Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Variable-length Rational Finite Element Based On The Absolute Nodal Coordinate Formulation

Version 1 : Received: 26 January 2022 / Approved: 27 January 2022 / Online: 27 January 2022 (11:05:54 CET)

A peer-reviewed article of this Preprint also exists.

Ding, Z.; Ouyang, B. A Variable-Length Rational Finite Element Based on the Absolute Nodal Coordinate Formulation. Machines 2022, 10, 174. Ding, Z.; Ouyang, B. A Variable-Length Rational Finite Element Based on the Absolute Nodal Coordinate Formulation. Machines 2022, 10, 174.

Abstract

The variable-length arbitrary Lagrange-Euler (ALE)-ANCF finite element, which employ nonrational interpolating polynomials, cannot exactly describe the rational cubic Bezier curves such as conic and circular curves. The rational absolute nodal coordinate formulation (RANCF) finite element, whose reference length (undeformed length) is constant, can exactly represent the rational cubic Bezier curves. A new variable-length finite element called the ALE-RANCF finite element, which is capable of accurately describe the rational cubic Bezier curves, is proposed by combining the desirable features of the ALE-ANCF and RANCF finite element. In order to control the reference length of ALE-RANCF element within a suitable range, element segmentation and merging schemes are proposed. It is demonstrated that exact geometry and mechanic is maintained after the ALE-RANCF element is divided into two shorter ones, and compared with the ALE-ANCF elements, there are smaller deviations and oscillations after two ALE-RANCF elements are merged into a longer one. Numerical examples are presented and the feasibility and advantages of the ALE-RANCF finite element are demonstrated.

Keywords

Arbitrary Lagrange-Euler; Rational finite element; Absolute nodal coordinate formulation; Variable-length finite element; Sliding joint

Subject

Engineering, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.