Preprint
Review

This version is not peer-reviewed.

Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications

A peer-reviewed article of this preprint also exists.

Submitted:

26 January 2022

Posted:

27 January 2022

You are already at the latest version

Abstract
Bayesian nonlinear mixed effects models for data in the form of continuous, repeated measurements from a population, also known as Bayesian hierarchical nonlinear models, are a popular platform for analysis when interest focuses on individual specific characteristics and relevant uncertainty quantification. Due to the limitation of computational power, this framework was relatively dormant until the late 1980s, but in recent years, the statistical research community saw vigorous development of new methodological and computational techniques for these models, the emergence of software, and wide application of the models in numerous industrial and academic fields. This article presents an overview of the formulation, interpretation, and implementation of Bayesian nonlinear mixed effects models and surveys recent advances and applications.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated