensure that selected candidates are the most beneficial to model learning. This new methodology is compared to B-EMCM via mean absolute error and root mean square error over ten iterations benchmarked against machine learning data sets. Using multiple data sets and metrics across all methods, one variation of AB-EMCM, the max bound of the accumulated error (AB-EMCM Max), showed the best results for an adaptive batch approach. It achieved better root mean squared error (RMSE) and mean absolute error (MAE) than the other adaptive and non-adaptive batch methods while reaching the result in nearly the same number of iterations as the non-adaptive batch methods.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated